mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Fix morphologizer
This commit is contained in:
parent
3b6b018904
commit
1f9f834dc0
|
@ -20,7 +20,7 @@ from .compat import json_dumps, basestring_
|
|||
from .tokens.doc cimport Doc
|
||||
from .vocab cimport Vocab
|
||||
from .morphology cimport Morphology
|
||||
from .morphology import parse_feature
|
||||
from .morphology import parse_feature, IDS, FIELDS, FIELD_SIZES, NAMES
|
||||
from .pipeline import Pipe
|
||||
|
||||
|
||||
|
@ -28,9 +28,11 @@ class Morphologizer(Pipe):
|
|||
name = 'morphologizer'
|
||||
|
||||
@classmethod
|
||||
def Model(cls, attr_nums, **cfg):
|
||||
def Model(cls, attr_nums=None, **cfg):
|
||||
if cfg.get('pretrained_dims') and not cfg.get('pretrained_vectors'):
|
||||
raise ValueError(TempErrors.T008)
|
||||
if attr_nums is None:
|
||||
attr_nums = list(FIELD_SIZES)
|
||||
return build_morphologizer_model(attr_nums, **cfg)
|
||||
|
||||
def __init__(self, vocab, model=True, **cfg):
|
||||
|
@ -71,29 +73,34 @@ class Morphologizer(Pipe):
|
|||
return guesses, tokvecs
|
||||
tokvecs = self.model.tok2vec(docs)
|
||||
scores = self.model.softmax(tokvecs)
|
||||
guesses = []
|
||||
# Resolve multisoftmax into guesses
|
||||
for doc_scores in scores:
|
||||
guesses.append(scores_to_guesses(doc_scores, self.model.softmax.out_sizes))
|
||||
return guesses, tokvecs
|
||||
return scores, tokvecs
|
||||
|
||||
def set_annotations(self, docs, batch_feature_ids, tensors=None):
|
||||
def set_annotations(self, docs, batch_scores, tensors=None):
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
cdef Doc doc
|
||||
cdef Vocab vocab = self.vocab
|
||||
field_names = list(FIELDS)
|
||||
offsets = [IDS['begin_%s' % field] for field in field_names]
|
||||
for i, doc in enumerate(docs):
|
||||
doc_feat_ids = batch_feature_ids[i]
|
||||
if hasattr(doc_feat_ids, 'get'):
|
||||
doc_feat_ids = doc_feat_ids.get()
|
||||
doc_scores = batch_scores[i]
|
||||
doc_guesses = scores_to_guesses(doc_scores, self.model.softmax.out_sizes)
|
||||
# Convert the neuron indices into feature IDs.
|
||||
offset = self.vocab.morphology.first_feature
|
||||
for j, nr_feat in enumerate(self.model.softmax.out_sizes):
|
||||
doc_feat_ids[:, j] += offset
|
||||
offset += nr_feat
|
||||
# Now add the analysis, and set the hash.
|
||||
for j in range(doc_feat_ids.shape[0]):
|
||||
doc.c[j].morph = self.vocab.morphology.add(doc_feat_ids[j])
|
||||
doc_feat_ids = self.model.ops.allocate((len(doc), len(field_names)), dtype='i')
|
||||
for j in range(len(doc)):
|
||||
for k, offset in enumerate(offsets):
|
||||
if doc_guesses[j, k] == 0:
|
||||
doc_feat_ids[j, k] = 0
|
||||
else:
|
||||
doc_feat_ids[j, k] = offset + doc_guesses[j, k]
|
||||
# Now add the analysis, and set the hash.
|
||||
try:
|
||||
doc.c[j].morph = self.vocab.morphology.add(doc_feat_ids[j])
|
||||
except:
|
||||
print(offsets)
|
||||
print(doc_guesses[j])
|
||||
print(doc_feat_ids[j])
|
||||
raise
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
||||
if losses is not None and self.name not in losses:
|
||||
|
@ -110,17 +117,27 @@ class Morphologizer(Pipe):
|
|||
guesses = []
|
||||
for doc_scores in scores:
|
||||
guesses.append(scores_to_guesses(doc_scores, self.model.softmax.out_sizes))
|
||||
guesses = self.model.ops.flatten(guesses)
|
||||
guesses = self.model.ops.xp.vstack(guesses)
|
||||
scores = self.model.ops.xp.vstack(scores)
|
||||
cdef int idx = 0
|
||||
target = numpy.zeros(scores.shape, dtype='f')
|
||||
field_sizes = self.model.softmax.out_sizes
|
||||
for gold in golds:
|
||||
for features in gold.morphology:
|
||||
if features is None:
|
||||
target[idx] = guesses[idx]
|
||||
target[idx] = scores[idx]
|
||||
else:
|
||||
by_field = {}
|
||||
for feature in features:
|
||||
_, column = parse_feature(feature)
|
||||
target[idx, column] = 1
|
||||
field, column = parse_feature(feature)
|
||||
by_field[field] = column
|
||||
col_offset = 0
|
||||
for field, field_size in enumerate(field_sizes):
|
||||
if field in by_field:
|
||||
target[idx, col_offset + by_field[field]] = 1.
|
||||
else:
|
||||
target[idx, col_offset] = 1.
|
||||
col_offset += field_size
|
||||
idx += 1
|
||||
target = self.model.ops.xp.array(target, dtype='f')
|
||||
d_scores = scores - target
|
||||
|
@ -137,6 +154,8 @@ def scores_to_guesses(scores, out_sizes):
|
|||
guesses = xp.zeros((scores.shape[0], len(out_sizes)), dtype='i')
|
||||
offset = 0
|
||||
for i, size in enumerate(out_sizes):
|
||||
guesses[:, i] = scores[:, offset : offset + size].argmax(axis=1)
|
||||
slice_ = scores[:, offset : offset + size]
|
||||
col_guesses = slice_.argmax(axis=1)
|
||||
guesses[:, i] = col_guesses
|
||||
offset += size
|
||||
return guesses
|
||||
|
|
Loading…
Reference in New Issue
Block a user