mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Ensure better separation between score printing and training in train.py
This commit is contained in:
		
							parent
							
								
									6d49f8717b
								
							
						
					
					
						commit
						221f43c370
					
				| 
						 | 
					@ -218,6 +218,11 @@ def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0,
 | 
				
			||||||
    for itn in range(n_iter):
 | 
					    for itn in range(n_iter):
 | 
				
			||||||
        scorer = Scorer()
 | 
					        scorer = Scorer()
 | 
				
			||||||
        for raw_text, segmented_text, annot_tuples in gold_tuples:
 | 
					        for raw_text, segmented_text, annot_tuples in gold_tuples:
 | 
				
			||||||
 | 
					            # Eval before train
 | 
				
			||||||
 | 
					            tokens = nlp(raw_text)
 | 
				
			||||||
 | 
					            gold = GoldParse(tokens, annot_tuples)
 | 
				
			||||||
 | 
					            scorer.score(tokens, gold, verbose=False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            if gold_preproc:
 | 
					            if gold_preproc:
 | 
				
			||||||
                sents = [nlp.tokenizer.tokens_from_list(s) for s in segmented_text]
 | 
					                sents = [nlp.tokenizer.tokens_from_list(s) for s in segmented_text]
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
| 
						 | 
					@ -229,15 +234,11 @@ def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0,
 | 
				
			||||||
                nlp.entity.train(tokens, gold, force_gold=force_gold)
 | 
					                nlp.entity.train(tokens, gold, force_gold=force_gold)
 | 
				
			||||||
                nlp.tagger.train(tokens, gold.tags)
 | 
					                nlp.tagger.train(tokens, gold.tags)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            tokens = nlp(raw_text)
 | 
					 | 
				
			||||||
            gold = GoldParse(tokens, annot_tuples)
 | 
					 | 
				
			||||||
            scorer.score(tokens, gold, verbose=False)
 | 
					 | 
				
			||||||
        print '%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.ents_f, scorer.tags_acc)
 | 
					        print '%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.ents_f, scorer.tags_acc)
 | 
				
			||||||
        random.shuffle(gold_tuples)
 | 
					        random.shuffle(gold_tuples)
 | 
				
			||||||
    nlp.parser.model.end_training()
 | 
					    nlp.parser.model.end_training()
 | 
				
			||||||
    nlp.entity.model.end_training()
 | 
					    nlp.entity.model.end_training()
 | 
				
			||||||
    nlp.tagger.model.end_training()
 | 
					    nlp.tagger.model.end_training()
 | 
				
			||||||
    print nlp.vocab.strings['NMOD']
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def evaluate(Language, dev_loc, model_dir, gold_preproc=False, verbose=True):
 | 
					def evaluate(Language, dev_loc, model_dir, gold_preproc=False, verbose=True):
 | 
				
			||||||
| 
						 | 
					@ -274,13 +275,16 @@ def write_parses(Language, dev_loc, model_dir, out_loc):
 | 
				
			||||||
    out_loc=("Out location", "option", "o", str),
 | 
					    out_loc=("Out location", "option", "o", str),
 | 
				
			||||||
    n_sents=("Number of training sentences", "option", "n", int),
 | 
					    n_sents=("Number of training sentences", "option", "n", int),
 | 
				
			||||||
    verbose=("Verbose error reporting", "flag", "v", bool),
 | 
					    verbose=("Verbose error reporting", "flag", "v", bool),
 | 
				
			||||||
 | 
					    debug=("Debug mode", "flag", "d", bool)
 | 
				
			||||||
)
 | 
					)
 | 
				
			||||||
def main(train_loc, dev_loc, model_dir, n_sents=0, out_loc="", verbose=False):
 | 
					def main(train_loc, dev_loc, model_dir, n_sents=0, out_loc="", verbose=False,
 | 
				
			||||||
    train(English, train_loc, model_dir,
 | 
					         debug=False):
 | 
				
			||||||
 | 
					    train(English, train_loc, model_dir, feat_set='basic' if not debug else 'debug',
 | 
				
			||||||
          gold_preproc=False, force_gold=False, n_sents=n_sents)
 | 
					          gold_preproc=False, force_gold=False, n_sents=n_sents)
 | 
				
			||||||
    if out_loc:
 | 
					    if out_loc:
 | 
				
			||||||
        write_parses(English, dev_loc, model_dir, out_loc)
 | 
					        write_parses(English, dev_loc, model_dir, out_loc)
 | 
				
			||||||
    scorer = evaluate(English, dev_loc, model_dir, gold_preproc=False, verbose=verbose)
 | 
					    scorer = evaluate(English, dev_loc, model_dir, gold_preproc=False, verbose=verbose)
 | 
				
			||||||
 | 
					    print 'TOK', scorer.mistokened
 | 
				
			||||||
    print 'POS', scorer.tags_acc
 | 
					    print 'POS', scorer.tags_acc
 | 
				
			||||||
    print 'UAS', scorer.uas
 | 
					    print 'UAS', scorer.uas
 | 
				
			||||||
    print 'LAS', scorer.las
 | 
					    print 'LAS', scorer.las
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user