mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
* Ensure better separation between score printing and training in train.py
This commit is contained in:
parent
6d49f8717b
commit
221f43c370
|
@ -218,6 +218,11 @@ def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0,
|
||||||
for itn in range(n_iter):
|
for itn in range(n_iter):
|
||||||
scorer = Scorer()
|
scorer = Scorer()
|
||||||
for raw_text, segmented_text, annot_tuples in gold_tuples:
|
for raw_text, segmented_text, annot_tuples in gold_tuples:
|
||||||
|
# Eval before train
|
||||||
|
tokens = nlp(raw_text)
|
||||||
|
gold = GoldParse(tokens, annot_tuples)
|
||||||
|
scorer.score(tokens, gold, verbose=False)
|
||||||
|
|
||||||
if gold_preproc:
|
if gold_preproc:
|
||||||
sents = [nlp.tokenizer.tokens_from_list(s) for s in segmented_text]
|
sents = [nlp.tokenizer.tokens_from_list(s) for s in segmented_text]
|
||||||
else:
|
else:
|
||||||
|
@ -229,15 +234,11 @@ def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0,
|
||||||
nlp.entity.train(tokens, gold, force_gold=force_gold)
|
nlp.entity.train(tokens, gold, force_gold=force_gold)
|
||||||
nlp.tagger.train(tokens, gold.tags)
|
nlp.tagger.train(tokens, gold.tags)
|
||||||
|
|
||||||
tokens = nlp(raw_text)
|
|
||||||
gold = GoldParse(tokens, annot_tuples)
|
|
||||||
scorer.score(tokens, gold, verbose=False)
|
|
||||||
print '%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.ents_f, scorer.tags_acc)
|
print '%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.ents_f, scorer.tags_acc)
|
||||||
random.shuffle(gold_tuples)
|
random.shuffle(gold_tuples)
|
||||||
nlp.parser.model.end_training()
|
nlp.parser.model.end_training()
|
||||||
nlp.entity.model.end_training()
|
nlp.entity.model.end_training()
|
||||||
nlp.tagger.model.end_training()
|
nlp.tagger.model.end_training()
|
||||||
print nlp.vocab.strings['NMOD']
|
|
||||||
|
|
||||||
|
|
||||||
def evaluate(Language, dev_loc, model_dir, gold_preproc=False, verbose=True):
|
def evaluate(Language, dev_loc, model_dir, gold_preproc=False, verbose=True):
|
||||||
|
@ -274,13 +275,16 @@ def write_parses(Language, dev_loc, model_dir, out_loc):
|
||||||
out_loc=("Out location", "option", "o", str),
|
out_loc=("Out location", "option", "o", str),
|
||||||
n_sents=("Number of training sentences", "option", "n", int),
|
n_sents=("Number of training sentences", "option", "n", int),
|
||||||
verbose=("Verbose error reporting", "flag", "v", bool),
|
verbose=("Verbose error reporting", "flag", "v", bool),
|
||||||
|
debug=("Debug mode", "flag", "d", bool)
|
||||||
)
|
)
|
||||||
def main(train_loc, dev_loc, model_dir, n_sents=0, out_loc="", verbose=False):
|
def main(train_loc, dev_loc, model_dir, n_sents=0, out_loc="", verbose=False,
|
||||||
train(English, train_loc, model_dir,
|
debug=False):
|
||||||
|
train(English, train_loc, model_dir, feat_set='basic' if not debug else 'debug',
|
||||||
gold_preproc=False, force_gold=False, n_sents=n_sents)
|
gold_preproc=False, force_gold=False, n_sents=n_sents)
|
||||||
if out_loc:
|
if out_loc:
|
||||||
write_parses(English, dev_loc, model_dir, out_loc)
|
write_parses(English, dev_loc, model_dir, out_loc)
|
||||||
scorer = evaluate(English, dev_loc, model_dir, gold_preproc=False, verbose=verbose)
|
scorer = evaluate(English, dev_loc, model_dir, gold_preproc=False, verbose=verbose)
|
||||||
|
print 'TOK', scorer.mistokened
|
||||||
print 'POS', scorer.tags_acc
|
print 'POS', scorer.tags_acc
|
||||||
print 'UAS', scorer.uas
|
print 'UAS', scorer.uas
|
||||||
print 'LAS', scorer.las
|
print 'LAS', scorer.las
|
||||||
|
|
Loading…
Reference in New Issue
Block a user