Refactor KB for easier customization (#11268)

* Add implementation of batching + backwards compatibility fixes. Tests indicate issue with batch disambiguation for custom singular entity lookups.

* Fix tests. Add distinction w.r.t. batch size.

* Remove redundant and add new comments.

* Adjust comments. Fix variable naming in EL prediction.

* Fix mypy errors.

* Remove KB entity type config option. Change return types of candidate retrieval functions to Iterable from Iterator. Fix various other issues.

* Update spacy/pipeline/entity_linker.py

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Update spacy/pipeline/entity_linker.py

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Update spacy/kb_base.pyx

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Update spacy/kb_base.pyx

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Update spacy/pipeline/entity_linker.py

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Add error messages to NotImplementedErrors. Remove redundant comment.

* Fix imports.

* Remove redundant comments.

* Rename KnowledgeBase to InMemoryLookupKB and BaseKnowledgeBase to KnowledgeBase.

* Fix tests.

* Update spacy/errors.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Move KB into subdirectory.

* Adjust imports after KB move to dedicated subdirectory.

* Fix config imports.

* Move Candidate + retrieval functions to separate module. Fix other, small issues.

* Fix docstrings and error message w.r.t. class names. Fix typing for candidate retrieval functions.

* Update spacy/kb/kb_in_memory.pyx

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/ml/models/entity_linker.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Fix typing.

* Change typing of mentions to be Span instead of Union[Span, str].

* Update docs.

* Update EntityLinker and _architecture docs.

* Update website/docs/api/entitylinker.md

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Adjust message for E1046.

* Re-add section for Candidate in kb.md, add reference to dedicated page.

* Update docs and docstrings.

* Re-add section + reference for KnowledgeBase.get_alias_candidates() in docs.

* Update spacy/kb/candidate.pyx

* Update spacy/kb/kb_in_memory.pyx

* Update spacy/pipeline/legacy/entity_linker.py

* Remove canididate.md. Remove mistakenly added config snippet in entity_linker.py.

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
This commit is contained in:
Raphael Mitsch 2022-09-08 10:38:07 +02:00 committed by GitHub
parent f292569b1a
commit 1f23c615d7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 854 additions and 372 deletions

View File

@ -30,7 +30,9 @@ MOD_NAMES = [
"spacy.lexeme", "spacy.lexeme",
"spacy.vocab", "spacy.vocab",
"spacy.attrs", "spacy.attrs",
"spacy.kb", "spacy.kb.candidate",
"spacy.kb.kb",
"spacy.kb.kb_in_memory",
"spacy.ml.parser_model", "spacy.ml.parser_model",
"spacy.morphology", "spacy.morphology",
"spacy.pipeline.dep_parser", "spacy.pipeline.dep_parser",

View File

@ -709,9 +709,9 @@ class Errors(metaclass=ErrorsWithCodes):
"`nlp.enable_pipe` instead.") "`nlp.enable_pipe` instead.")
E927 = ("Can't write to frozen list Maybe you're trying to modify a computed " E927 = ("Can't write to frozen list Maybe you're trying to modify a computed "
"property or default function argument?") "property or default function argument?")
E928 = ("A KnowledgeBase can only be serialized to/from from a directory, " E928 = ("An InMemoryLookupKB can only be serialized to/from from a directory, "
"but the provided argument {loc} points to a file.") "but the provided argument {loc} points to a file.")
E929 = ("Couldn't read KnowledgeBase from {loc}. The path does not seem to exist.") E929 = ("Couldn't read InMemoryLookupKB from {loc}. The path does not seem to exist.")
E930 = ("Received invalid get_examples callback in `{method}`. " E930 = ("Received invalid get_examples callback in `{method}`. "
"Expected function that returns an iterable of Example objects but " "Expected function that returns an iterable of Example objects but "
"got: {obj}") "got: {obj}")
@ -941,6 +941,12 @@ class Errors(metaclass=ErrorsWithCodes):
"`{arg2}`={arg2_values} but these arguments are conflicting.") "`{arg2}`={arg2_values} but these arguments are conflicting.")
E1043 = ("Expected None or a value in range [{range_start}, {range_end}] for entity linker threshold, but got " E1043 = ("Expected None or a value in range [{range_start}, {range_end}] for entity linker threshold, but got "
"{value}.") "{value}.")
E1044 = ("Expected `candidates_batch_size` to be >= 1, but got: {value}")
E1045 = ("Encountered {parent} subclass without `{parent}.{method}` "
"method in '{name}'. If you want to use this method, make "
"sure it's overwritten on the subclass.")
E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default "
"knowledge base, use `InMemoryLookupKB`.")
# Deprecated model shortcuts, only used in errors and warnings # Deprecated model shortcuts, only used in errors and warnings

3
spacy/kb/__init__.py Normal file
View File

@ -0,0 +1,3 @@
from .kb import KnowledgeBase
from .kb_in_memory import InMemoryLookupKB
from .candidate import Candidate, get_candidates, get_candidates_batch

12
spacy/kb/candidate.pxd Normal file
View File

@ -0,0 +1,12 @@
from .kb cimport KnowledgeBase
from libcpp.vector cimport vector
from ..typedefs cimport hash_t
# Object used by the Entity Linker that summarizes one entity-alias candidate combination.
cdef class Candidate:
cdef readonly KnowledgeBase kb
cdef hash_t entity_hash
cdef float entity_freq
cdef vector[float] entity_vector
cdef hash_t alias_hash
cdef float prior_prob

74
spacy/kb/candidate.pyx Normal file
View File

@ -0,0 +1,74 @@
# cython: infer_types=True, profile=True
from typing import Iterable
from .kb cimport KnowledgeBase
from ..tokens import Span
cdef class Candidate:
"""A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved
to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking
algorithm which will disambiguate the various candidates to the correct one.
Each candidate (alias, entity) pair is assigned a certain prior probability.
DOCS: https://spacy.io/api/kb/#candidate-init
"""
def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
self.kb = kb
self.entity_hash = entity_hash
self.entity_freq = entity_freq
self.entity_vector = entity_vector
self.alias_hash = alias_hash
self.prior_prob = prior_prob
@property
def entity(self) -> int:
"""RETURNS (uint64): hash of the entity's KB ID/name"""
return self.entity_hash
@property
def entity_(self) -> str:
"""RETURNS (str): ID/name of this entity in the KB"""
return self.kb.vocab.strings[self.entity_hash]
@property
def alias(self) -> int:
"""RETURNS (uint64): hash of the alias"""
return self.alias_hash
@property
def alias_(self) -> str:
"""RETURNS (str): ID of the original alias"""
return self.kb.vocab.strings[self.alias_hash]
@property
def entity_freq(self) -> float:
return self.entity_freq
@property
def entity_vector(self) -> Iterable[float]:
return self.entity_vector
@property
def prior_prob(self) -> float:
return self.prior_prob
def get_candidates(kb: KnowledgeBase, mention: Span) -> Iterable[Candidate]:
"""
Return candidate entities for a given mention and fetching appropriate entries from the index.
kb (KnowledgeBase): Knowledge base to query.
mention (Span): Entity mention for which to identify candidates.
RETURNS (Iterable[Candidate]): Identified candidates.
"""
return kb.get_candidates(mention)
def get_candidates_batch(kb: KnowledgeBase, mentions: Iterable[Span]) -> Iterable[Iterable[Candidate]]:
"""
Return candidate entities for the given mentions and fetching appropriate entries from the index.
kb (KnowledgeBase): Knowledge base to query.
mention (Iterable[Span]): Entity mentions for which to identify candidates.
RETURNS (Iterable[Iterable[Candidate]]): Identified candidates.
"""
return kb.get_candidates_batch(mentions)

10
spacy/kb/kb.pxd Normal file
View File

@ -0,0 +1,10 @@
"""Knowledge-base for entity or concept linking."""
from cymem.cymem cimport Pool
from libc.stdint cimport int64_t
from ..vocab cimport Vocab
cdef class KnowledgeBase:
cdef Pool mem
cdef readonly Vocab vocab
cdef readonly int64_t entity_vector_length

108
spacy/kb/kb.pyx Normal file
View File

@ -0,0 +1,108 @@
# cython: infer_types=True, profile=True
from pathlib import Path
from typing import Iterable, Tuple, Union
from cymem.cymem cimport Pool
from .candidate import Candidate
from ..tokens import Span
from ..util import SimpleFrozenList
from ..errors import Errors
cdef class KnowledgeBase:
"""A `KnowledgeBase` instance stores unique identifiers for entities and their textual aliases,
to support entity linking of named entities to real-world concepts.
This is an abstract class and requires its operations to be implemented.
DOCS: https://spacy.io/api/kb
"""
def __init__(self, vocab: Vocab, entity_vector_length: int):
"""Create a KnowledgeBase."""
# Make sure abstract KB is not instantiated.
if self.__class__ == KnowledgeBase:
raise TypeError(
Errors.E1046.format(cls_name=self.__class__.__name__)
)
self.vocab = vocab
self.entity_vector_length = entity_vector_length
self.mem = Pool()
def get_candidates_batch(self, mentions: Iterable[Span]) -> Iterable[Iterable[Candidate]]:
"""
Return candidate entities for specified texts. Each candidate defines the entity, the original alias,
and the prior probability of that alias resolving to that entity.
If no candidate is found for a given text, an empty list is returned.
mentions (Iterable[Span]): Mentions for which to get candidates.
RETURNS (Iterable[Iterable[Candidate]]): Identified candidates.
"""
return [self.get_candidates(span) for span in mentions]
def get_candidates(self, mention: Span) -> Iterable[Candidate]:
"""
Return candidate entities for specified text. Each candidate defines the entity, the original alias,
and the prior probability of that alias resolving to that entity.
If the no candidate is found for a given text, an empty list is returned.
mention (Span): Mention for which to get candidates.
RETURNS (Iterable[Candidate]): Identified candidates.
"""
raise NotImplementedError(
Errors.E1045.format(parent="KnowledgeBase", method="get_candidates", name=self.__name__)
)
def get_vectors(self, entities: Iterable[str]) -> Iterable[Iterable[float]]:
"""
Return vectors for entities.
entity (str): Entity name/ID.
RETURNS (Iterable[Iterable[float]]): Vectors for specified entities.
"""
return [self.get_vector(entity) for entity in entities]
def get_vector(self, str entity) -> Iterable[float]:
"""
Return vector for entity.
entity (str): Entity name/ID.
RETURNS (Iterable[float]): Vector for specified entity.
"""
raise NotImplementedError(
Errors.E1045.format(parent="KnowledgeBase", method="get_vector", name=self.__name__)
)
def to_bytes(self, **kwargs) -> bytes:
"""Serialize the current state to a binary string.
RETURNS (bytes): Current state as binary string.
"""
raise NotImplementedError(
Errors.E1045.format(parent="KnowledgeBase", method="to_bytes", name=self.__name__)
)
def from_bytes(self, bytes_data: bytes, *, exclude: Tuple[str] = tuple()):
"""Load state from a binary string.
bytes_data (bytes): KB state.
exclude (Tuple[str]): Properties to exclude when restoring KB.
"""
raise NotImplementedError(
Errors.E1045.format(parent="KnowledgeBase", method="from_bytes", name=self.__name__)
)
def to_disk(self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()) -> None:
"""
Write KnowledgeBase content to disk.
path (Union[str, Path]): Target file path.
exclude (Iterable[str]): List of components to exclude.
"""
raise NotImplementedError(
Errors.E1045.format(parent="KnowledgeBase", method="to_disk", name=self.__name__)
)
def from_disk(self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()) -> None:
"""
Load KnowledgeBase content from disk.
path (Union[str, Path]): Target file path.
exclude (Iterable[str]): List of components to exclude.
"""
raise NotImplementedError(
Errors.E1045.format(parent="KnowledgeBase", method="from_disk", name=self.__name__)
)

View File

@ -1,14 +1,12 @@
"""Knowledge-base for entity or concept linking.""" """Knowledge-base for entity or concept linking."""
from cymem.cymem cimport Pool
from preshed.maps cimport PreshMap from preshed.maps cimport PreshMap
from libcpp.vector cimport vector from libcpp.vector cimport vector
from libc.stdint cimport int32_t, int64_t from libc.stdint cimport int32_t, int64_t
from libc.stdio cimport FILE from libc.stdio cimport FILE
from .vocab cimport Vocab from ..typedefs cimport hash_t
from .typedefs cimport hash_t from ..structs cimport KBEntryC, AliasC
from .structs cimport KBEntryC, AliasC from .kb cimport KnowledgeBase
ctypedef vector[KBEntryC] entry_vec ctypedef vector[KBEntryC] entry_vec
ctypedef vector[AliasC] alias_vec ctypedef vector[AliasC] alias_vec
@ -16,21 +14,7 @@ ctypedef vector[float] float_vec
ctypedef vector[float_vec] float_matrix ctypedef vector[float_vec] float_matrix
# Object used by the Entity Linker that summarizes one entity-alias candidate combination. cdef class InMemoryLookupKB(KnowledgeBase):
cdef class Candidate:
cdef readonly KnowledgeBase kb
cdef hash_t entity_hash
cdef float entity_freq
cdef vector[float] entity_vector
cdef hash_t alias_hash
cdef float prior_prob
cdef class KnowledgeBase:
cdef Pool mem
cdef readonly Vocab vocab
cdef int64_t entity_vector_length
# This maps 64bit keys (hash of unique entity string) # This maps 64bit keys (hash of unique entity string)
# to 64bit values (position of the _KBEntryC struct in the _entries vector). # to 64bit values (position of the _KBEntryC struct in the _entries vector).
# The PreshMap is pretty space efficient, as it uses open addressing. So # The PreshMap is pretty space efficient, as it uses open addressing. So

View File

@ -1,8 +1,7 @@
# cython: infer_types=True, profile=True # cython: infer_types=True, profile=True
from typing import Iterator, Iterable, Callable, Dict, Any from typing import Iterable, Callable, Dict, Any, Union
import srsly import srsly
from cymem.cymem cimport Pool
from preshed.maps cimport PreshMap from preshed.maps cimport PreshMap
from cpython.exc cimport PyErr_SetFromErrno from cpython.exc cimport PyErr_SetFromErrno
from libc.stdio cimport fopen, fclose, fread, fwrite, feof, fseek from libc.stdio cimport fopen, fclose, fread, fwrite, feof, fseek
@ -12,85 +11,28 @@ from libcpp.vector cimport vector
from pathlib import Path from pathlib import Path
import warnings import warnings
from .typedefs cimport hash_t from ..tokens import Span
from .errors import Errors, Warnings from ..typedefs cimport hash_t
from . import util from ..errors import Errors, Warnings
from .util import SimpleFrozenList, ensure_path from .. import util
from ..util import SimpleFrozenList, ensure_path
cdef class Candidate: from ..vocab cimport Vocab
"""A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved from .kb cimport KnowledgeBase
to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking from .candidate import Candidate as Candidate
algorithm which will disambiguate the various candidates to the correct one.
Each candidate (alias, entity) pair is assigned to a certain prior probability.
DOCS: https://spacy.io/api/kb/#candidate_init
"""
def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
self.kb = kb
self.entity_hash = entity_hash
self.entity_freq = entity_freq
self.entity_vector = entity_vector
self.alias_hash = alias_hash
self.prior_prob = prior_prob
@property
def entity(self):
"""RETURNS (uint64): hash of the entity's KB ID/name"""
return self.entity_hash
@property
def entity_(self):
"""RETURNS (str): ID/name of this entity in the KB"""
return self.kb.vocab.strings[self.entity_hash]
@property
def alias(self):
"""RETURNS (uint64): hash of the alias"""
return self.alias_hash
@property
def alias_(self):
"""RETURNS (str): ID of the original alias"""
return self.kb.vocab.strings[self.alias_hash]
@property
def entity_freq(self):
return self.entity_freq
@property
def entity_vector(self):
return self.entity_vector
@property
def prior_prob(self):
return self.prior_prob
def get_candidates(KnowledgeBase kb, span) -> Iterator[Candidate]: cdef class InMemoryLookupKB(KnowledgeBase):
""" """An `InMemoryLookupKB` instance stores unique identifiers for entities and their textual aliases,
Return candidate entities for a given span by using the text of the span as the alias
and fetching appropriate entries from the index.
This particular function is optimized to work with the built-in KB functionality,
but any other custom candidate generation method can be used in combination with the KB as well.
"""
return kb.get_alias_candidates(span.text)
cdef class KnowledgeBase:
"""A `KnowledgeBase` instance stores unique identifiers for entities and their textual aliases,
to support entity linking of named entities to real-world concepts. to support entity linking of named entities to real-world concepts.
DOCS: https://spacy.io/api/kb DOCS: https://spacy.io/api/kb_in_memory
""" """
def __init__(self, Vocab vocab, entity_vector_length): def __init__(self, Vocab vocab, entity_vector_length):
"""Create a KnowledgeBase.""" """Create an InMemoryLookupKB."""
self.mem = Pool() super().__init__(vocab, entity_vector_length)
self.entity_vector_length = entity_vector_length
self._entry_index = PreshMap() self._entry_index = PreshMap()
self._alias_index = PreshMap() self._alias_index = PreshMap()
self.vocab = vocab
self._create_empty_vectors(dummy_hash=self.vocab.strings[""]) self._create_empty_vectors(dummy_hash=self.vocab.strings[""])
def _initialize_entities(self, int64_t nr_entities): def _initialize_entities(self, int64_t nr_entities):
@ -104,11 +46,6 @@ cdef class KnowledgeBase:
self._alias_index = PreshMap(nr_aliases + 1) self._alias_index = PreshMap(nr_aliases + 1)
self._aliases_table = alias_vec(nr_aliases + 1) self._aliases_table = alias_vec(nr_aliases + 1)
@property
def entity_vector_length(self):
"""RETURNS (uint64): length of the entity vectors"""
return self.entity_vector_length
def __len__(self): def __len__(self):
return self.get_size_entities() return self.get_size_entities()
@ -286,7 +223,10 @@ cdef class KnowledgeBase:
alias_entry.probs = probs alias_entry.probs = probs
self._aliases_table[alias_index] = alias_entry self._aliases_table[alias_index] = alias_entry
def get_alias_candidates(self, str alias) -> Iterator[Candidate]: def get_candidates(self, mention: Span) -> Iterable[Candidate]:
return self.get_alias_candidates(mention.text) # type: ignore
def get_alias_candidates(self, str alias) -> Iterable[Candidate]:
""" """
Return candidate entities for an alias. Each candidate defines the entity, the original alias, Return candidate entities for an alias. Each candidate defines the entity, the original alias,
and the prior probability of that alias resolving to that entity. and the prior probability of that alias resolving to that entity.

View File

@ -1,11 +1,12 @@
from pathlib import Path from pathlib import Path
from typing import Optional, Callable, Iterable, List, Tuple from typing import Optional, Callable, Iterable, List, Tuple
from thinc.types import Floats2d from thinc.types import Floats2d
from thinc.api import chain, clone, list2ragged, reduce_mean, residual from thinc.api import chain, list2ragged, reduce_mean, residual
from thinc.api import Model, Maxout, Linear, noop, tuplify, Ragged from thinc.api import Model, Maxout, Linear, tuplify, Ragged
from ...util import registry from ...util import registry
from ...kb import KnowledgeBase, Candidate, get_candidates from ...kb import KnowledgeBase, InMemoryLookupKB
from ...kb import Candidate, get_candidates, get_candidates_batch
from ...vocab import Vocab from ...vocab import Vocab
from ...tokens import Span, Doc from ...tokens import Span, Doc
from ..extract_spans import extract_spans from ..extract_spans import extract_spans
@ -78,9 +79,11 @@ def span_maker_forward(model, docs: List[Doc], is_train) -> Tuple[Ragged, Callab
@registry.misc("spacy.KBFromFile.v1") @registry.misc("spacy.KBFromFile.v1")
def load_kb(kb_path: Path) -> Callable[[Vocab], KnowledgeBase]: def load_kb(
def kb_from_file(vocab): kb_path: Path,
kb = KnowledgeBase(vocab, entity_vector_length=1) ) -> Callable[[Vocab], KnowledgeBase]:
def kb_from_file(vocab: Vocab):
kb = InMemoryLookupKB(vocab, entity_vector_length=1)
kb.from_disk(kb_path) kb.from_disk(kb_path)
return kb return kb
@ -88,9 +91,11 @@ def load_kb(kb_path: Path) -> Callable[[Vocab], KnowledgeBase]:
@registry.misc("spacy.EmptyKB.v1") @registry.misc("spacy.EmptyKB.v1")
def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]: def empty_kb(
def empty_kb_factory(vocab): entity_vector_length: int,
return KnowledgeBase(vocab=vocab, entity_vector_length=entity_vector_length) ) -> Callable[[Vocab], KnowledgeBase]:
def empty_kb_factory(vocab: Vocab):
return InMemoryLookupKB(vocab=vocab, entity_vector_length=entity_vector_length)
return empty_kb_factory return empty_kb_factory
@ -98,3 +103,10 @@ def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]:
@registry.misc("spacy.CandidateGenerator.v1") @registry.misc("spacy.CandidateGenerator.v1")
def create_candidates() -> Callable[[KnowledgeBase, Span], Iterable[Candidate]]: def create_candidates() -> Callable[[KnowledgeBase, Span], Iterable[Candidate]]:
return get_candidates return get_candidates
@registry.misc("spacy.CandidateBatchGenerator.v1")
def create_candidates_batch() -> Callable[
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
]:
return get_candidates_batch

View File

@ -53,9 +53,11 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
"incl_context": True, "incl_context": True,
"entity_vector_length": 64, "entity_vector_length": 64,
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"}, "get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
"overwrite": True, "overwrite": True,
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"}, "scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
"use_gold_ents": True, "use_gold_ents": True,
"candidates_batch_size": 1,
"threshold": None, "threshold": None,
}, },
default_score_weights={ default_score_weights={
@ -75,9 +77,13 @@ def make_entity_linker(
incl_context: bool, incl_context: bool,
entity_vector_length: int, entity_vector_length: int,
get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]], get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
get_candidates_batch: Callable[
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
],
overwrite: bool, overwrite: bool,
scorer: Optional[Callable], scorer: Optional[Callable],
use_gold_ents: bool, use_gold_ents: bool,
candidates_batch_size: int,
threshold: Optional[float] = None, threshold: Optional[float] = None,
): ):
"""Construct an EntityLinker component. """Construct an EntityLinker component.
@ -90,17 +96,21 @@ def make_entity_linker(
incl_prior (bool): Whether or not to include prior probabilities from the KB in the model. incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
incl_context (bool): Whether or not to include the local context in the model. incl_context (bool): Whether or not to include the local context in the model.
entity_vector_length (int): Size of encoding vectors in the KB. entity_vector_length (int): Size of encoding vectors in the KB.
get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
produces a list of candidates, given a certain knowledge base and a textual mention. produces a list of candidates, given a certain knowledge base and a textual mention.
get_candidates_batch (
Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]], Iterable[Candidate]]
): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
scorer (Optional[Callable]): The scoring method. scorer (Optional[Callable]): The scoring method.
use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
component must provide entity annotations. component must provide entity annotations.
candidates_batch_size (int): Size of batches for entity candidate generation.
threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold, threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold,
prediction is discarded. If None, predictions are not filtered by any threshold. prediction is discarded. If None, predictions are not filtered by any threshold.
""" """
if not model.attrs.get("include_span_maker", False): if not model.attrs.get("include_span_maker", False):
# The only difference in arguments here is that use_gold_ents is not available # The only difference in arguments here is that use_gold_ents and threshold aren't available.
return EntityLinker_v1( return EntityLinker_v1(
nlp.vocab, nlp.vocab,
model, model,
@ -124,9 +134,11 @@ def make_entity_linker(
incl_context=incl_context, incl_context=incl_context,
entity_vector_length=entity_vector_length, entity_vector_length=entity_vector_length,
get_candidates=get_candidates, get_candidates=get_candidates,
get_candidates_batch=get_candidates_batch,
overwrite=overwrite, overwrite=overwrite,
scorer=scorer, scorer=scorer,
use_gold_ents=use_gold_ents, use_gold_ents=use_gold_ents,
candidates_batch_size=candidates_batch_size,
threshold=threshold, threshold=threshold,
) )
@ -160,9 +172,13 @@ class EntityLinker(TrainablePipe):
incl_context: bool, incl_context: bool,
entity_vector_length: int, entity_vector_length: int,
get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]], get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
get_candidates_batch: Callable[
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
],
overwrite: bool = BACKWARD_OVERWRITE, overwrite: bool = BACKWARD_OVERWRITE,
scorer: Optional[Callable] = entity_linker_score, scorer: Optional[Callable] = entity_linker_score,
use_gold_ents: bool, use_gold_ents: bool,
candidates_batch_size: int,
threshold: Optional[float] = None, threshold: Optional[float] = None,
) -> None: ) -> None:
"""Initialize an entity linker. """Initialize an entity linker.
@ -178,10 +194,14 @@ class EntityLinker(TrainablePipe):
entity_vector_length (int): Size of encoding vectors in the KB. entity_vector_length (int): Size of encoding vectors in the KB.
get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
produces a list of candidates, given a certain knowledge base and a textual mention. produces a list of candidates, given a certain knowledge base and a textual mention.
scorer (Optional[Callable]): The scoring method. Defaults to get_candidates_batch (
Scorer.score_links. Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]],
Iterable[Candidate]]
): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links.
use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
component must provide entity annotations. component must provide entity annotations.
candidates_batch_size (int): Size of batches for entity candidate generation.
threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the
threshold, prediction is discarded. If None, predictions are not filtered by any threshold. threshold, prediction is discarded. If None, predictions are not filtered by any threshold.
DOCS: https://spacy.io/api/entitylinker#init DOCS: https://spacy.io/api/entitylinker#init
@ -204,22 +224,27 @@ class EntityLinker(TrainablePipe):
self.incl_prior = incl_prior self.incl_prior = incl_prior
self.incl_context = incl_context self.incl_context = incl_context
self.get_candidates = get_candidates self.get_candidates = get_candidates
self.get_candidates_batch = get_candidates_batch
self.cfg: Dict[str, Any] = {"overwrite": overwrite} self.cfg: Dict[str, Any] = {"overwrite": overwrite}
self.distance = CosineDistance(normalize=False) self.distance = CosineDistance(normalize=False)
# how many neighbour sentences to take into account # how many neighbour sentences to take into account
# create an empty KB by default. If you want to load a predefined one, specify it in 'initialize'. # create an empty KB by default
self.kb = empty_kb(entity_vector_length)(self.vocab) self.kb = empty_kb(entity_vector_length)(self.vocab)
self.scorer = scorer self.scorer = scorer
self.use_gold_ents = use_gold_ents self.use_gold_ents = use_gold_ents
self.candidates_batch_size = candidates_batch_size
self.threshold = threshold self.threshold = threshold
if candidates_batch_size < 1:
raise ValueError(Errors.E1044)
def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]): def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]):
"""Define the KB of this pipe by providing a function that will """Define the KB of this pipe by providing a function that will
create it using this object's vocab.""" create it using this object's vocab."""
if not callable(kb_loader): if not callable(kb_loader):
raise ValueError(Errors.E885.format(arg_type=type(kb_loader))) raise ValueError(Errors.E885.format(arg_type=type(kb_loader)))
self.kb = kb_loader(self.vocab) self.kb = kb_loader(self.vocab) # type: ignore
def validate_kb(self) -> None: def validate_kb(self) -> None:
# Raise an error if the knowledge base is not initialized. # Raise an error if the knowledge base is not initialized.
@ -241,8 +266,8 @@ class EntityLinker(TrainablePipe):
get_examples (Callable[[], Iterable[Example]]): Function that get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects. returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of. nlp (Language): The current nlp object the component is part of.
kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab instance. kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab
Note that providing this argument, will overwrite all data accumulated in the current KB. instance. Note that providing this argument will overwrite all data accumulated in the current KB.
Use this only when loading a KB as-such from file. Use this only when loading a KB as-such from file.
DOCS: https://spacy.io/api/entitylinker#initialize DOCS: https://spacy.io/api/entitylinker#initialize
@ -419,66 +444,93 @@ class EntityLinker(TrainablePipe):
if len(doc) == 0: if len(doc) == 0:
continue continue
sentences = [s for s in doc.sents] sentences = [s for s in doc.sents]
# Looping through each entity (TODO: rewrite)
for ent in doc.ents:
sent_index = sentences.index(ent.sent)
assert sent_index >= 0
if self.incl_context: # Loop over entities in batches.
# get n_neighbour sentences, clipped to the length of the document for ent_idx in range(0, len(doc.ents), self.candidates_batch_size):
start_sentence = max(0, sent_index - self.n_sents) ent_batch = doc.ents[ent_idx : ent_idx + self.candidates_batch_size]
end_sentence = min(len(sentences) - 1, sent_index + self.n_sents)
start_token = sentences[start_sentence].start # Look up candidate entities.
end_token = sentences[end_sentence].end valid_ent_idx = [
sent_doc = doc[start_token:end_token].as_doc() idx
# currently, the context is the same for each entity in a sentence (should be refined) for idx in range(len(ent_batch))
sentence_encoding = self.model.predict([sent_doc])[0] if ent_batch[idx].label_ not in self.labels_discard
sentence_encoding_t = sentence_encoding.T ]
sentence_norm = xp.linalg.norm(sentence_encoding_t)
entity_count += 1 batch_candidates = list(
if ent.label_ in self.labels_discard: self.get_candidates_batch(
# ignoring this entity - setting to NIL self.kb, [ent_batch[idx] for idx in valid_ent_idx]
final_kb_ids.append(self.NIL) )
else: if self.candidates_batch_size > 1
candidates = list(self.get_candidates(self.kb, ent)) else [
if not candidates: self.get_candidates(self.kb, ent_batch[idx])
# no prediction possible for this entity - setting to NIL for idx in valid_ent_idx
final_kb_ids.append(self.NIL) ]
elif len(candidates) == 1 and self.threshold is None: )
# shortcut for efficiency reasons: take the 1 candidate
final_kb_ids.append(candidates[0].entity_) # Looping through each entity in batch (TODO: rewrite)
else: for j, ent in enumerate(ent_batch):
random.shuffle(candidates) sent_index = sentences.index(ent.sent)
# set all prior probabilities to 0 if incl_prior=False assert sent_index >= 0
prior_probs = xp.asarray([c.prior_prob for c in candidates])
if not self.incl_prior: if self.incl_context:
prior_probs = xp.asarray([0.0 for _ in candidates]) # get n_neighbour sentences, clipped to the length of the document
scores = prior_probs start_sentence = max(0, sent_index - self.n_sents)
# add in similarity from the context end_sentence = min(
if self.incl_context: len(sentences) - 1, sent_index + self.n_sents
entity_encodings = xp.asarray(
[c.entity_vector for c in candidates]
)
entity_norm = xp.linalg.norm(entity_encodings, axis=1)
if len(entity_encodings) != len(prior_probs):
raise RuntimeError(
Errors.E147.format(
method="predict",
msg="vectors not of equal length",
)
)
# cosine similarity
sims = xp.dot(entity_encodings, sentence_encoding_t) / (
sentence_norm * entity_norm
)
if sims.shape != prior_probs.shape:
raise ValueError(Errors.E161)
scores = prior_probs + sims - (prior_probs * sims)
final_kb_ids.append(
candidates[scores.argmax().item()].entity_
if self.threshold is None or scores.max() >= self.threshold
else EntityLinker.NIL
) )
start_token = sentences[start_sentence].start
end_token = sentences[end_sentence].end
sent_doc = doc[start_token:end_token].as_doc()
# currently, the context is the same for each entity in a sentence (should be refined)
sentence_encoding = self.model.predict([sent_doc])[0]
sentence_encoding_t = sentence_encoding.T
sentence_norm = xp.linalg.norm(sentence_encoding_t)
entity_count += 1
if ent.label_ in self.labels_discard:
# ignoring this entity - setting to NIL
final_kb_ids.append(self.NIL)
else:
candidates = list(batch_candidates[j])
if not candidates:
# no prediction possible for this entity - setting to NIL
final_kb_ids.append(self.NIL)
elif len(candidates) == 1 and self.threshold is None:
# shortcut for efficiency reasons: take the 1 candidate
final_kb_ids.append(candidates[0].entity_)
else:
random.shuffle(candidates)
# set all prior probabilities to 0 if incl_prior=False
prior_probs = xp.asarray([c.prior_prob for c in candidates])
if not self.incl_prior:
prior_probs = xp.asarray([0.0 for _ in candidates])
scores = prior_probs
# add in similarity from the context
if self.incl_context:
entity_encodings = xp.asarray(
[c.entity_vector for c in candidates]
)
entity_norm = xp.linalg.norm(entity_encodings, axis=1)
if len(entity_encodings) != len(prior_probs):
raise RuntimeError(
Errors.E147.format(
method="predict",
msg="vectors not of equal length",
)
)
# cosine similarity
sims = xp.dot(entity_encodings, sentence_encoding_t) / (
sentence_norm * entity_norm
)
if sims.shape != prior_probs.shape:
raise ValueError(Errors.E161)
scores = prior_probs + sims - (prior_probs * sims)
final_kb_ids.append(
candidates[scores.argmax().item()].entity_
if self.threshold is None
or scores.max() >= self.threshold
else EntityLinker.NIL
)
if not (len(final_kb_ids) == entity_count): if not (len(final_kb_ids) == entity_count):
err = Errors.E147.format( err = Errors.E147.format(
method="predict", msg="result variables not of equal length" method="predict", msg="result variables not of equal length"

View File

@ -68,8 +68,7 @@ class EntityLinker_v1(TrainablePipe):
entity_vector_length (int): Size of encoding vectors in the KB. entity_vector_length (int): Size of encoding vectors in the KB.
get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
produces a list of candidates, given a certain knowledge base and a textual mention. produces a list of candidates, given a certain knowledge base and a textual mention.
scorer (Optional[Callable]): The scoring method. Defaults to scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links.
Scorer.score_links.
DOCS: https://spacy.io/api/entitylinker#init DOCS: https://spacy.io/api/entitylinker#init
""" """
self.vocab = vocab self.vocab = vocab
@ -115,7 +114,7 @@ class EntityLinker_v1(TrainablePipe):
get_examples (Callable[[], Iterable[Example]]): Function that get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects. returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of. nlp (Language): The current nlp object the component is part of.
kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab instance. kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates an InMemoryLookupKB from a Vocab instance.
Note that providing this argument, will overwrite all data accumulated in the current KB. Note that providing this argument, will overwrite all data accumulated in the current KB.
Use this only when loading a KB as-such from file. Use this only when loading a KB as-such from file.

View File

@ -6,7 +6,7 @@ from numpy.testing import assert_equal
from spacy import registry, util from spacy import registry, util
from spacy.attrs import ENT_KB_ID from spacy.attrs import ENT_KB_ID
from spacy.compat import pickle from spacy.compat import pickle
from spacy.kb import Candidate, KnowledgeBase, get_candidates from spacy.kb import Candidate, InMemoryLookupKB, get_candidates, KnowledgeBase
from spacy.lang.en import English from spacy.lang.en import English
from spacy.ml import load_kb from spacy.ml import load_kb
from spacy.pipeline import EntityLinker from spacy.pipeline import EntityLinker
@ -34,7 +34,7 @@ def assert_almost_equal(a, b):
def test_issue4674(): def test_issue4674():
"""Test that setting entities with overlapping identifiers does not mess up IO""" """Test that setting entities with overlapping identifiers does not mess up IO"""
nlp = English() nlp = English()
kb = KnowledgeBase(nlp.vocab, entity_vector_length=3) kb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
vector1 = [0.9, 1.1, 1.01] vector1 = [0.9, 1.1, 1.01]
vector2 = [1.8, 2.25, 2.01] vector2 = [1.8, 2.25, 2.01]
with pytest.warns(UserWarning): with pytest.warns(UserWarning):
@ -51,7 +51,7 @@ def test_issue4674():
dir_path.mkdir() dir_path.mkdir()
file_path = dir_path / "kb" file_path = dir_path / "kb"
kb.to_disk(str(file_path)) kb.to_disk(str(file_path))
kb2 = KnowledgeBase(nlp.vocab, entity_vector_length=3) kb2 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
kb2.from_disk(str(file_path)) kb2.from_disk(str(file_path))
assert kb2.get_size_entities() == 1 assert kb2.get_size_entities() == 1
@ -59,9 +59,9 @@ def test_issue4674():
@pytest.mark.issue(6730) @pytest.mark.issue(6730)
def test_issue6730(en_vocab): def test_issue6730(en_vocab):
"""Ensure that the KB does not accept empty strings, but otherwise IO works fine.""" """Ensure that the KB does not accept empty strings, but otherwise IO works fine."""
from spacy.kb import KnowledgeBase from spacy.kb.kb_in_memory import InMemoryLookupKB
kb = KnowledgeBase(en_vocab, entity_vector_length=3) kb = InMemoryLookupKB(en_vocab, entity_vector_length=3)
kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3]) kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3])
with pytest.raises(ValueError): with pytest.raises(ValueError):
@ -127,7 +127,7 @@ def test_issue7065_b():
def create_kb(vocab): def create_kb(vocab):
# create artificial KB # create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q270853", freq=12, entity_vector=[9, 1, -7]) mykb.add_entity(entity="Q270853", freq=12, entity_vector=[9, 1, -7])
mykb.add_alias( mykb.add_alias(
alias="No. 8", alias="No. 8",
@ -190,7 +190,7 @@ def test_no_entities():
def create_kb(vocab): def create_kb(vocab):
# create artificial KB # create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9]) mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
return mykb return mykb
@ -231,7 +231,7 @@ def test_partial_links():
def create_kb(vocab): def create_kb(vocab):
# create artificial KB # create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9]) mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
return mykb return mykb
@ -263,7 +263,7 @@ def test_partial_links():
def test_kb_valid_entities(nlp): def test_kb_valid_entities(nlp):
"""Test the valid construction of a KB with 3 entities and two aliases""" """Test the valid construction of a KB with 3 entities and two aliases"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3) mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
# adding entities # adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3]) mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
@ -292,7 +292,7 @@ def test_kb_valid_entities(nlp):
def test_kb_invalid_entities(nlp): def test_kb_invalid_entities(nlp):
"""Test the invalid construction of a KB with an alias linked to a non-existing entity""" """Test the invalid construction of a KB with an alias linked to a non-existing entity"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
# adding entities # adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
@ -308,7 +308,7 @@ def test_kb_invalid_entities(nlp):
def test_kb_invalid_probabilities(nlp): def test_kb_invalid_probabilities(nlp):
"""Test the invalid construction of a KB with wrong prior probabilities""" """Test the invalid construction of a KB with wrong prior probabilities"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
# adding entities # adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
@ -322,7 +322,7 @@ def test_kb_invalid_probabilities(nlp):
def test_kb_invalid_combination(nlp): def test_kb_invalid_combination(nlp):
"""Test the invalid construction of a KB with non-matching entity and probability lists""" """Test the invalid construction of a KB with non-matching entity and probability lists"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
# adding entities # adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
@ -338,7 +338,7 @@ def test_kb_invalid_combination(nlp):
def test_kb_invalid_entity_vector(nlp): def test_kb_invalid_entity_vector(nlp):
"""Test the invalid construction of a KB with non-matching entity vector lengths""" """Test the invalid construction of a KB with non-matching entity vector lengths"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3) mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
# adding entities # adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3]) mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
@ -376,7 +376,7 @@ def test_kb_initialize_empty(nlp):
def test_kb_serialize(nlp): def test_kb_serialize(nlp):
"""Test serialization of the KB""" """Test serialization of the KB"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
with make_tempdir() as d: with make_tempdir() as d:
# normal read-write behaviour # normal read-write behaviour
mykb.to_disk(d / "kb") mykb.to_disk(d / "kb")
@ -393,12 +393,12 @@ def test_kb_serialize(nlp):
@pytest.mark.issue(9137) @pytest.mark.issue(9137)
def test_kb_serialize_2(nlp): def test_kb_serialize_2(nlp):
v = [5, 6, 7, 8] v = [5, 6, 7, 8]
kb1 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=4) kb1 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
kb1.set_entities(["E1"], [1], [v]) kb1.set_entities(["E1"], [1], [v])
assert kb1.get_vector("E1") == v assert kb1.get_vector("E1") == v
with make_tempdir() as d: with make_tempdir() as d:
kb1.to_disk(d / "kb") kb1.to_disk(d / "kb")
kb2 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=4) kb2 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
kb2.from_disk(d / "kb") kb2.from_disk(d / "kb")
assert kb2.get_vector("E1") == v assert kb2.get_vector("E1") == v
@ -408,7 +408,7 @@ def test_kb_set_entities(nlp):
v = [5, 6, 7, 8] v = [5, 6, 7, 8]
v1 = [1, 1, 1, 0] v1 = [1, 1, 1, 0]
v2 = [2, 2, 2, 3] v2 = [2, 2, 2, 3]
kb1 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=4) kb1 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
kb1.set_entities(["E0"], [1], [v]) kb1.set_entities(["E0"], [1], [v])
assert kb1.get_entity_strings() == ["E0"] assert kb1.get_entity_strings() == ["E0"]
kb1.set_entities(["E1", "E2"], [1, 9], [v1, v2]) kb1.set_entities(["E1", "E2"], [1, 9], [v1, v2])
@ -417,7 +417,7 @@ def test_kb_set_entities(nlp):
assert kb1.get_vector("E2") == v2 assert kb1.get_vector("E2") == v2
with make_tempdir() as d: with make_tempdir() as d:
kb1.to_disk(d / "kb") kb1.to_disk(d / "kb")
kb2 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=4) kb2 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
kb2.from_disk(d / "kb") kb2.from_disk(d / "kb")
assert set(kb2.get_entity_strings()) == {"E1", "E2"} assert set(kb2.get_entity_strings()) == {"E1", "E2"}
assert kb2.get_vector("E1") == v1 assert kb2.get_vector("E1") == v1
@ -428,7 +428,7 @@ def test_kb_serialize_vocab(nlp):
"""Test serialization of the KB and custom strings""" """Test serialization of the KB and custom strings"""
entity = "MyFunnyID" entity = "MyFunnyID"
assert entity not in nlp.vocab.strings assert entity not in nlp.vocab.strings
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
assert not mykb.contains_entity(entity) assert not mykb.contains_entity(entity)
mykb.add_entity(entity, freq=342, entity_vector=[3]) mykb.add_entity(entity, freq=342, entity_vector=[3])
assert mykb.contains_entity(entity) assert mykb.contains_entity(entity)
@ -436,14 +436,14 @@ def test_kb_serialize_vocab(nlp):
with make_tempdir() as d: with make_tempdir() as d:
# normal read-write behaviour # normal read-write behaviour
mykb.to_disk(d / "kb") mykb.to_disk(d / "kb")
mykb_new = KnowledgeBase(Vocab(), entity_vector_length=1) mykb_new = InMemoryLookupKB(Vocab(), entity_vector_length=1)
mykb_new.from_disk(d / "kb") mykb_new.from_disk(d / "kb")
assert entity in mykb_new.vocab.strings assert entity in mykb_new.vocab.strings
def test_candidate_generation(nlp): def test_candidate_generation(nlp):
"""Test correct candidate generation""" """Test correct candidate generation"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
doc = nlp("douglas adam Adam shrubbery") doc = nlp("douglas adam Adam shrubbery")
douglas_ent = doc[0:1] douglas_ent = doc[0:1]
@ -481,7 +481,7 @@ def test_el_pipe_configuration(nlp):
ruler.add_patterns([pattern]) ruler.add_patterns([pattern])
def create_kb(vocab): def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1) kb = InMemoryLookupKB(vocab, entity_vector_length=1)
kb.add_entity(entity="Q2", freq=12, entity_vector=[2]) kb.add_entity(entity="Q2", freq=12, entity_vector=[2])
kb.add_entity(entity="Q3", freq=5, entity_vector=[3]) kb.add_entity(entity="Q3", freq=5, entity_vector=[3])
kb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1]) kb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
@ -500,10 +500,21 @@ def test_el_pipe_configuration(nlp):
def get_lowercased_candidates(kb, span): def get_lowercased_candidates(kb, span):
return kb.get_alias_candidates(span.text.lower()) return kb.get_alias_candidates(span.text.lower())
def get_lowercased_candidates_batch(kb, spans):
return [get_lowercased_candidates(kb, span) for span in spans]
@registry.misc("spacy.LowercaseCandidateGenerator.v1") @registry.misc("spacy.LowercaseCandidateGenerator.v1")
def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]: def create_candidates() -> Callable[
[InMemoryLookupKB, "Span"], Iterable[Candidate]
]:
return get_lowercased_candidates return get_lowercased_candidates
@registry.misc("spacy.LowercaseCandidateBatchGenerator.v1")
def create_candidates_batch() -> Callable[
[InMemoryLookupKB, Iterable["Span"]], Iterable[Iterable[Candidate]]
]:
return get_lowercased_candidates_batch
# replace the pipe with a new one with with a different candidate generator # replace the pipe with a new one with with a different candidate generator
entity_linker = nlp.replace_pipe( entity_linker = nlp.replace_pipe(
"entity_linker", "entity_linker",
@ -511,6 +522,9 @@ def test_el_pipe_configuration(nlp):
config={ config={
"incl_context": False, "incl_context": False,
"get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"}, "get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
"get_candidates_batch": {
"@misc": "spacy.LowercaseCandidateBatchGenerator.v1"
},
}, },
) )
entity_linker.set_kb(create_kb) entity_linker.set_kb(create_kb)
@ -532,7 +546,7 @@ def test_nel_nsents(nlp):
def test_vocab_serialization(nlp): def test_vocab_serialization(nlp):
"""Test that string information is retained across storage""" """Test that string information is retained across storage"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
# adding entities # adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1]) mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
@ -552,7 +566,7 @@ def test_vocab_serialization(nlp):
with make_tempdir() as d: with make_tempdir() as d:
mykb.to_disk(d / "kb") mykb.to_disk(d / "kb")
kb_new_vocab = KnowledgeBase(Vocab(), entity_vector_length=1) kb_new_vocab = InMemoryLookupKB(Vocab(), entity_vector_length=1)
kb_new_vocab.from_disk(d / "kb") kb_new_vocab.from_disk(d / "kb")
candidates = kb_new_vocab.get_alias_candidates("adam") candidates = kb_new_vocab.get_alias_candidates("adam")
@ -568,7 +582,7 @@ def test_vocab_serialization(nlp):
def test_append_alias(nlp): def test_append_alias(nlp):
"""Test that we can append additional alias-entity pairs""" """Test that we can append additional alias-entity pairs"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
# adding entities # adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1]) mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
@ -599,7 +613,7 @@ def test_append_alias(nlp):
@pytest.mark.filterwarnings("ignore:\\[W036") @pytest.mark.filterwarnings("ignore:\\[W036")
def test_append_invalid_alias(nlp): def test_append_invalid_alias(nlp):
"""Test that append an alias will throw an error if prior probs are exceeding 1""" """Test that append an alias will throw an error if prior probs are exceeding 1"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
# adding entities # adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1]) mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
@ -621,7 +635,7 @@ def test_preserving_links_asdoc(nlp):
vector_length = 1 vector_length = 1
def create_kb(vocab): def create_kb(vocab):
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
# adding entities # adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=8, entity_vector=[1]) mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
@ -723,7 +737,7 @@ def test_overfitting_IO():
# create artificial KB - assign same prior weight to the two russ cochran's # create artificial KB - assign same prior weight to the two russ cochran's
# Q2146908 (Russ Cochran): American golfer # Q2146908 (Russ Cochran): American golfer
# Q7381115 (Russ Cochran): publisher # Q7381115 (Russ Cochran): publisher
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7]) mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
mykb.add_alias( mykb.add_alias(
@ -805,7 +819,7 @@ def test_kb_serialization():
kb_dir = tmp_dir / "kb" kb_dir = tmp_dir / "kb"
nlp1 = English() nlp1 = English()
assert "Q2146908" not in nlp1.vocab.strings assert "Q2146908" not in nlp1.vocab.strings
mykb = KnowledgeBase(nlp1.vocab, entity_vector_length=vector_length) mykb = InMemoryLookupKB(nlp1.vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8]) mykb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
assert "Q2146908" in nlp1.vocab.strings assert "Q2146908" in nlp1.vocab.strings
@ -828,7 +842,7 @@ def test_kb_serialization():
def test_kb_pickle(): def test_kb_pickle():
# Test that the KB can be pickled # Test that the KB can be pickled
nlp = English() nlp = English()
kb_1 = KnowledgeBase(nlp.vocab, entity_vector_length=3) kb_1 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
assert not kb_1.contains_alias("Russ Cochran") assert not kb_1.contains_alias("Russ Cochran")
kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8]) kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
@ -842,7 +856,7 @@ def test_kb_pickle():
def test_nel_pickle(): def test_nel_pickle():
# Test that a pipeline with an EL component can be pickled # Test that a pipeline with an EL component can be pickled
def create_kb(vocab): def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=3) kb = InMemoryLookupKB(vocab, entity_vector_length=3)
kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8]) kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
return kb return kb
@ -864,7 +878,7 @@ def test_nel_pickle():
def test_kb_to_bytes(): def test_kb_to_bytes():
# Test that the KB's to_bytes method works correctly # Test that the KB's to_bytes method works correctly
nlp = English() nlp = English()
kb_1 = KnowledgeBase(nlp.vocab, entity_vector_length=3) kb_1 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
kb_1.add_entity(entity="Q66", freq=9, entity_vector=[1, 2, 3]) kb_1.add_entity(entity="Q66", freq=9, entity_vector=[1, 2, 3])
kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8]) kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
@ -874,7 +888,7 @@ def test_kb_to_bytes():
) )
assert kb_1.contains_alias("Russ Cochran") assert kb_1.contains_alias("Russ Cochran")
kb_bytes = kb_1.to_bytes() kb_bytes = kb_1.to_bytes()
kb_2 = KnowledgeBase(nlp.vocab, entity_vector_length=3) kb_2 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
assert not kb_2.contains_alias("Russ Cochran") assert not kb_2.contains_alias("Russ Cochran")
kb_2 = kb_2.from_bytes(kb_bytes) kb_2 = kb_2.from_bytes(kb_bytes)
# check that both KBs are exactly the same # check that both KBs are exactly the same
@ -897,7 +911,7 @@ def test_kb_to_bytes():
def test_nel_to_bytes(): def test_nel_to_bytes():
# Test that a pipeline with an EL component can be converted to bytes # Test that a pipeline with an EL component can be converted to bytes
def create_kb(vocab): def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=3) kb = InMemoryLookupKB(vocab, entity_vector_length=3)
kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8]) kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
return kb return kb
@ -987,7 +1001,7 @@ def test_legacy_architectures(name, config):
train_examples.append(Example.from_dict(doc, annotation)) train_examples.append(Example.from_dict(doc, annotation))
def create_kb(vocab): def create_kb(vocab):
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7]) mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
mykb.add_alias( mykb.add_alias(
@ -1054,7 +1068,7 @@ def test_no_gold_ents(patterns):
def create_kb(vocab): def create_kb(vocab):
# create artificial KB # create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3]) mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Kirby", ["Q613241"], [0.9]) mykb.add_alias("Kirby", ["Q613241"], [0.9])
# Placeholder # Placeholder
@ -1104,7 +1118,7 @@ def test_tokenization_mismatch():
def create_kb(vocab): def create_kb(vocab):
# create placeholder KB # create placeholder KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3]) mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Kirby", ["Q613241"], [0.9]) mykb.add_alias("Kirby", ["Q613241"], [0.9])
return mykb return mykb
@ -1121,6 +1135,12 @@ def test_tokenization_mismatch():
nlp.evaluate(train_examples) nlp.evaluate(train_examples)
def test_abstract_kb_instantiation():
"""Test whether instantiation of abstract KB base class fails."""
with pytest.raises(TypeError):
KnowledgeBase(None, 3)
# fmt: off # fmt: off
@pytest.mark.parametrize( @pytest.mark.parametrize(
"meet_threshold,config", "meet_threshold,config",
@ -1151,7 +1171,7 @@ def test_threshold(meet_threshold: bool, config: Dict[str, Any]):
def create_kb(vocab): def create_kb(vocab):
# create artificial KB # create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=3) mykb = InMemoryLookupKB(vocab, entity_vector_length=3)
mykb.add_entity(entity=entity_id, freq=12, entity_vector=[6, -4, 3]) mykb.add_entity(entity=entity_id, freq=12, entity_vector=[6, -4, 3])
mykb.add_alias( mykb.add_alias(
alias="Mahler", alias="Mahler",

View File

@ -3,7 +3,7 @@ from unittest import TestCase
import pytest import pytest
import srsly import srsly
from numpy import zeros from numpy import zeros
from spacy.kb import KnowledgeBase, Writer from spacy.kb.kb_in_memory import InMemoryLookupKB, Writer
from spacy.vectors import Vectors from spacy.vectors import Vectors
from spacy.language import Language from spacy.language import Language
from spacy.pipeline import TrainablePipe from spacy.pipeline import TrainablePipe
@ -71,7 +71,7 @@ def entity_linker():
nlp = Language() nlp = Language()
def create_kb(vocab): def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1) kb = InMemoryLookupKB(vocab, entity_vector_length=1)
kb.add_entity("test", 0.0, zeros((1, 1), dtype="f")) kb.add_entity("test", 0.0, zeros((1, 1), dtype="f"))
return kb return kb
@ -120,7 +120,7 @@ def test_writer_with_path_py35():
def test_save_and_load_knowledge_base(): def test_save_and_load_knowledge_base():
nlp = Language() nlp = Language()
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1) kb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
with make_tempdir() as d: with make_tempdir() as d:
path = d / "kb" path = d / "kb"
try: try:
@ -129,7 +129,7 @@ def test_save_and_load_knowledge_base():
pytest.fail(str(e)) pytest.fail(str(e))
try: try:
kb_loaded = KnowledgeBase(nlp.vocab, entity_vector_length=1) kb_loaded = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
kb_loaded.from_disk(path) kb_loaded.from_disk(path)
except Exception as e: except Exception as e:
pytest.fail(str(e)) pytest.fail(str(e))

View File

@ -2,7 +2,7 @@ from typing import Callable
from spacy import util from spacy import util
from spacy.util import ensure_path, registry, load_model_from_config from spacy.util import ensure_path, registry, load_model_from_config
from spacy.kb import KnowledgeBase from spacy.kb.kb_in_memory import InMemoryLookupKB
from spacy.vocab import Vocab from spacy.vocab import Vocab
from thinc.api import Config from thinc.api import Config
@ -22,7 +22,7 @@ def test_serialize_kb_disk(en_vocab):
dir_path.mkdir() dir_path.mkdir()
file_path = dir_path / "kb" file_path = dir_path / "kb"
kb1.to_disk(str(file_path)) kb1.to_disk(str(file_path))
kb2 = KnowledgeBase(vocab=en_vocab, entity_vector_length=3) kb2 = InMemoryLookupKB(vocab=en_vocab, entity_vector_length=3)
kb2.from_disk(str(file_path)) kb2.from_disk(str(file_path))
# final assertions # final assertions
@ -30,7 +30,7 @@ def test_serialize_kb_disk(en_vocab):
def _get_dummy_kb(vocab): def _get_dummy_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=3) kb = InMemoryLookupKB(vocab, entity_vector_length=3)
kb.add_entity(entity="Q53", freq=33, entity_vector=[0, 5, 3]) kb.add_entity(entity="Q53", freq=33, entity_vector=[0, 5, 3])
kb.add_entity(entity="Q17", freq=2, entity_vector=[7, 1, 0]) kb.add_entity(entity="Q17", freq=2, entity_vector=[7, 1, 0])
kb.add_entity(entity="Q007", freq=7, entity_vector=[0, 0, 7]) kb.add_entity(entity="Q007", freq=7, entity_vector=[0, 0, 7])
@ -104,7 +104,7 @@ def test_serialize_subclassed_kb():
custom_field = 666 custom_field = 666
""" """
class SubKnowledgeBase(KnowledgeBase): class SubInMemoryLookupKB(InMemoryLookupKB):
def __init__(self, vocab, entity_vector_length, custom_field): def __init__(self, vocab, entity_vector_length, custom_field):
super().__init__(vocab, entity_vector_length) super().__init__(vocab, entity_vector_length)
self.custom_field = custom_field self.custom_field = custom_field
@ -112,9 +112,9 @@ def test_serialize_subclassed_kb():
@registry.misc("spacy.CustomKB.v1") @registry.misc("spacy.CustomKB.v1")
def custom_kb( def custom_kb(
entity_vector_length: int, custom_field: int entity_vector_length: int, custom_field: int
) -> Callable[[Vocab], KnowledgeBase]: ) -> Callable[[Vocab], InMemoryLookupKB]:
def custom_kb_factory(vocab): def custom_kb_factory(vocab):
kb = SubKnowledgeBase( kb = SubInMemoryLookupKB(
vocab=vocab, vocab=vocab,
entity_vector_length=entity_vector_length, entity_vector_length=entity_vector_length,
custom_field=custom_field, custom_field=custom_field,
@ -129,7 +129,7 @@ def test_serialize_subclassed_kb():
nlp.initialize() nlp.initialize()
entity_linker = nlp.get_pipe("entity_linker") entity_linker = nlp.get_pipe("entity_linker")
assert type(entity_linker.kb) == SubKnowledgeBase assert type(entity_linker.kb) == SubInMemoryLookupKB
assert entity_linker.kb.entity_vector_length == 342 assert entity_linker.kb.entity_vector_length == 342
assert entity_linker.kb.custom_field == 666 assert entity_linker.kb.custom_field == 666
@ -139,6 +139,6 @@ def test_serialize_subclassed_kb():
nlp2 = util.load_model_from_path(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir)
entity_linker2 = nlp2.get_pipe("entity_linker") entity_linker2 = nlp2.get_pipe("entity_linker")
# After IO, the KB is the standard one # After IO, the KB is the standard one
assert type(entity_linker2.kb) == KnowledgeBase assert type(entity_linker2.kb) == InMemoryLookupKB
assert entity_linker2.kb.entity_vector_length == 342 assert entity_linker2.kb.entity_vector_length == 342
assert not hasattr(entity_linker2.kb, "custom_field") assert not hasattr(entity_linker2.kb, "custom_field")

View File

@ -587,8 +587,8 @@ consists of either two or three subnetworks:
run once for each batch. run once for each batch.
- **lower**: Construct a feature-specific vector for each `(token, feature)` - **lower**: Construct a feature-specific vector for each `(token, feature)`
pair. This is also run once for each batch. Constructing the state pair. This is also run once for each batch. Constructing the state
representation is then a matter of summing the component features and representation is then a matter of summing the component features and applying
applying the non-linearity. the non-linearity.
- **upper** (optional): A feed-forward network that predicts scores from the - **upper** (optional): A feed-forward network that predicts scores from the
state representation. If not present, the output from the lower model is used state representation. If not present, the output from the lower model is used
as action scores directly. as action scores directly.
@ -628,8 +628,8 @@ same signature, but the `use_upper` argument was `True` by default.
> ``` > ```
Build a tagger model, using a provided token-to-vector component. The tagger Build a tagger model, using a provided token-to-vector component. The tagger
model adds a linear layer with softmax activation to predict scores given model adds a linear layer with softmax activation to predict scores given the
the token vectors. token vectors.
| Name | Description | | Name | Description |
| ----------- | ------------------------------------------------------------------------------------------ | | ----------- | ------------------------------------------------------------------------------------------ |
@ -919,6 +919,6 @@ A function that reads an existing `KnowledgeBase` from file.
A function that takes as input a [`KnowledgeBase`](/api/kb) and a A function that takes as input a [`KnowledgeBase`](/api/kb) and a
[`Span`](/api/span) object denoting a named entity, and returns a list of [`Span`](/api/span) object denoting a named entity, and returns a list of
plausible [`Candidate`](/api/kb/#candidate) objects. The default plausible [`Candidate`](/api/kb#candidate) objects. The default
`CandidateGenerator` uses the text of a mention to find its potential `CandidateGenerator` uses the text of a mention to find its potential aliases in
aliases in the `KnowledgeBase`. Note that this function is case-dependent. the `KnowledgeBase`. Note that this function is case-dependent.

View File

@ -14,7 +14,8 @@ entities) to unique identifiers, grounding the named entities into the "real
world". It requires a `KnowledgeBase`, as well as a function to generate world". It requires a `KnowledgeBase`, as well as a function to generate
plausible candidates from that `KnowledgeBase` given a certain textual mention, plausible candidates from that `KnowledgeBase` given a certain textual mention,
and a machine learning model to pick the right candidate, given the local and a machine learning model to pick the right candidate, given the local
context of the mention. context of the mention. `EntityLinker` defaults to using the
[`InMemoryLookupKB`](/api/kb_in_memory) implementation.
## Assigned Attributes {#assigned-attributes} ## Assigned Attributes {#assigned-attributes}
@ -170,7 +171,7 @@ with the current vocab.
> >
> ```python > ```python
> def create_kb(vocab): > def create_kb(vocab):
> kb = KnowledgeBase(vocab, entity_vector_length=128) > kb = InMemoryLookupKB(vocab, entity_vector_length=128)
> kb.add_entity(...) > kb.add_entity(...)
> kb.add_alias(...) > kb.add_alias(...)
> return kb > return kb

View File

@ -4,27 +4,45 @@ teaser:
A storage class for entities and aliases of a specific knowledge base A storage class for entities and aliases of a specific knowledge base
(ontology) (ontology)
tag: class tag: class
source: spacy/kb.pyx source: spacy/kb/kb.pyx
new: 2.2 new: 2.2
--- ---
The `KnowledgeBase` object provides a method to generate The `KnowledgeBase` object is an abstract class providing a method to generate
[`Candidate`](/api/kb/#candidate) objects, which are plausible external [`Candidate`](/api/kb#candidate) objects, which are plausible external
identifiers given a certain textual mention. Each such `Candidate` holds identifiers given a certain textual mention. Each such `Candidate` holds
information from the relevant KB entities, such as its frequency in text and information from the relevant KB entities, such as its frequency in text and
possible aliases. Each entity in the knowledge base also has a pretrained entity possible aliases. Each entity in the knowledge base also has a pretrained entity
vector of a fixed size. vector of a fixed size.
Beyond that, `KnowledgeBase` classes have to implement a number of utility
functions called by the [`EntityLinker`](/api/entitylinker) component.
<Infobox variant="warning">
This class was not abstract up to spaCy version 3.5. The `KnowledgeBase`
implementation up to that point is available as `InMemoryLookupKB` from 3.5
onwards.
</Infobox>
## KnowledgeBase.\_\_init\_\_ {#init tag="method"} ## KnowledgeBase.\_\_init\_\_ {#init tag="method"}
Create the knowledge base. `KnowledgeBase` is an abstract class and cannot be instantiated. Its child
classes should call `__init__()` to set up some necessary attributes.
> #### Example > #### Example
> >
> ```python > ```python
> from spacy.kb import KnowledgeBase > from spacy.kb import KnowledgeBase
> from spacy.vocab import Vocab
>
> class FullyImplementedKB(KnowledgeBase):
> def __init__(self, vocab: Vocab, entity_vector_length: int):
> super().__init__(vocab, entity_vector_length)
> ...
> vocab = nlp.vocab > vocab = nlp.vocab
> kb = KnowledgeBase(vocab=vocab, entity_vector_length=64) > kb = FullyImplementedKB(vocab=vocab, entity_vector_length=64)
> ``` > ```
| Name | Description | | Name | Description |
@ -40,133 +58,66 @@ The length of the fixed-size entity vectors in the knowledge base.
| ----------- | ------------------------------------------------ | | ----------- | ------------------------------------------------ |
| **RETURNS** | Length of the fixed-size entity vectors. ~~int~~ | | **RETURNS** | Length of the fixed-size entity vectors. ~~int~~ |
## KnowledgeBase.add_entity {#add_entity tag="method"} ## KnowledgeBase.get_candidates {#get_candidates tag="method"}
Add an entity to the knowledge base, specifying its corpus frequency and entity Given a certain textual mention as input, retrieve a list of candidate entities
vector, which should be of length of type [`Candidate`](/api/kb#candidate).
[`entity_vector_length`](/api/kb#entity_vector_length).
> #### Example > #### Example
> >
> ```python > ```python
> kb.add_entity(entity="Q42", freq=32, entity_vector=vector1) > from spacy.lang.en import English
> kb.add_entity(entity="Q463035", freq=111, entity_vector=vector2) > nlp = English()
> doc = nlp("Douglas Adams wrote 'The Hitchhiker's Guide to the Galaxy'.")
> candidates = kb.get_candidates(doc[0:2])
> ``` > ```
| Name | Description | | Name | Description |
| --------------- | ---------------------------------------------------------- | | ----------- | -------------------------------------------------------------------- |
| `entity` | The unique entity identifier. ~~str~~ | | `mention` | The textual mention or alias. ~~Span~~ |
| `freq` | The frequency of the entity in a typical corpus. ~~float~~ | | **RETURNS** | An iterable of relevant `Candidate` objects. ~~Iterable[Candidate]~~ |
| `entity_vector` | The pretrained vector of the entity. ~~numpy.ndarray~~ |
## KnowledgeBase.set_entities {#set_entities tag="method"} ## KnowledgeBase.get_candidates_batch {#get_candidates_batch tag="method"}
Define the full list of entities in the knowledge base, specifying the corpus Same as [`get_candidates()`](/api/kb#get_candidates), but for an arbitrary
frequency and entity vector for each entity. number of mentions. The [`EntityLinker`](/api/entitylinker) component will call
`get_candidates_batch()` instead of `get_candidates()`, if the config parameter
`candidates_batch_size` is greater or equal than 1.
The default implementation of `get_candidates_batch()` executes
`get_candidates()` in a loop. We recommend implementing a more efficient way to
retrieve candidates for multiple mentions at once, if performance is of concern
to you.
> #### Example > #### Example
> >
> ```python > ```python
> kb.set_entities(entity_list=["Q42", "Q463035"], freq_list=[32, 111], vector_list=[vector1, vector2]) > from spacy.lang.en import English
> nlp = English()
> doc = nlp("Douglas Adams wrote 'The Hitchhiker's Guide to the Galaxy'.")
> candidates = kb.get_candidates((doc[0:2], doc[3:]))
> ``` > ```
| Name | Description | | Name | Description |
| ------------- | ---------------------------------------------------------------- | | ----------- | -------------------------------------------------------------------------------------------- |
| `entity_list` | List of unique entity identifiers. ~~Iterable[Union[str, int]]~~ | | `mentions` | The textual mention or alias. ~~Iterable[Span]~~ |
| `freq_list` | List of entity frequencies. ~~Iterable[int]~~ | | **RETURNS** | An iterable of iterable with relevant `Candidate` objects. ~~Iterable[Iterable[Candidate]]~~ |
| `vector_list` | List of entity vectors. ~~Iterable[numpy.ndarray]~~ |
## KnowledgeBase.add_alias {#add_alias tag="method"}
Add an alias or mention to the knowledge base, specifying its potential KB
identifiers and their prior probabilities. The entity identifiers should refer
to entities previously added with [`add_entity`](/api/kb#add_entity) or
[`set_entities`](/api/kb#set_entities). The sum of the prior probabilities
should not exceed 1. Note that an empty string can not be used as alias.
> #### Example
>
> ```python
> kb.add_alias(alias="Douglas", entities=["Q42", "Q463035"], probabilities=[0.6, 0.3])
> ```
| Name | Description |
| --------------- | --------------------------------------------------------------------------------- |
| `alias` | The textual mention or alias. Can not be the empty string. ~~str~~ |
| `entities` | The potential entities that the alias may refer to. ~~Iterable[Union[str, int]]~~ |
| `probabilities` | The prior probabilities of each entity. ~~Iterable[float]~~ |
## KnowledgeBase.\_\_len\_\_ {#len tag="method"}
Get the total number of entities in the knowledge base.
> #### Example
>
> ```python
> total_entities = len(kb)
> ```
| Name | Description |
| ----------- | ----------------------------------------------------- |
| **RETURNS** | The number of entities in the knowledge base. ~~int~~ |
## KnowledgeBase.get_entity_strings {#get_entity_strings tag="method"}
Get a list of all entity IDs in the knowledge base.
> #### Example
>
> ```python
> all_entities = kb.get_entity_strings()
> ```
| Name | Description |
| ----------- | --------------------------------------------------------- |
| **RETURNS** | The list of entities in the knowledge base. ~~List[str]~~ |
## KnowledgeBase.get_size_aliases {#get_size_aliases tag="method"}
Get the total number of aliases in the knowledge base.
> #### Example
>
> ```python
> total_aliases = kb.get_size_aliases()
> ```
| Name | Description |
| ----------- | ---------------------------------------------------- |
| **RETURNS** | The number of aliases in the knowledge base. ~~int~~ |
## KnowledgeBase.get_alias_strings {#get_alias_strings tag="method"}
Get a list of all aliases in the knowledge base.
> #### Example
>
> ```python
> all_aliases = kb.get_alias_strings()
> ```
| Name | Description |
| ----------- | -------------------------------------------------------- |
| **RETURNS** | The list of aliases in the knowledge base. ~~List[str]~~ |
## KnowledgeBase.get_alias_candidates {#get_alias_candidates tag="method"} ## KnowledgeBase.get_alias_candidates {#get_alias_candidates tag="method"}
Given a certain textual mention as input, retrieve a list of candidate entities <Infobox variant="warning">
of type [`Candidate`](/api/kb/#candidate). This method is _not_ available from spaCy 3.5 onwards.
</Infobox>
> #### Example From spaCy 3.5 on `KnowledgeBase` is an abstract class (with
> [`InMemoryLookupKB`](/api/kb_in_memory) being a drop-in replacement) to allow
> ```python more flexibility in customizing knowledge bases. Some of its methods were moved
> candidates = kb.get_alias_candidates("Douglas") to [`InMemoryLookupKB`](/api/kb_in_memory) during this refactoring, one of those
> ``` being `get_alias_candidates()`. This method is now available as
[`InMemoryLookupKB.get_alias_candidates()`](/api/kb_in_memory#get_alias_candidates).
| Name | Description | Note: [`InMemoryLookupKB.get_candidates()`](/api/kb_in_memory#get_candidates)
| ----------- | ------------------------------------------------------------- | defaults to
| `alias` | The textual mention or alias. ~~str~~ | [`InMemoryLookupKB.get_alias_candidates()`](/api/kb_in_memory#get_alias_candidates).
| **RETURNS** | The list of relevant `Candidate` objects. ~~List[Candidate]~~ |
## KnowledgeBase.get_vector {#get_vector tag="method"} ## KnowledgeBase.get_vector {#get_vector tag="method"}
@ -178,27 +129,30 @@ Given a certain entity ID, retrieve its pretrained entity vector.
> vector = kb.get_vector("Q42") > vector = kb.get_vector("Q42")
> ``` > ```
| Name | Description | | Name | Description |
| ----------- | ------------------------------------ | | ----------- | -------------------------------------- |
| `entity` | The entity ID. ~~str~~ | | `entity` | The entity ID. ~~str~~ |
| **RETURNS** | The entity vector. ~~numpy.ndarray~~ | | **RETURNS** | The entity vector. ~~Iterable[float]~~ |
## KnowledgeBase.get_prior_prob {#get_prior_prob tag="method"} ## KnowledgeBase.get_vectors {#get_vectors tag="method"}
Given a certain entity ID and a certain textual mention, retrieve the prior Same as [`get_vector()`](/api/kb#get_vector), but for an arbitrary number of
probability of the fact that the mention links to the entity ID. entity IDs.
The default implementation of `get_vectors()` executes `get_vector()` in a loop.
We recommend implementing a more efficient way to retrieve vectors for multiple
entities at once, if performance is of concern to you.
> #### Example > #### Example
> >
> ```python > ```python
> probability = kb.get_prior_prob("Q42", "Douglas") > vectors = kb.get_vectors(("Q42", "Q3107329"))
> ``` > ```
| Name | Description | | Name | Description |
| ----------- | ------------------------------------------------------------------------- | | ----------- | --------------------------------------------------------- |
| `entity` | The entity ID. ~~str~~ | | `entities` | The entity IDs. ~~Iterable[str]~~ |
| `alias` | The textual mention or alias. ~~str~~ | | **RETURNS** | The entity vectors. ~~Iterable[Iterable[numpy.ndarray]]~~ |
| **RETURNS** | The prior probability of the `alias` referring to the `entity`. ~~float~~ |
## KnowledgeBase.to_disk {#to_disk tag="method"} ## KnowledgeBase.to_disk {#to_disk tag="method"}
@ -207,12 +161,13 @@ Save the current state of the knowledge base to a directory.
> #### Example > #### Example
> >
> ```python > ```python
> kb.to_disk(loc) > kb.to_disk(path)
> ``` > ```
| Name | Description | | Name | Description |
| ----- | ------------------------------------------------------------------------------------------------------------------------------------------ | | --------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `loc` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | | `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| `exclude` | List of components to exclude. ~~Iterable[str]~~ |
## KnowledgeBase.from_disk {#from_disk tag="method"} ## KnowledgeBase.from_disk {#from_disk tag="method"}
@ -222,16 +177,16 @@ Restore the state of the knowledge base from a given directory. Note that the
> #### Example > #### Example
> >
> ```python > ```python
> from spacy.kb import KnowledgeBase
> from spacy.vocab import Vocab > from spacy.vocab import Vocab
> vocab = Vocab().from_disk("/path/to/vocab") > vocab = Vocab().from_disk("/path/to/vocab")
> kb = KnowledgeBase(vocab=vocab, entity_vector_length=64) > kb = FullyImplementedKB(vocab=vocab, entity_vector_length=64)
> kb.from_disk("/path/to/kb") > kb.from_disk("/path/to/kb")
> ``` > ```
| Name | Description | | Name | Description |
| ----------- | ----------------------------------------------------------------------------------------------- | | ----------- | ----------------------------------------------------------------------------------------------- |
| `loc` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | | `loc` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| `exclude` | List of components to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The modified `KnowledgeBase` object. ~~KnowledgeBase~~ | | **RETURNS** | The modified `KnowledgeBase` object. ~~KnowledgeBase~~ |
## Candidate {#candidate tag="class"} ## Candidate {#candidate tag="class"}

View File

@ -0,0 +1,302 @@
---
title: InMemoryLookupKB
teaser:
The default implementation of the KnowledgeBase interface. Stores all
information in-memory.
tag: class
source: spacy/kb/kb_in_memory.pyx
new: 3.5
---
The `InMemoryLookupKB` class inherits from [`KnowledgeBase`](/api/kb) and
implements all of its methods. It stores all KB data in-memory and generates
[`Candidate`](/api/kb#candidate) objects by exactly matching mentions with
entity names. It's highly optimized for both a low memory footprint and speed of
retrieval.
## InMemoryLookupKB.\_\_init\_\_ {#init tag="method"}
Create the knowledge base.
> #### Example
>
> ```python
> from spacy.kb import KnowledgeBase
> vocab = nlp.vocab
> kb = KnowledgeBase(vocab=vocab, entity_vector_length=64)
> ```
| Name | Description |
| ---------------------- | ------------------------------------------------ |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `entity_vector_length` | Length of the fixed-size entity vectors. ~~int~~ |
## InMemoryLookupKB.entity_vector_length {#entity_vector_length tag="property"}
The length of the fixed-size entity vectors in the knowledge base.
| Name | Description |
| ----------- | ------------------------------------------------ |
| **RETURNS** | Length of the fixed-size entity vectors. ~~int~~ |
## InMemoryLookupKB.add_entity {#add_entity tag="method"}
Add an entity to the knowledge base, specifying its corpus frequency and entity
vector, which should be of length
[`entity_vector_length`](/api/kb_in_memory#entity_vector_length).
> #### Example
>
> ```python
> kb.add_entity(entity="Q42", freq=32, entity_vector=vector1)
> kb.add_entity(entity="Q463035", freq=111, entity_vector=vector2)
> ```
| Name | Description |
| --------------- | ---------------------------------------------------------- |
| `entity` | The unique entity identifier. ~~str~~ |
| `freq` | The frequency of the entity in a typical corpus. ~~float~~ |
| `entity_vector` | The pretrained vector of the entity. ~~numpy.ndarray~~ |
## InMemoryLookupKB.set_entities {#set_entities tag="method"}
Define the full list of entities in the knowledge base, specifying the corpus
frequency and entity vector for each entity.
> #### Example
>
> ```python
> kb.set_entities(entity_list=["Q42", "Q463035"], freq_list=[32, 111], vector_list=[vector1, vector2])
> ```
| Name | Description |
| ------------- | ---------------------------------------------------------------- |
| `entity_list` | List of unique entity identifiers. ~~Iterable[Union[str, int]]~~ |
| `freq_list` | List of entity frequencies. ~~Iterable[int]~~ |
| `vector_list` | List of entity vectors. ~~Iterable[numpy.ndarray]~~ |
## InMemoryLookupKB.add_alias {#add_alias tag="method"}
Add an alias or mention to the knowledge base, specifying its potential KB
identifiers and their prior probabilities. The entity identifiers should refer
to entities previously added with [`add_entity`](/api/kb_in_memory#add_entity)
or [`set_entities`](/api/kb_in_memory#set_entities). The sum of the prior
probabilities should not exceed 1. Note that an empty string can not be used as
alias.
> #### Example
>
> ```python
> kb.add_alias(alias="Douglas", entities=["Q42", "Q463035"], probabilities=[0.6, 0.3])
> ```
| Name | Description |
| --------------- | --------------------------------------------------------------------------------- |
| `alias` | The textual mention or alias. Can not be the empty string. ~~str~~ |
| `entities` | The potential entities that the alias may refer to. ~~Iterable[Union[str, int]]~~ |
| `probabilities` | The prior probabilities of each entity. ~~Iterable[float]~~ |
## InMemoryLookupKB.\_\_len\_\_ {#len tag="method"}
Get the total number of entities in the knowledge base.
> #### Example
>
> ```python
> total_entities = len(kb)
> ```
| Name | Description |
| ----------- | ----------------------------------------------------- |
| **RETURNS** | The number of entities in the knowledge base. ~~int~~ |
## InMemoryLookupKB.get_entity_strings {#get_entity_strings tag="method"}
Get a list of all entity IDs in the knowledge base.
> #### Example
>
> ```python
> all_entities = kb.get_entity_strings()
> ```
| Name | Description |
| ----------- | --------------------------------------------------------- |
| **RETURNS** | The list of entities in the knowledge base. ~~List[str]~~ |
## InMemoryLookupKB.get_size_aliases {#get_size_aliases tag="method"}
Get the total number of aliases in the knowledge base.
> #### Example
>
> ```python
> total_aliases = kb.get_size_aliases()
> ```
| Name | Description |
| ----------- | ---------------------------------------------------- |
| **RETURNS** | The number of aliases in the knowledge base. ~~int~~ |
## InMemoryLookupKB.get_alias_strings {#get_alias_strings tag="method"}
Get a list of all aliases in the knowledge base.
> #### Example
>
> ```python
> all_aliases = kb.get_alias_strings()
> ```
| Name | Description |
| ----------- | -------------------------------------------------------- |
| **RETURNS** | The list of aliases in the knowledge base. ~~List[str]~~ |
## InMemoryLookupKB.get_candidates {#get_candidates tag="method"}
Given a certain textual mention as input, retrieve a list of candidate entities
of type [`Candidate`](/api/kb#candidate). Wraps
[`get_alias_candidates()`](/api/kb_in_memory#get_alias_candidates).
> #### Example
>
> ```python
> from spacy.lang.en import English
> nlp = English()
> doc = nlp("Douglas Adams wrote 'The Hitchhiker's Guide to the Galaxy'.")
> candidates = kb.get_candidates(doc[0:2])
> ```
| Name | Description |
| ----------- | -------------------------------------------------------------------- |
| `mention` | The textual mention or alias. ~~Span~~ |
| **RETURNS** | An iterable of relevant `Candidate` objects. ~~Iterable[Candidate]~~ |
## InMemoryLookupKB.get_candidates_batch {#get_candidates_batch tag="method"}
Same as [`get_candidates()`](/api/kb_in_memory#get_candidates), but for an
arbitrary number of mentions. The [`EntityLinker`](/api/entitylinker) component
will call `get_candidates_batch()` instead of `get_candidates()`, if the config
parameter `candidates_batch_size` is greater or equal than 1.
The default implementation of `get_candidates_batch()` executes
`get_candidates()` in a loop. We recommend implementing a more efficient way to
retrieve candidates for multiple mentions at once, if performance is of concern
to you.
> #### Example
>
> ```python
> from spacy.lang.en import English
> nlp = English()
> doc = nlp("Douglas Adams wrote 'The Hitchhiker's Guide to the Galaxy'.")
> candidates = kb.get_candidates((doc[0:2], doc[3:]))
> ```
| Name | Description |
| ----------- | -------------------------------------------------------------------------------------------- |
| `mentions` | The textual mention or alias. ~~Iterable[Span]~~ |
| **RETURNS** | An iterable of iterable with relevant `Candidate` objects. ~~Iterable[Iterable[Candidate]]~~ |
## InMemoryLookupKB.get_alias_candidates {#get_alias_candidates tag="method"}
Given a certain textual mention as input, retrieve a list of candidate entities
of type [`Candidate`](/api/kb#candidate).
> #### Example
>
> ```python
> candidates = kb.get_alias_candidates("Douglas")
> ```
| Name | Description |
| ----------- | ------------------------------------------------------------- |
| `alias` | The textual mention or alias. ~~str~~ |
| **RETURNS** | The list of relevant `Candidate` objects. ~~List[Candidate]~~ |
## InMemoryLookupKB.get_vector {#get_vector tag="method"}
Given a certain entity ID, retrieve its pretrained entity vector.
> #### Example
>
> ```python
> vector = kb.get_vector("Q42")
> ```
| Name | Description |
| ----------- | ------------------------------------ |
| `entity` | The entity ID. ~~str~~ |
| **RETURNS** | The entity vector. ~~numpy.ndarray~~ |
## InMemoryLookupKB.get_vectors {#get_vectors tag="method"}
Same as [`get_vector()`](/api/kb_in_memory#get_vector), but for an arbitrary
number of entity IDs.
The default implementation of `get_vectors()` executes `get_vector()` in a loop.
We recommend implementing a more efficient way to retrieve vectors for multiple
entities at once, if performance is of concern to you.
> #### Example
>
> ```python
> vectors = kb.get_vectors(("Q42", "Q3107329"))
> ```
| Name | Description |
| ----------- | --------------------------------------------------------- |
| `entities` | The entity IDs. ~~Iterable[str]~~ |
| **RETURNS** | The entity vectors. ~~Iterable[Iterable[numpy.ndarray]]~~ |
## InMemoryLookupKB.get_prior_prob {#get_prior_prob tag="method"}
Given a certain entity ID and a certain textual mention, retrieve the prior
probability of the fact that the mention links to the entity ID.
> #### Example
>
> ```python
> probability = kb.get_prior_prob("Q42", "Douglas")
> ```
| Name | Description |
| ----------- | ------------------------------------------------------------------------- |
| `entity` | The entity ID. ~~str~~ |
| `alias` | The textual mention or alias. ~~str~~ |
| **RETURNS** | The prior probability of the `alias` referring to the `entity`. ~~float~~ |
## InMemoryLookupKB.to_disk {#to_disk tag="method"}
Save the current state of the knowledge base to a directory.
> #### Example
>
> ```python
> kb.to_disk(path)
> ```
| Name | Description |
| --------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| `exclude` | List of components to exclude. ~~Iterable[str]~~ |
## InMemoryLookupKB.from_disk {#from_disk tag="method"}
Restore the state of the knowledge base from a given directory. Note that the
[`Vocab`](/api/vocab) should also be the same as the one used to create the KB.
> #### Example
>
> ```python
> from spacy.vocab import Vocab
> vocab = Vocab().from_disk("/path/to/vocab")
> kb = FullyImplementedKB(vocab=vocab, entity_vector_length=64)
> kb.from_disk("/path/to/kb")
> ```
| Name | Description |
| ----------- | ----------------------------------------------------------------------------------------------- |
| `loc` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| `exclude` | List of components to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The modified `KnowledgeBase` object. ~~KnowledgeBase~~ |

View File

@ -78,7 +78,9 @@ operates on a `Doc` and gives you access to the matched tokens **in context**.
| Name | Description | | Name | Description |
| ------------------------------------------------ | -------------------------------------------------------------------------------------------------- | | ------------------------------------------------ | -------------------------------------------------------------------------------------------------- |
| [`Corpus`](/api/corpus) | Class for managing annotated corpora for training and evaluation data. | | [`Corpus`](/api/corpus) | Class for managing annotated corpora for training and evaluation data. |
| [`KnowledgeBase`](/api/kb) | Storage for entities and aliases of a knowledge base for entity linking. | | [`KnowledgeBase`](/api/kb) | Abstract base class for storage and retrieval of data for entity linking. |
| [`InMemoryLookupKB`](/api/kb_in_memory) | Implementation of `KnowledgeBase` storing all data in memory. |
| [`Candidate`](/api/kb#candidate) | Object associating a textual mention with a specific entity contained in a `KnowledgeBase`. |
| [`Lookups`](/api/lookups) | Container for convenient access to large lookup tables and dictionaries. | | [`Lookups`](/api/lookups) | Container for convenient access to large lookup tables and dictionaries. |
| [`MorphAnalysis`](/api/morphology#morphanalysis) | A morphological analysis. | | [`MorphAnalysis`](/api/morphology#morphanalysis) | A morphological analysis. |
| [`Morphology`](/api/morphology) | Store morphological analyses and map them to and from hash values. | | [`Morphology`](/api/morphology) | Store morphological analyses and map them to and from hash values. |