mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Support specifying which GPU
This commit is contained in:
parent
3f5c85d8de
commit
21eef90dbc
|
@ -27,14 +27,14 @@ from .. import displacy
|
||||||
dev_data=("location of JSON-formatted development data (optional)", "positional", None, str),
|
dev_data=("location of JSON-formatted development data (optional)", "positional", None, str),
|
||||||
n_iter=("number of iterations", "option", "n", int),
|
n_iter=("number of iterations", "option", "n", int),
|
||||||
n_sents=("number of sentences", "option", "ns", int),
|
n_sents=("number of sentences", "option", "ns", int),
|
||||||
use_gpu=("Use GPU", "flag", "G", bool),
|
use_gpu=("Use GPU", "option", "g", int),
|
||||||
resume=("Whether to resume training", "flag", "R", bool),
|
resume=("Whether to resume training", "flag", "R", bool),
|
||||||
no_tagger=("Don't train tagger", "flag", "T", bool),
|
no_tagger=("Don't train tagger", "flag", "T", bool),
|
||||||
no_parser=("Don't train parser", "flag", "P", bool),
|
no_parser=("Don't train parser", "flag", "P", bool),
|
||||||
no_entities=("Don't train NER", "flag", "N", bool)
|
no_entities=("Don't train NER", "flag", "N", bool)
|
||||||
)
|
)
|
||||||
def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
||||||
use_gpu=False, resume=False, no_tagger=False, no_parser=False, no_entities=False):
|
use_gpu=-1, resume=False, no_tagger=False, no_parser=False, no_entities=False):
|
||||||
"""
|
"""
|
||||||
Train a model. Expects data in spaCy's JSON format.
|
Train a model. Expects data in spaCy's JSON format.
|
||||||
"""
|
"""
|
||||||
|
@ -76,7 +76,7 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
||||||
corpus = GoldCorpus(train_path, dev_path, limit=n_sents)
|
corpus = GoldCorpus(train_path, dev_path, limit=n_sents)
|
||||||
n_train_docs = corpus.count_train()
|
n_train_docs = corpus.count_train()
|
||||||
|
|
||||||
optimizer = nlp.begin_training(lambda: corpus.train_tuples, use_gpu=use_gpu)
|
optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu)
|
||||||
|
|
||||||
print("Itn.\tLoss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %")
|
print("Itn.\tLoss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %")
|
||||||
try:
|
try:
|
||||||
|
|
|
@ -279,9 +279,14 @@ class Language(object):
|
||||||
for word in annots[1]:
|
for word in annots[1]:
|
||||||
_ = self.vocab[word]
|
_ = self.vocab[word]
|
||||||
contexts = []
|
contexts = []
|
||||||
if cfg.get('use_gpu'):
|
if cfg.get('device', -1) >= 0:
|
||||||
|
import cupy.cuda.device
|
||||||
|
device = cupy.cuda.device.Device(cfg['device'])
|
||||||
|
device.use()
|
||||||
Model.ops = CupyOps()
|
Model.ops = CupyOps()
|
||||||
Model.Ops = CupyOps
|
Model.Ops = CupyOps
|
||||||
|
else:
|
||||||
|
device = None
|
||||||
for proc in self.pipeline:
|
for proc in self.pipeline:
|
||||||
if hasattr(proc, 'begin_training'):
|
if hasattr(proc, 'begin_training'):
|
||||||
context = proc.begin_training(get_gold_tuples(),
|
context = proc.begin_training(get_gold_tuples(),
|
||||||
|
@ -296,6 +301,7 @@ class Language(object):
|
||||||
optimizer = Adam(Model.ops, learn_rate, L2=L2, beta1=beta1,
|
optimizer = Adam(Model.ops, learn_rate, L2=L2, beta1=beta1,
|
||||||
beta2=beta2, eps=eps)
|
beta2=beta2, eps=eps)
|
||||||
optimizer.max_grad_norm = max_grad_norm
|
optimizer.max_grad_norm = max_grad_norm
|
||||||
|
optimizer.device = device
|
||||||
return optimizer
|
return optimizer
|
||||||
|
|
||||||
def evaluate(self, docs_golds):
|
def evaluate(self, docs_golds):
|
||||||
|
|
Loading…
Reference in New Issue
Block a user