mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
Merge pull request #6024 from explosion/chore/registry-renaming
This commit is contained in:
commit
2189046869
|
@ -36,7 +36,7 @@ max_length = 0
|
|||
limit = 0
|
||||
|
||||
[training.batcher]
|
||||
@batchers = "batch_by_words.v1"
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
discard_oversize = false
|
||||
tolerance = 0.2
|
||||
|
||||
|
|
|
@ -35,7 +35,7 @@ max_length = 0
|
|||
limit = 0
|
||||
|
||||
[training.batcher]
|
||||
@batchers = "batch_by_words.v1"
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
discard_oversize = false
|
||||
tolerance = 0.2
|
||||
|
||||
|
|
|
@ -29,7 +29,7 @@ name = "{{ transformer["name"] }}"
|
|||
tokenizer_config = {"use_fast": true}
|
||||
|
||||
[components.transformer.model.get_spans]
|
||||
@span_getters = "strided_spans.v1"
|
||||
@span_getters = "spacy-transformers.strided_spans.v1"
|
||||
window = 128
|
||||
stride = 96
|
||||
|
||||
|
@ -204,13 +204,13 @@ max_length = 0
|
|||
|
||||
{% if use_transformer %}
|
||||
[training.batcher]
|
||||
@batchers = "batch_by_padded.v1"
|
||||
@batchers = "spacy.batch_by_padded.v1"
|
||||
discard_oversize = true
|
||||
size = 2000
|
||||
buffer = 256
|
||||
{%- else %}
|
||||
[training.batcher]
|
||||
@batchers = "batch_by_words.v1"
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
discard_oversize = false
|
||||
tolerance = 0.2
|
||||
|
||||
|
|
|
@ -69,7 +69,7 @@ max_length = 2000
|
|||
limit = 0
|
||||
|
||||
[training.batcher]
|
||||
@batchers = "batch_by_words.v1"
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
discard_oversize = false
|
||||
tolerance = 0.2
|
||||
|
||||
|
|
|
@ -249,6 +249,12 @@ class EntityRenderer:
|
|||
colors = dict(DEFAULT_LABEL_COLORS)
|
||||
user_colors = registry.displacy_colors.get_all()
|
||||
for user_color in user_colors.values():
|
||||
if callable(user_color):
|
||||
# Since this comes from the function registry, we want to make
|
||||
# sure we support functions that *return* a dict of colors
|
||||
user_color = user_color()
|
||||
if not isinstance(user_color, dict):
|
||||
raise ValueError(Errors.E925.format(obj=type(user_color)))
|
||||
colors.update(user_color)
|
||||
colors.update(options.get("colors", {}))
|
||||
self.default_color = DEFAULT_ENTITY_COLOR
|
||||
|
|
|
@ -476,6 +476,8 @@ class Errors:
|
|||
E199 = ("Unable to merge 0-length span at doc[{start}:{end}].")
|
||||
|
||||
# TODO: fix numbering after merging develop into master
|
||||
E925 = ("Invalid color values for displaCy visualizer: expected dictionary "
|
||||
"mapping label names to colors but got: {obj}")
|
||||
E926 = ("It looks like you're trying to modify nlp.{attr} directly. This "
|
||||
"doesn't work because it's an immutable computed property. If you "
|
||||
"need to modify the pipeline, use the built-in methods like "
|
||||
|
|
|
@ -11,7 +11,7 @@ ItemT = TypeVar("ItemT")
|
|||
BatcherT = Callable[[Iterable[ItemT]], Iterable[List[ItemT]]]
|
||||
|
||||
|
||||
@registry.batchers("batch_by_padded.v1")
|
||||
@registry.batchers("spacy.batch_by_padded.v1")
|
||||
def configure_minibatch_by_padded_size(
|
||||
*,
|
||||
size: Sizing,
|
||||
|
@ -46,7 +46,7 @@ def configure_minibatch_by_padded_size(
|
|||
)
|
||||
|
||||
|
||||
@registry.batchers("batch_by_words.v1")
|
||||
@registry.batchers("spacy.batch_by_words.v1")
|
||||
def configure_minibatch_by_words(
|
||||
*,
|
||||
size: Sizing,
|
||||
|
@ -70,7 +70,7 @@ def configure_minibatch_by_words(
|
|||
)
|
||||
|
||||
|
||||
@registry.batchers("batch_by_sequence.v1")
|
||||
@registry.batchers("spacy.batch_by_sequence.v1")
|
||||
def configure_minibatch(
|
||||
size: Sizing, get_length: Optional[Callable[[ItemT], int]] = None
|
||||
) -> BatcherT:
|
||||
|
|
|
@ -24,7 +24,7 @@ def build_nel_encoder(tok2vec: Model, nO: Optional[int] = None) -> Model:
|
|||
return model
|
||||
|
||||
|
||||
@registry.assets.register("spacy.KBFromFile.v1")
|
||||
@registry.misc.register("spacy.KBFromFile.v1")
|
||||
def load_kb(kb_path: str) -> Callable[[Vocab], KnowledgeBase]:
|
||||
def kb_from_file(vocab):
|
||||
kb = KnowledgeBase(vocab, entity_vector_length=1)
|
||||
|
@ -34,7 +34,7 @@ def load_kb(kb_path: str) -> Callable[[Vocab], KnowledgeBase]:
|
|||
return kb_from_file
|
||||
|
||||
|
||||
@registry.assets.register("spacy.EmptyKB.v1")
|
||||
@registry.misc.register("spacy.EmptyKB.v1")
|
||||
def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]:
|
||||
def empty_kb_factory(vocab):
|
||||
return KnowledgeBase(vocab=vocab, entity_vector_length=entity_vector_length)
|
||||
|
@ -42,6 +42,6 @@ def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]:
|
|||
return empty_kb_factory
|
||||
|
||||
|
||||
@registry.assets.register("spacy.CandidateGenerator.v1")
|
||||
@registry.misc.register("spacy.CandidateGenerator.v1")
|
||||
def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]:
|
||||
return get_candidates
|
||||
|
|
|
@ -39,12 +39,12 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
|
|||
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
|
||||
assigns=["token.ent_kb_id"],
|
||||
default_config={
|
||||
"kb_loader": {"@assets": "spacy.EmptyKB.v1", "entity_vector_length": 64},
|
||||
"kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 64},
|
||||
"model": DEFAULT_NEL_MODEL,
|
||||
"labels_discard": [],
|
||||
"incl_prior": True,
|
||||
"incl_context": True,
|
||||
"get_candidates": {"@assets": "spacy.CandidateGenerator.v1"},
|
||||
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
|
||||
},
|
||||
)
|
||||
def make_entity_linker(
|
||||
|
|
|
@ -14,7 +14,7 @@ LANGUAGES = ["el", "en", "fr", "nl"]
|
|||
|
||||
@pytest.mark.parametrize("lang", LANGUAGES)
|
||||
def test_lemmatizer_initialize(lang, capfd):
|
||||
@registry.assets("lemmatizer_init_lookups")
|
||||
@registry.misc("lemmatizer_init_lookups")
|
||||
def lemmatizer_init_lookups():
|
||||
lookups = Lookups()
|
||||
lookups.add_table("lemma_lookup", {"cope": "cope"})
|
||||
|
@ -25,9 +25,7 @@ def test_lemmatizer_initialize(lang, capfd):
|
|||
|
||||
"""Test that languages can be initialized."""
|
||||
nlp = get_lang_class(lang)()
|
||||
nlp.add_pipe(
|
||||
"lemmatizer", config={"lookups": {"@assets": "lemmatizer_init_lookups"}}
|
||||
)
|
||||
nlp.add_pipe("lemmatizer", config={"lookups": {"@misc": "lemmatizer_init_lookups"}})
|
||||
# Check for stray print statements (see #3342)
|
||||
doc = nlp("test") # noqa: F841
|
||||
captured = capfd.readouterr()
|
||||
|
|
|
@ -31,7 +31,7 @@ def pattern_dicts():
|
|||
]
|
||||
|
||||
|
||||
@registry.assets("attribute_ruler_patterns")
|
||||
@registry.misc("attribute_ruler_patterns")
|
||||
def attribute_ruler_patterns():
|
||||
return [
|
||||
{
|
||||
|
@ -86,7 +86,7 @@ def test_attributeruler_init_patterns(nlp, pattern_dicts):
|
|||
# initialize with patterns from asset
|
||||
nlp.add_pipe(
|
||||
"attribute_ruler",
|
||||
config={"pattern_dicts": {"@assets": "attribute_ruler_patterns"}},
|
||||
config={"pattern_dicts": {"@misc": "attribute_ruler_patterns"}},
|
||||
)
|
||||
doc = nlp("This is a test.")
|
||||
assert doc[2].lemma_ == "the"
|
||||
|
|
|
@ -137,7 +137,7 @@ def test_kb_undefined(nlp):
|
|||
|
||||
def test_kb_empty(nlp):
|
||||
"""Test that the EL can't train with an empty KB"""
|
||||
config = {"kb_loader": {"@assets": "spacy.EmptyKB.v1", "entity_vector_length": 342}}
|
||||
config = {"kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 342}}
|
||||
entity_linker = nlp.add_pipe("entity_linker", config=config)
|
||||
assert len(entity_linker.kb) == 0
|
||||
with pytest.raises(ValueError):
|
||||
|
@ -183,7 +183,7 @@ def test_el_pipe_configuration(nlp):
|
|||
ruler = nlp.add_pipe("entity_ruler")
|
||||
ruler.add_patterns([pattern])
|
||||
|
||||
@registry.assets.register("myAdamKB.v1")
|
||||
@registry.misc.register("myAdamKB.v1")
|
||||
def mykb() -> Callable[["Vocab"], KnowledgeBase]:
|
||||
def create_kb(vocab):
|
||||
kb = KnowledgeBase(vocab, entity_vector_length=1)
|
||||
|
@ -199,7 +199,7 @@ def test_el_pipe_configuration(nlp):
|
|||
# run an EL pipe without a trained context encoder, to check the candidate generation step only
|
||||
nlp.add_pipe(
|
||||
"entity_linker",
|
||||
config={"kb_loader": {"@assets": "myAdamKB.v1"}, "incl_context": False},
|
||||
config={"kb_loader": {"@misc": "myAdamKB.v1"}, "incl_context": False},
|
||||
)
|
||||
# With the default get_candidates function, matching is case-sensitive
|
||||
text = "Douglas and douglas are not the same."
|
||||
|
@ -211,7 +211,7 @@ def test_el_pipe_configuration(nlp):
|
|||
def get_lowercased_candidates(kb, span):
|
||||
return kb.get_alias_candidates(span.text.lower())
|
||||
|
||||
@registry.assets.register("spacy.LowercaseCandidateGenerator.v1")
|
||||
@registry.misc.register("spacy.LowercaseCandidateGenerator.v1")
|
||||
def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]:
|
||||
return get_lowercased_candidates
|
||||
|
||||
|
@ -220,9 +220,9 @@ def test_el_pipe_configuration(nlp):
|
|||
"entity_linker",
|
||||
"entity_linker",
|
||||
config={
|
||||
"kb_loader": {"@assets": "myAdamKB.v1"},
|
||||
"kb_loader": {"@misc": "myAdamKB.v1"},
|
||||
"incl_context": False,
|
||||
"get_candidates": {"@assets": "spacy.LowercaseCandidateGenerator.v1"},
|
||||
"get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
|
||||
},
|
||||
)
|
||||
doc = nlp(text)
|
||||
|
@ -282,7 +282,7 @@ def test_append_invalid_alias(nlp):
|
|||
def test_preserving_links_asdoc(nlp):
|
||||
"""Test that Span.as_doc preserves the existing entity links"""
|
||||
|
||||
@registry.assets.register("myLocationsKB.v1")
|
||||
@registry.misc.register("myLocationsKB.v1")
|
||||
def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
|
||||
def create_kb(vocab):
|
||||
mykb = KnowledgeBase(vocab, entity_vector_length=1)
|
||||
|
@ -304,7 +304,7 @@ def test_preserving_links_asdoc(nlp):
|
|||
]
|
||||
ruler = nlp.add_pipe("entity_ruler")
|
||||
ruler.add_patterns(patterns)
|
||||
el_config = {"kb_loader": {"@assets": "myLocationsKB.v1"}, "incl_prior": False}
|
||||
el_config = {"kb_loader": {"@misc": "myLocationsKB.v1"}, "incl_prior": False}
|
||||
el_pipe = nlp.add_pipe("entity_linker", config=el_config, last=True)
|
||||
el_pipe.begin_training(lambda: [])
|
||||
el_pipe.incl_context = False
|
||||
|
@ -387,7 +387,7 @@ def test_overfitting_IO():
|
|||
doc = nlp(text)
|
||||
train_examples.append(Example.from_dict(doc, annotation))
|
||||
|
||||
@registry.assets.register("myOverfittingKB.v1")
|
||||
@registry.misc.register("myOverfittingKB.v1")
|
||||
def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
|
||||
def create_kb(vocab):
|
||||
# create artificial KB - assign same prior weight to the two russ cochran's
|
||||
|
@ -408,7 +408,7 @@ def test_overfitting_IO():
|
|||
# Create the Entity Linker component and add it to the pipeline
|
||||
nlp.add_pipe(
|
||||
"entity_linker",
|
||||
config={"kb_loader": {"@assets": "myOverfittingKB.v1"}},
|
||||
config={"kb_loader": {"@misc": "myOverfittingKB.v1"}},
|
||||
last=True,
|
||||
)
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@ def nlp():
|
|||
|
||||
@pytest.fixture
|
||||
def lemmatizer(nlp):
|
||||
@registry.assets("cope_lookups")
|
||||
@registry.misc("cope_lookups")
|
||||
def cope_lookups():
|
||||
lookups = Lookups()
|
||||
lookups.add_table("lemma_lookup", {"cope": "cope"})
|
||||
|
@ -23,13 +23,13 @@ def lemmatizer(nlp):
|
|||
return lookups
|
||||
|
||||
lemmatizer = nlp.add_pipe(
|
||||
"lemmatizer", config={"mode": "rule", "lookups": {"@assets": "cope_lookups"}}
|
||||
"lemmatizer", config={"mode": "rule", "lookups": {"@misc": "cope_lookups"}}
|
||||
)
|
||||
return lemmatizer
|
||||
|
||||
|
||||
def test_lemmatizer_init(nlp):
|
||||
@registry.assets("cope_lookups")
|
||||
@registry.misc("cope_lookups")
|
||||
def cope_lookups():
|
||||
lookups = Lookups()
|
||||
lookups.add_table("lemma_lookup", {"cope": "cope"})
|
||||
|
@ -39,7 +39,7 @@ def test_lemmatizer_init(nlp):
|
|||
return lookups
|
||||
|
||||
lemmatizer = nlp.add_pipe(
|
||||
"lemmatizer", config={"mode": "lookup", "lookups": {"@assets": "cope_lookups"}}
|
||||
"lemmatizer", config={"mode": "lookup", "lookups": {"@misc": "cope_lookups"}}
|
||||
)
|
||||
assert isinstance(lemmatizer.lookups, Lookups)
|
||||
assert lemmatizer.mode == "lookup"
|
||||
|
@ -51,14 +51,14 @@ def test_lemmatizer_init(nlp):
|
|||
|
||||
nlp.remove_pipe("lemmatizer")
|
||||
|
||||
@registry.assets("empty_lookups")
|
||||
@registry.misc("empty_lookups")
|
||||
def empty_lookups():
|
||||
return Lookups()
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
nlp.add_pipe(
|
||||
"lemmatizer",
|
||||
config={"mode": "lookup", "lookups": {"@assets": "empty_lookups"}},
|
||||
config={"mode": "lookup", "lookups": {"@misc": "empty_lookups"}},
|
||||
)
|
||||
|
||||
|
||||
|
@ -79,7 +79,7 @@ def test_lemmatizer_config(nlp, lemmatizer):
|
|||
|
||||
|
||||
def test_lemmatizer_serialize(nlp, lemmatizer):
|
||||
@registry.assets("cope_lookups")
|
||||
@registry.misc("cope_lookups")
|
||||
def cope_lookups():
|
||||
lookups = Lookups()
|
||||
lookups.add_table("lemma_lookup", {"cope": "cope"})
|
||||
|
@ -90,7 +90,7 @@ def test_lemmatizer_serialize(nlp, lemmatizer):
|
|||
|
||||
nlp2 = English()
|
||||
lemmatizer2 = nlp2.add_pipe(
|
||||
"lemmatizer", config={"mode": "rule", "lookups": {"@assets": "cope_lookups"}}
|
||||
"lemmatizer", config={"mode": "rule", "lookups": {"@misc": "cope_lookups"}}
|
||||
)
|
||||
lemmatizer2.from_bytes(lemmatizer.to_bytes())
|
||||
assert lemmatizer.to_bytes() == lemmatizer2.to_bytes()
|
||||
|
|
|
@ -71,7 +71,7 @@ def tagger():
|
|||
def entity_linker():
|
||||
nlp = Language()
|
||||
|
||||
@registry.assets.register("TestIssue5230KB.v1")
|
||||
@registry.misc.register("TestIssue5230KB.v1")
|
||||
def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
|
||||
def create_kb(vocab):
|
||||
kb = KnowledgeBase(vocab, entity_vector_length=1)
|
||||
|
@ -80,7 +80,7 @@ def entity_linker():
|
|||
|
||||
return create_kb
|
||||
|
||||
config = {"kb_loader": {"@assets": "TestIssue5230KB.v1"}}
|
||||
config = {"kb_loader": {"@misc": "TestIssue5230KB.v1"}}
|
||||
entity_linker = nlp.add_pipe("entity_linker", config=config)
|
||||
# need to add model for two reasons:
|
||||
# 1. no model leads to error in serialization,
|
||||
|
|
|
@ -28,7 +28,7 @@ path = ${paths.train}
|
|||
path = ${paths.dev}
|
||||
|
||||
[training.batcher]
|
||||
@batchers = "batch_by_words.v1"
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
size = 666
|
||||
|
||||
[nlp]
|
||||
|
|
|
@ -85,7 +85,7 @@ def test_serialize_subclassed_kb():
|
|||
super().__init__(vocab, entity_vector_length)
|
||||
self.custom_field = custom_field
|
||||
|
||||
@registry.assets.register("spacy.CustomKB.v1")
|
||||
@registry.misc.register("spacy.CustomKB.v1")
|
||||
def custom_kb(
|
||||
entity_vector_length: int, custom_field: int
|
||||
) -> Callable[["Vocab"], KnowledgeBase]:
|
||||
|
@ -101,7 +101,7 @@ def test_serialize_subclassed_kb():
|
|||
nlp = English()
|
||||
config = {
|
||||
"kb_loader": {
|
||||
"@assets": "spacy.CustomKB.v1",
|
||||
"@misc": "spacy.CustomKB.v1",
|
||||
"entity_vector_length": 342,
|
||||
"custom_field": 666,
|
||||
}
|
||||
|
|
|
@ -76,7 +76,7 @@ class registry(thinc.registry):
|
|||
lemmatizers = catalogue.create("spacy", "lemmatizers", entry_points=True)
|
||||
lookups = catalogue.create("spacy", "lookups", entry_points=True)
|
||||
displacy_colors = catalogue.create("spacy", "displacy_colors", entry_points=True)
|
||||
assets = catalogue.create("spacy", "assets", entry_points=True)
|
||||
misc = catalogue.create("spacy", "misc", entry_points=True)
|
||||
# Callback functions used to manipulate nlp object etc.
|
||||
callbacks = catalogue.create("spacy", "callbacks")
|
||||
batchers = catalogue.create("spacy", "batchers", entry_points=True)
|
||||
|
|
|
@ -320,7 +320,7 @@ for details and system requirements.
|
|||
> tokenizer_config = {"use_fast": true}
|
||||
>
|
||||
> [model.get_spans]
|
||||
> @span_getters = "strided_spans.v1"
|
||||
> @span_getters = "spacy-transformers.strided_spans.v1"
|
||||
> window = 128
|
||||
> stride = 96
|
||||
> ```
|
||||
|
@ -673,11 +673,11 @@ into the "real world". This requires 3 main components:
|
|||
> subword_features = true
|
||||
>
|
||||
> [kb_loader]
|
||||
> @assets = "spacy.EmptyKB.v1"
|
||||
> @misc = "spacy.EmptyKB.v1"
|
||||
> entity_vector_length = 64
|
||||
>
|
||||
> [get_candidates]
|
||||
> @assets = "spacy.CandidateGenerator.v1"
|
||||
> @misc = "spacy.CandidateGenerator.v1"
|
||||
> ```
|
||||
|
||||
The `EntityLinker` model architecture is a Thinc `Model` with a
|
||||
|
|
|
@ -271,7 +271,7 @@ training -> dropout field required
|
|||
training -> optimizer field required
|
||||
training -> optimize extra fields not permitted
|
||||
|
||||
{'vectors': 'en_vectors_web_lg', 'seed': 0, 'accumulate_gradient': 1, 'init_tok2vec': None, 'raw_text': None, 'patience': 1600, 'max_epochs': 0, 'max_steps': 20000, 'eval_frequency': 200, 'frozen_components': [], 'optimize': None, 'batcher': {'@batchers': 'batch_by_words.v1', 'discard_oversize': False, 'tolerance': 0.2, 'get_length': None, 'size': {'@schedules': 'compounding.v1', 'start': 100, 'stop': 1000, 'compound': 1.001, 't': 0.0}}, 'dev_corpus': {'@readers': 'spacy.Corpus.v1', 'path': '', 'max_length': 0, 'gold_preproc': False, 'limit': 0}, 'score_weights': {'tag_acc': 0.5, 'dep_uas': 0.25, 'dep_las': 0.25, 'sents_f': 0.0}, 'train_corpus': {'@readers': 'spacy.Corpus.v1', 'path': '', 'max_length': 0, 'gold_preproc': False, 'limit': 0}}
|
||||
{'vectors': 'en_vectors_web_lg', 'seed': 0, 'accumulate_gradient': 1, 'init_tok2vec': None, 'raw_text': None, 'patience': 1600, 'max_epochs': 0, 'max_steps': 20000, 'eval_frequency': 200, 'frozen_components': [], 'optimize': None, 'batcher': {'@batchers': 'spacy.batch_by_words.v1', 'discard_oversize': False, 'tolerance': 0.2, 'get_length': None, 'size': {'@schedules': 'compounding.v1', 'start': 100, 'stop': 1000, 'compound': 1.001, 't': 0.0}}, 'dev_corpus': {'@readers': 'spacy.Corpus.v1', 'path': '', 'max_length': 0, 'gold_preproc': False, 'limit': 0}, 'score_weights': {'tag_acc': 0.5, 'dep_uas': 0.25, 'dep_las': 0.25, 'sents_f': 0.0}, 'train_corpus': {'@readers': 'spacy.Corpus.v1', 'path': '', 'max_length': 0, 'gold_preproc': False, 'limit': 0}}
|
||||
|
||||
If your config contains missing values, you can run the 'init fill-config'
|
||||
command to fill in all the defaults, if possible:
|
||||
|
@ -361,7 +361,7 @@ Module spacy.gold.loggers
|
|||
File /path/to/spacy/gold/loggers.py (line 8)
|
||||
ℹ [training.batcher]
|
||||
Registry @batchers
|
||||
Name batch_by_words.v1
|
||||
Name spacy.batch_by_words.v1
|
||||
Module spacy.gold.batchers
|
||||
File /path/to/spacy/gold/batchers.py (line 49)
|
||||
ℹ [training.batcher.size]
|
||||
|
|
|
@ -34,8 +34,8 @@ architectures and their arguments and hyperparameters.
|
|||
> "incl_prior": True,
|
||||
> "incl_context": True,
|
||||
> "model": DEFAULT_NEL_MODEL,
|
||||
> "kb_loader": {'@assets': 'spacy.EmptyKB.v1', 'entity_vector_length': 64},
|
||||
> "get_candidates": {'@assets': 'spacy.CandidateGenerator.v1'},
|
||||
> "kb_loader": {'@misc': 'spacy.EmptyKB.v1', 'entity_vector_length': 64},
|
||||
> "get_candidates": {'@misc': 'spacy.CandidateGenerator.v1'},
|
||||
> }
|
||||
> nlp.add_pipe("entity_linker", config=config)
|
||||
> ```
|
||||
|
@ -66,7 +66,7 @@ https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/entity_linker.py
|
|||
> entity_linker = nlp.add_pipe("entity_linker", config=config)
|
||||
>
|
||||
> # Construction via add_pipe with custom KB and candidate generation
|
||||
> config = {"kb": {"@assets": "my_kb.v1"}}
|
||||
> config = {"kb": {"@misc": "my_kb.v1"}}
|
||||
> entity_linker = nlp.add_pipe("entity_linker", config=config)
|
||||
>
|
||||
> # Construction from class
|
||||
|
|
|
@ -307,7 +307,6 @@ factories.
|
|||
| Registry name | Description |
|
||||
| ----------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `architectures` | Registry for functions that create [model architectures](/api/architectures). Can be used to register custom model architectures and reference them in the `config.cfg`. |
|
||||
| `assets` | Registry for data assets, knowledge bases etc. |
|
||||
| `batchers` | Registry for training and evaluation [data batchers](#batchers). |
|
||||
| `callbacks` | Registry for custom callbacks to [modify the `nlp` object](/usage/training#custom-code-nlp-callbacks) before training. |
|
||||
| `displacy_colors` | Registry for custom color scheme for the [`displacy` NER visualizer](/usage/visualizers). Automatically reads from [entry points](/usage/saving-loading#entry-points). |
|
||||
|
@ -318,6 +317,7 @@ factories.
|
|||
| `loggers` | Registry for functions that log [training results](/usage/training). |
|
||||
| `lookups` | Registry for large lookup tables available via `vocab.lookups`. |
|
||||
| `losses` | Registry for functions that create [losses](https://thinc.ai/docs/api-loss). |
|
||||
| `misc` | Registry for miscellaneous functions that return data assets, knowledge bases or anything else you may need. |
|
||||
| `optimizers` | Registry for functions that create [optimizers](https://thinc.ai/docs/api-optimizers). |
|
||||
| `readers` | Registry for training and evaluation data readers like [`Corpus`](/api/corpus). |
|
||||
| `schedules` | Registry for functions that create [schedules](https://thinc.ai/docs/api-schedules). |
|
||||
|
@ -364,7 +364,7 @@ results to a [Weights & Biases](https://www.wandb.com/) dashboard. Instead of
|
|||
using one of the built-in loggers listed here, you can also
|
||||
[implement your own](/usage/training#custom-logging).
|
||||
|
||||
#### spacy.ConsoleLogger.v1 {#ConsoleLogger tag="registered function"}
|
||||
#### spacy.ConsoleLogger {#ConsoleLogger tag="registered function"}
|
||||
|
||||
> #### Example config
|
||||
>
|
||||
|
@ -410,7 +410,7 @@ start decreasing across epochs.
|
|||
|
||||
</Accordion>
|
||||
|
||||
#### spacy.WandbLogger.v1 {#WandbLogger tag="registered function"}
|
||||
#### spacy.WandbLogger {#WandbLogger tag="registered function"}
|
||||
|
||||
> #### Installation
|
||||
>
|
||||
|
@ -466,7 +466,7 @@ Instead of using one of the built-in batchers listed here, you can also
|
|||
[implement your own](/usage/training#custom-code-readers-batchers), which may or
|
||||
may not use a custom schedule.
|
||||
|
||||
#### batch_by_words.v1 {#batch_by_words tag="registered function"}
|
||||
#### batch_by_words {#batch_by_words tag="registered function"}
|
||||
|
||||
Create minibatches of roughly a given number of words. If any examples are
|
||||
longer than the specified batch length, they will appear in a batch by
|
||||
|
@ -478,7 +478,7 @@ themselves, or be discarded if `discard_oversize` is set to `True`. The argument
|
|||
>
|
||||
> ```ini
|
||||
> [training.batcher]
|
||||
> @batchers = "batch_by_words.v1"
|
||||
> @batchers = "spacy.batch_by_words.v1"
|
||||
> size = 100
|
||||
> tolerance = 0.2
|
||||
> discard_oversize = false
|
||||
|
@ -493,13 +493,13 @@ themselves, or be discarded if `discard_oversize` is set to `True`. The argument
|
|||
| `discard_oversize` | Whether to discard sequences that by themselves exceed the tolerated size. ~~bool~~ |
|
||||
| `get_length` | Optional function that receives a sequence item and returns its length. Defaults to the built-in `len()` if not set. ~~Optional[Callable[[Any], int]]~~ |
|
||||
|
||||
#### batch_by_sequence.v1 {#batch_by_sequence tag="registered function"}
|
||||
#### batch_by_sequence {#batch_by_sequence tag="registered function"}
|
||||
|
||||
> #### Example config
|
||||
>
|
||||
> ```ini
|
||||
> [training.batcher]
|
||||
> @batchers = "batch_by_sequence.v1"
|
||||
> @batchers = "spacy.batch_by_sequence.v1"
|
||||
> size = 32
|
||||
> get_length = null
|
||||
> ```
|
||||
|
@ -511,13 +511,13 @@ Create a batcher that creates batches of the specified size.
|
|||
| `size` | The target number of items per batch. Can also be a block referencing a schedule, e.g. [`compounding`](https://thinc.ai/docs/api-schedules/#compounding). ~~Union[int, Sequence[int]]~~ |
|
||||
| `get_length` | Optional function that receives a sequence item and returns its length. Defaults to the built-in `len()` if not set. ~~Optional[Callable[[Any], int]]~~ |
|
||||
|
||||
#### batch_by_padded.v1 {#batch_by_padded tag="registered function"}
|
||||
#### batch_by_padded {#batch_by_padded tag="registered function"}
|
||||
|
||||
> #### Example config
|
||||
>
|
||||
> ```ini
|
||||
> [training.batcher]
|
||||
> @batchers = "batch_by_padded.v1"
|
||||
> @batchers = "spacy.batch_by_padded.v1"
|
||||
> size = 100
|
||||
> buffer = 256
|
||||
> discard_oversize = false
|
||||
|
|
|
@ -453,7 +453,7 @@ using the `@spacy.registry.span_getters` decorator.
|
|||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> @spacy.registry.span_getters("sent_spans.v1")
|
||||
> @spacy.registry.span_getters("custom_sent_spans")
|
||||
> def configure_get_sent_spans() -> Callable:
|
||||
> def get_sent_spans(docs: Iterable[Doc]) -> List[List[Span]]:
|
||||
> return [list(doc.sents) for doc in docs]
|
||||
|
@ -472,7 +472,7 @@ using the `@spacy.registry.span_getters` decorator.
|
|||
>
|
||||
> ```ini
|
||||
> [transformer.model.get_spans]
|
||||
> @span_getters = "doc_spans.v1"
|
||||
> @span_getters = "spacy-transformers.doc_spans.v1"
|
||||
> ```
|
||||
|
||||
Create a span getter that uses the whole document as its spans. This is the best
|
||||
|
@ -485,7 +485,7 @@ texts.
|
|||
>
|
||||
> ```ini
|
||||
> [transformer.model.get_spans]
|
||||
> @span_getters = "sent_spans.v1"
|
||||
> @span_getters = "spacy-transformers.sent_spans.v1"
|
||||
> ```
|
||||
|
||||
Create a span getter that uses sentence boundary markers to extract the spans.
|
||||
|
@ -500,7 +500,7 @@ more meaningful windows to attend over.
|
|||
>
|
||||
> ```ini
|
||||
> [transformer.model.get_spans]
|
||||
> @span_getters = "strided_spans.v1"
|
||||
> @span_getters = "spacy-transformers.strided_spans.v1"
|
||||
> window = 128
|
||||
> stride = 96
|
||||
> ```
|
||||
|
|
|
@ -331,7 +331,7 @@ name = "bert-base-cased"
|
|||
tokenizer_config = {"use_fast": true}
|
||||
|
||||
[components.transformer.model.get_spans]
|
||||
@span_getters = "doc_spans.v1"
|
||||
@span_getters = "spacy-transformers.doc_spans.v1"
|
||||
|
||||
[components.transformer.annotation_setter]
|
||||
@annotation_setters = "spacy-transformers.null_annotation_setter.v1"
|
||||
|
@ -369,8 +369,9 @@ all defaults.
|
|||
|
||||
To change any of the settings, you can edit the `config.cfg` and re-run the
|
||||
training. To change any of the functions, like the span getter, you can replace
|
||||
the name of the referenced function – e.g. `@span_getters = "sent_spans.v1"` to
|
||||
process sentences. You can also register your own functions using the
|
||||
the name of the referenced function – e.g.
|
||||
`@span_getters = "spacy-transformers.sent_spans.v1"` to process sentences. You
|
||||
can also register your own functions using the
|
||||
[`span_getters` registry](/api/top-level#registry). For instance, the following
|
||||
custom function returns [`Span`](/api/span) objects following sentence
|
||||
boundaries, unless a sentence succeeds a certain amount of tokens, in which case
|
||||
|
|
|
@ -842,12 +842,20 @@ load and train custom pipelines with custom components. A simple solution is to
|
|||
**register a function** that returns your resources. The
|
||||
[registry](/api/top-level#registry) lets you **map string names to functions**
|
||||
that create objects, so given a name and optional arguments, spaCy will know how
|
||||
to recreate the object. To register a function that returns a custom asset, you
|
||||
can use the `@spacy.registry.assets` decorator with a single argument, the name:
|
||||
to recreate the object. To register a function that returns your custom
|
||||
dictionary, you can use the `@spacy.registry.misc` decorator with a single
|
||||
argument, the name:
|
||||
|
||||
> #### What's the misc registry?
|
||||
>
|
||||
> The [`registry`](/api/top-level#registry) provides different categories for
|
||||
> different types of functions – for example, model architectures, tokenizers or
|
||||
> batchers. `misc` is intended for miscellaneous functions that don't fit
|
||||
> anywhere else.
|
||||
|
||||
```python
|
||||
### Registered function for assets {highlight="1"}
|
||||
@spacy.registry.assets("acronyms.slang_dict.v1")
|
||||
@spacy.registry.misc("acronyms.slang_dict.v1")
|
||||
def create_acronyms_slang_dict():
|
||||
dictionary = {"lol": "laughing out loud", "brb": "be right back"}
|
||||
dictionary.update({value: key for key, value in dictionary.items()})
|
||||
|
@ -856,9 +864,9 @@ def create_acronyms_slang_dict():
|
|||
|
||||
In your `default_config` (and later in your
|
||||
[training config](/usage/training#config)), you can now refer to the function
|
||||
registered under the name `"acronyms.slang_dict.v1"` using the `@assets` key.
|
||||
This tells spaCy how to create the value, and when your component is created,
|
||||
the result of the registered function is passed in as the key `"dictionary"`.
|
||||
registered under the name `"acronyms.slang_dict.v1"` using the `@misc` key. This
|
||||
tells spaCy how to create the value, and when your component is created, the
|
||||
result of the registered function is passed in as the key `"dictionary"`.
|
||||
|
||||
> #### config.cfg
|
||||
>
|
||||
|
@ -867,22 +875,22 @@ the result of the registered function is passed in as the key `"dictionary"`.
|
|||
> factory = "acronyms"
|
||||
>
|
||||
> [components.acronyms.dictionary]
|
||||
> @assets = "acronyms.slang_dict.v1"
|
||||
> @misc = "acronyms.slang_dict.v1"
|
||||
> ```
|
||||
|
||||
```diff
|
||||
- default_config = {"dictionary:" DICTIONARY}
|
||||
+ default_config = {"dictionary": {"@assets": "acronyms.slang_dict.v1"}}
|
||||
+ default_config = {"dictionary": {"@misc": "acronyms.slang_dict.v1"}}
|
||||
```
|
||||
|
||||
Using a registered function also means that you can easily include your custom
|
||||
components in pipelines that you [train](/usage/training). To make sure spaCy
|
||||
knows where to find your custom `@assets` function, you can pass in a Python
|
||||
file via the argument `--code`. If someone else is using your component, all
|
||||
they have to do to customize the data is to register their own function and swap
|
||||
out the name. Registered functions can also take **arguments** by the way that
|
||||
can be defined in the config as well – you can read more about this in the docs
|
||||
on [training with custom code](/usage/training#custom-code).
|
||||
knows where to find your custom `@misc` function, you can pass in a Python file
|
||||
via the argument `--code`. If someone else is using your component, all they
|
||||
have to do to customize the data is to register their own function and swap out
|
||||
the name. Registered functions can also take **arguments** by the way that can
|
||||
be defined in the config as well – you can read more about this in the docs on
|
||||
[training with custom code](/usage/training#custom-code).
|
||||
|
||||
### Python type hints and pydantic validation {#type-hints new="3"}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user