mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Merge test_misc and test_util
This commit is contained in:
parent
e3acad6264
commit
20f2a17a09
|
@ -7,6 +7,15 @@ from spacy import util
|
|||
from spacy import prefer_gpu, require_gpu
|
||||
from spacy.ml._precomputable_affine import PrecomputableAffine
|
||||
from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding
|
||||
from spacy.util import dot_to_object, SimpleFrozenList
|
||||
from thinc.api import Config, Optimizer, ConfigValidationError
|
||||
from spacy.training.batchers import minibatch_by_words
|
||||
from spacy.lang.en import English
|
||||
from spacy.lang.nl import Dutch
|
||||
from spacy.language import DEFAULT_CONFIG_PATH
|
||||
from spacy.schemas import ConfigSchemaTraining
|
||||
|
||||
from .util import get_random_doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -157,3 +166,128 @@ def test_dot_to_dict(dot_notation, expected):
|
|||
result = util.dot_to_dict(dot_notation)
|
||||
assert result == expected
|
||||
assert util.dict_to_dot(result) == dot_notation
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"doc_sizes, expected_batches",
|
||||
[
|
||||
([400, 400, 199], [3]),
|
||||
([400, 400, 199, 3], [4]),
|
||||
([400, 400, 199, 3, 200], [3, 2]),
|
||||
([400, 400, 199, 3, 1], [5]),
|
||||
([400, 400, 199, 3, 1, 1500], [5]), # 1500 will be discarded
|
||||
([400, 400, 199, 3, 1, 200], [3, 3]),
|
||||
([400, 400, 199, 3, 1, 999], [3, 3]),
|
||||
([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
|
||||
([1, 2, 999], [3]),
|
||||
([1, 2, 999, 1], [4]),
|
||||
([1, 200, 999, 1], [2, 2]),
|
||||
([1, 999, 200, 1], [2, 2]),
|
||||
],
|
||||
)
|
||||
def test_util_minibatch(doc_sizes, expected_batches):
|
||||
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
||||
tol = 0.2
|
||||
batch_size = 1000
|
||||
batches = list(
|
||||
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
|
||||
)
|
||||
assert [len(batch) for batch in batches] == expected_batches
|
||||
|
||||
max_size = batch_size + batch_size * tol
|
||||
for batch in batches:
|
||||
assert sum([len(doc) for doc in batch]) < max_size
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"doc_sizes, expected_batches",
|
||||
[
|
||||
([400, 4000, 199], [1, 2]),
|
||||
([400, 400, 199, 3000, 200], [1, 4]),
|
||||
([400, 400, 199, 3, 1, 1500], [1, 5]),
|
||||
([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
|
||||
([1, 2, 9999], [1, 2]),
|
||||
([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
|
||||
],
|
||||
)
|
||||
def test_util_minibatch_oversize(doc_sizes, expected_batches):
|
||||
""" Test that oversized documents are returned in their own batch"""
|
||||
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
||||
tol = 0.2
|
||||
batch_size = 1000
|
||||
batches = list(
|
||||
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
|
||||
)
|
||||
assert [len(batch) for batch in batches] == expected_batches
|
||||
|
||||
|
||||
def test_util_dot_section():
|
||||
cfg_string = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["textcat"]
|
||||
|
||||
[components]
|
||||
|
||||
[components.textcat]
|
||||
factory = "textcat"
|
||||
|
||||
[components.textcat.model]
|
||||
@architectures = "spacy.TextCatBOW.v1"
|
||||
exclusive_classes = true
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
"""
|
||||
nlp_config = Config().from_str(cfg_string)
|
||||
en_nlp = util.load_model_from_config(nlp_config, auto_fill=True)
|
||||
default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
|
||||
default_config["nlp"]["lang"] = "nl"
|
||||
nl_nlp = util.load_model_from_config(default_config, auto_fill=True)
|
||||
# Test that creation went OK
|
||||
assert isinstance(en_nlp, English)
|
||||
assert isinstance(nl_nlp, Dutch)
|
||||
assert nl_nlp.pipe_names == []
|
||||
assert en_nlp.pipe_names == ["textcat"]
|
||||
# not exclusive_classes
|
||||
assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False
|
||||
# Test that default values got overwritten
|
||||
assert en_nlp.config["nlp"]["pipeline"] == ["textcat"]
|
||||
assert nl_nlp.config["nlp"]["pipeline"] == [] # default value []
|
||||
# Test proper functioning of 'dot_to_object'
|
||||
with pytest.raises(KeyError):
|
||||
dot_to_object(en_nlp.config, "nlp.pipeline.tagger")
|
||||
with pytest.raises(KeyError):
|
||||
dot_to_object(en_nlp.config, "nlp.unknownattribute")
|
||||
T = util.registry.resolve(nl_nlp.config["training"], schema=ConfigSchemaTraining)
|
||||
assert isinstance(dot_to_object({"training": T}, "training.optimizer"), Optimizer)
|
||||
|
||||
|
||||
def test_simple_frozen_list():
|
||||
t = SimpleFrozenList(["foo", "bar"])
|
||||
assert t == ["foo", "bar"]
|
||||
assert t.index("bar") == 1 # okay method
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.append("baz")
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.sort()
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.extend(["baz"])
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.pop()
|
||||
t = SimpleFrozenList(["foo", "bar"], error="Error!")
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.append("baz")
|
||||
|
||||
|
||||
def test_resolve_dot_names():
|
||||
config = {
|
||||
"training": {"optimizer": {"@optimizers": "Adam.v1"}},
|
||||
"foo": {"bar": "training.optimizer", "baz": "training.xyz"},
|
||||
}
|
||||
result = util.resolve_dot_names(config, ["training.optimizer"])
|
||||
assert isinstance(result[0], Optimizer)
|
||||
with pytest.raises(ConfigValidationError) as e:
|
||||
util.resolve_dot_names(config, ["training.xyz", "training.optimizer"])
|
||||
errors = e.value.errors
|
||||
assert len(errors) == 1
|
||||
assert errors[0]["loc"] == ["training", "xyz"]
|
||||
|
|
|
@ -1,137 +0,0 @@
|
|||
import pytest
|
||||
|
||||
from spacy import util
|
||||
from spacy.util import dot_to_object, SimpleFrozenList
|
||||
from thinc.api import Config, Optimizer, ConfigValidationError
|
||||
from spacy.training.batchers import minibatch_by_words
|
||||
from spacy.lang.en import English
|
||||
from spacy.lang.nl import Dutch
|
||||
from spacy.language import DEFAULT_CONFIG_PATH
|
||||
from spacy.schemas import ConfigSchemaTraining
|
||||
|
||||
from .util import get_random_doc
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"doc_sizes, expected_batches",
|
||||
[
|
||||
([400, 400, 199], [3]),
|
||||
([400, 400, 199, 3], [4]),
|
||||
([400, 400, 199, 3, 200], [3, 2]),
|
||||
([400, 400, 199, 3, 1], [5]),
|
||||
([400, 400, 199, 3, 1, 1500], [5]), # 1500 will be discarded
|
||||
([400, 400, 199, 3, 1, 200], [3, 3]),
|
||||
([400, 400, 199, 3, 1, 999], [3, 3]),
|
||||
([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
|
||||
([1, 2, 999], [3]),
|
||||
([1, 2, 999, 1], [4]),
|
||||
([1, 200, 999, 1], [2, 2]),
|
||||
([1, 999, 200, 1], [2, 2]),
|
||||
],
|
||||
)
|
||||
def test_util_minibatch(doc_sizes, expected_batches):
|
||||
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
||||
tol = 0.2
|
||||
batch_size = 1000
|
||||
batches = list(
|
||||
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
|
||||
)
|
||||
assert [len(batch) for batch in batches] == expected_batches
|
||||
|
||||
max_size = batch_size + batch_size * tol
|
||||
for batch in batches:
|
||||
assert sum([len(doc) for doc in batch]) < max_size
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"doc_sizes, expected_batches",
|
||||
[
|
||||
([400, 4000, 199], [1, 2]),
|
||||
([400, 400, 199, 3000, 200], [1, 4]),
|
||||
([400, 400, 199, 3, 1, 1500], [1, 5]),
|
||||
([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
|
||||
([1, 2, 9999], [1, 2]),
|
||||
([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
|
||||
],
|
||||
)
|
||||
def test_util_minibatch_oversize(doc_sizes, expected_batches):
|
||||
""" Test that oversized documents are returned in their own batch"""
|
||||
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
||||
tol = 0.2
|
||||
batch_size = 1000
|
||||
batches = list(
|
||||
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
|
||||
)
|
||||
assert [len(batch) for batch in batches] == expected_batches
|
||||
|
||||
|
||||
def test_util_dot_section():
|
||||
cfg_string = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["textcat"]
|
||||
|
||||
[components]
|
||||
|
||||
[components.textcat]
|
||||
factory = "textcat"
|
||||
|
||||
[components.textcat.model]
|
||||
@architectures = "spacy.TextCatBOW.v1"
|
||||
exclusive_classes = true
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
"""
|
||||
nlp_config = Config().from_str(cfg_string)
|
||||
en_nlp = util.load_model_from_config(nlp_config, auto_fill=True)
|
||||
default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
|
||||
default_config["nlp"]["lang"] = "nl"
|
||||
nl_nlp = util.load_model_from_config(default_config, auto_fill=True)
|
||||
# Test that creation went OK
|
||||
assert isinstance(en_nlp, English)
|
||||
assert isinstance(nl_nlp, Dutch)
|
||||
assert nl_nlp.pipe_names == []
|
||||
assert en_nlp.pipe_names == ["textcat"]
|
||||
# not exclusive_classes
|
||||
assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False
|
||||
# Test that default values got overwritten
|
||||
assert en_nlp.config["nlp"]["pipeline"] == ["textcat"]
|
||||
assert nl_nlp.config["nlp"]["pipeline"] == [] # default value []
|
||||
# Test proper functioning of 'dot_to_object'
|
||||
with pytest.raises(KeyError):
|
||||
dot_to_object(en_nlp.config, "nlp.pipeline.tagger")
|
||||
with pytest.raises(KeyError):
|
||||
dot_to_object(en_nlp.config, "nlp.unknownattribute")
|
||||
T = util.registry.resolve(nl_nlp.config["training"], schema=ConfigSchemaTraining)
|
||||
assert isinstance(dot_to_object({"training": T}, "training.optimizer"), Optimizer)
|
||||
|
||||
|
||||
def test_simple_frozen_list():
|
||||
t = SimpleFrozenList(["foo", "bar"])
|
||||
assert t == ["foo", "bar"]
|
||||
assert t.index("bar") == 1 # okay method
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.append("baz")
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.sort()
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.extend(["baz"])
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.pop()
|
||||
t = SimpleFrozenList(["foo", "bar"], error="Error!")
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.append("baz")
|
||||
|
||||
|
||||
def test_resolve_dot_names():
|
||||
config = {
|
||||
"training": {"optimizer": {"@optimizers": "Adam.v1"}},
|
||||
"foo": {"bar": "training.optimizer", "baz": "training.xyz"},
|
||||
}
|
||||
result = util.resolve_dot_names(config, ["training.optimizer"])
|
||||
assert isinstance(result[0], Optimizer)
|
||||
with pytest.raises(ConfigValidationError) as e:
|
||||
util.resolve_dot_names(config, ["training.xyz", "training.optimizer"])
|
||||
errors = e.value.errors
|
||||
assert len(errors) == 1
|
||||
assert errors[0]["loc"] == ["training", "xyz"]
|
Loading…
Reference in New Issue
Block a user