mirror of
https://github.com/explosion/spaCy.git
synced 2025-08-11 07:34:54 +03:00
Move imports
This commit is contained in:
parent
fd91e8a0e4
commit
216ef7ee7a
|
@ -25,6 +25,40 @@ from .pipeline.dep_parser import DependencyParser
|
||||||
from .pipeline.tagger import Tagger
|
from .pipeline.tagger import Tagger
|
||||||
from .pipeline.multitask import MultitaskObjective
|
from .pipeline.multitask import MultitaskObjective
|
||||||
from .pipeline.senter import SentenceRecognizer
|
from .pipeline.senter import SentenceRecognizer
|
||||||
|
from .language import Language
|
||||||
|
from .pipeline.sentencizer import Sentencizer
|
||||||
|
|
||||||
|
# Import factory default configurations
|
||||||
|
from .pipeline.entity_linker import DEFAULT_NEL_MODEL
|
||||||
|
from .pipeline.entityruler import DEFAULT_ENT_ID_SEP
|
||||||
|
from .pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
||||||
|
from .pipeline.senter import DEFAULT_SENTER_MODEL
|
||||||
|
from .pipeline.morphologizer import DEFAULT_MORPH_MODEL
|
||||||
|
from .pipeline.spancat import (
|
||||||
|
DEFAULT_SPANCAT_MODEL,
|
||||||
|
DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
||||||
|
DEFAULT_SPANS_KEY,
|
||||||
|
)
|
||||||
|
from .pipeline.span_ruler import DEFAULT_SPANS_KEY as SPAN_RULER_DEFAULT_SPANS_KEY
|
||||||
|
from .pipeline.edit_tree_lemmatizer import DEFAULT_EDIT_TREE_LEMMATIZER_MODEL
|
||||||
|
from .pipeline.textcat_multilabel import DEFAULT_MULTI_TEXTCAT_MODEL
|
||||||
|
from .pipeline.span_finder import DEFAULT_SPAN_FINDER_MODEL
|
||||||
|
from .pipeline.ner import DEFAULT_NER_MODEL
|
||||||
|
from .pipeline.dep_parser import DEFAULT_PARSER_MODEL
|
||||||
|
from .pipeline.tagger import DEFAULT_TAGGER_MODEL
|
||||||
|
from .pipeline.multitask import DEFAULT_MT_MODEL
|
||||||
|
from .pipeline.textcat import DEFAULT_SINGLE_TEXTCAT_MODEL
|
||||||
|
from .pipeline.entity_linker import EntityLinker, EntityLinker_v1
|
||||||
|
from .pipeline.attributeruler import AttributeRuler
|
||||||
|
from .pipeline.spancat import SpanCategorizer
|
||||||
|
from .pipeline.lemmatizer import Lemmatizer
|
||||||
|
from .pipeline.functions import TokenSplitter
|
||||||
|
from .pipeline.functions import DocCleaner
|
||||||
|
from .pipeline.span_ruler import SpanRuler, prioritize_new_ents_filter, prioritize_existing_ents_filter
|
||||||
|
from .pipeline.span_ruler import SpanRuler
|
||||||
|
from .pipeline.edit_tree_lemmatizer import EditTreeLemmatizer
|
||||||
|
from .pipeline.morphologizer import Morphologizer
|
||||||
|
|
||||||
|
|
||||||
# Global flag to track if registry has been populated
|
# Global flag to track if registry has been populated
|
||||||
REGISTRY_POPULATED = False
|
REGISTRY_POPULATED = False
|
||||||
|
@ -135,30 +169,6 @@ def register_factories() -> None:
|
||||||
if FACTORIES_REGISTERED:
|
if FACTORIES_REGISTERED:
|
||||||
return
|
return
|
||||||
|
|
||||||
from .language import Language
|
|
||||||
from .pipeline.sentencizer import Sentencizer
|
|
||||||
|
|
||||||
# Import factory default configurations
|
|
||||||
from .pipeline.entity_linker import DEFAULT_NEL_MODEL
|
|
||||||
from .pipeline.entityruler import DEFAULT_ENT_ID_SEP
|
|
||||||
from .pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
|
||||||
from .pipeline.senter import DEFAULT_SENTER_MODEL
|
|
||||||
from .pipeline.morphologizer import DEFAULT_MORPH_MODEL
|
|
||||||
from .pipeline.spancat import (
|
|
||||||
DEFAULT_SPANCAT_MODEL,
|
|
||||||
DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
|
||||||
DEFAULT_SPANS_KEY,
|
|
||||||
)
|
|
||||||
from .pipeline.span_ruler import DEFAULT_SPANS_KEY as SPAN_RULER_DEFAULT_SPANS_KEY
|
|
||||||
from .pipeline.edit_tree_lemmatizer import DEFAULT_EDIT_TREE_LEMMATIZER_MODEL
|
|
||||||
from .pipeline.textcat_multilabel import DEFAULT_MULTI_TEXTCAT_MODEL
|
|
||||||
from .pipeline.span_finder import DEFAULT_SPAN_FINDER_MODEL
|
|
||||||
from .pipeline.ner import DEFAULT_NER_MODEL
|
|
||||||
from .pipeline.dep_parser import DEFAULT_PARSER_MODEL
|
|
||||||
from .pipeline.tagger import DEFAULT_TAGGER_MODEL
|
|
||||||
from .pipeline.multitask import DEFAULT_MT_MODEL
|
|
||||||
from .pipeline.textcat import DEFAULT_SINGLE_TEXTCAT_MODEL
|
|
||||||
|
|
||||||
# We can't have function implementations for these factories in Cython, because
|
# We can't have function implementations for these factories in Cython, because
|
||||||
# we need to build a Pydantic model for them dynamically, reading their argument
|
# we need to build a Pydantic model for them dynamically, reading their argument
|
||||||
# structure from the signature. In Cython 3, this doesn't work because the
|
# structure from the signature. In Cython 3, this doesn't work because the
|
||||||
|
@ -178,7 +188,6 @@ def register_factories() -> None:
|
||||||
def make_attribute_ruler(
|
def make_attribute_ruler(
|
||||||
nlp: Language, name: str, validate: bool, scorer: Optional[Callable]
|
nlp: Language, name: str, validate: bool, scorer: Optional[Callable]
|
||||||
):
|
):
|
||||||
from .pipeline.attributeruler import AttributeRuler
|
|
||||||
return AttributeRuler(nlp.vocab, name, validate=validate, scorer=scorer)
|
return AttributeRuler(nlp.vocab, name, validate=validate, scorer=scorer)
|
||||||
|
|
||||||
def make_entity_linker(
|
def make_entity_linker(
|
||||||
|
@ -202,7 +211,6 @@ def register_factories() -> None:
|
||||||
candidates_batch_size: int,
|
candidates_batch_size: int,
|
||||||
threshold: Optional[float] = None,
|
threshold: Optional[float] = None,
|
||||||
):
|
):
|
||||||
from .pipeline.entity_linker import EntityLinker, EntityLinker_v1
|
|
||||||
|
|
||||||
if not model.attrs.get("include_span_maker", False):
|
if not model.attrs.get("include_span_maker", False):
|
||||||
# The only difference in arguments here is that use_gold_ents and threshold aren't available.
|
# The only difference in arguments here is that use_gold_ents and threshold aren't available.
|
||||||
|
@ -246,7 +254,6 @@ def register_factories() -> None:
|
||||||
overwrite: bool,
|
overwrite: bool,
|
||||||
scorer: Optional[Callable],
|
scorer: Optional[Callable],
|
||||||
):
|
):
|
||||||
from .pipeline.lemmatizer import Lemmatizer
|
|
||||||
return Lemmatizer(
|
return Lemmatizer(
|
||||||
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
|
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
|
||||||
)
|
)
|
||||||
|
@ -263,11 +270,9 @@ def register_factories() -> None:
|
||||||
def make_token_splitter(
|
def make_token_splitter(
|
||||||
nlp: Language, name: str, *, min_length: int = 0, split_length: int = 0
|
nlp: Language, name: str, *, min_length: int = 0, split_length: int = 0
|
||||||
):
|
):
|
||||||
from .pipeline.functions import TokenSplitter
|
|
||||||
return TokenSplitter(min_length=min_length, split_length=split_length)
|
return TokenSplitter(min_length=min_length, split_length=split_length)
|
||||||
|
|
||||||
def make_doc_cleaner(nlp: Language, name: str, *, attrs: Dict[str, Any], silent: bool):
|
def make_doc_cleaner(nlp: Language, name: str, *, attrs: Dict[str, Any], silent: bool):
|
||||||
from .pipeline.functions import DocCleaner
|
|
||||||
return DocCleaner(attrs, silent=silent)
|
return DocCleaner(attrs, silent=silent)
|
||||||
|
|
||||||
def make_tok2vec(nlp: Language, name: str, model: Model) -> Tok2Vec:
|
def make_tok2vec(nlp: Language, name: str, model: Model) -> Tok2Vec:
|
||||||
|
@ -306,8 +311,7 @@ def register_factories() -> None:
|
||||||
negative_weight: float,
|
negative_weight: float,
|
||||||
allow_overlap: bool,
|
allow_overlap: bool,
|
||||||
scorer: Optional[Callable],
|
scorer: Optional[Callable],
|
||||||
) -> "SpanCategorizer":
|
) -> SpanCategorizer:
|
||||||
from .pipeline.spancat import SpanCategorizer
|
|
||||||
return SpanCategorizer(
|
return SpanCategorizer(
|
||||||
nlp.vocab,
|
nlp.vocab,
|
||||||
model=model,
|
model=model,
|
||||||
|
@ -332,7 +336,6 @@ def register_factories() -> None:
|
||||||
scorer: Optional[Callable],
|
scorer: Optional[Callable],
|
||||||
ent_id_sep: str,
|
ent_id_sep: str,
|
||||||
):
|
):
|
||||||
from .pipeline.span_ruler import SpanRuler, prioritize_new_ents_filter, prioritize_existing_ents_filter
|
|
||||||
if overwrite_ents:
|
if overwrite_ents:
|
||||||
ents_filter = prioritize_new_ents_filter
|
ents_filter = prioritize_new_ents_filter
|
||||||
else:
|
else:
|
||||||
|
@ -385,7 +388,6 @@ def register_factories() -> None:
|
||||||
overwrite: bool,
|
overwrite: bool,
|
||||||
scorer: Optional[Callable],
|
scorer: Optional[Callable],
|
||||||
):
|
):
|
||||||
from .pipeline.span_ruler import SpanRuler
|
|
||||||
return SpanRuler(
|
return SpanRuler(
|
||||||
nlp,
|
nlp,
|
||||||
name,
|
name,
|
||||||
|
@ -410,7 +412,6 @@ def register_factories() -> None:
|
||||||
top_k: int,
|
top_k: int,
|
||||||
scorer: Optional[Callable],
|
scorer: Optional[Callable],
|
||||||
):
|
):
|
||||||
from .pipeline.edit_tree_lemmatizer import EditTreeLemmatizer
|
|
||||||
return EditTreeLemmatizer(
|
return EditTreeLemmatizer(
|
||||||
nlp.vocab,
|
nlp.vocab,
|
||||||
model,
|
model,
|
||||||
|
@ -583,7 +584,6 @@ def register_factories() -> None:
|
||||||
label_smoothing: float,
|
label_smoothing: float,
|
||||||
scorer: Optional[Callable],
|
scorer: Optional[Callable],
|
||||||
):
|
):
|
||||||
from .pipeline.morphologizer import Morphologizer
|
|
||||||
return Morphologizer(
|
return Morphologizer(
|
||||||
nlp.vocab, model, name,
|
nlp.vocab, model, name,
|
||||||
overwrite=overwrite,
|
overwrite=overwrite,
|
||||||
|
|
Loading…
Reference in New Issue
Block a user