From 23d5b4ff5b113cfcbe7cce5230a816e6a16ec2f2 Mon Sep 17 00:00:00 2001 From: Ines Montani Date: Sat, 13 Oct 2018 23:53:33 +0200 Subject: [PATCH] Update docs for new version [ci skip] --- website/api/cli.jade | 1 + website/api/span.jade | 24 ++++++++++++++++++++++++ website/models/_data.json | 13 ++----------- 3 files changed, 27 insertions(+), 11 deletions(-) diff --git a/website/api/cli.jade b/website/api/cli.jade index dcc1a0551..28c76c09c 100644 --- a/website/api/cli.jade +++ b/website/api/cli.jade @@ -346,6 +346,7 @@ p +row +cell #[code --verbose] + +tag-new("2.0.13") +cell flag +cell Show more detail message during training. diff --git a/website/api/span.jade b/website/api/span.jade index 681664269..7be1ad4a4 100644 --- a/website/api/span.jade +++ b/website/api/span.jade @@ -349,6 +349,30 @@ p Retokenize the document, such that the span is merged into a single token. +cell #[code Token] +cell The newly merged token. ++h(2, "ents") Span.ents + +tag property + +tag-model("NER") + +p + | Iterate over the entities in the span. Yields named-entity + | #[code Span] objects, if the entity recognizer has been applied to the + | parent document. + ++aside-code("Example"). + doc = nlp(u'Mr. Best flew to New York on Saturday morning.') + span = doc[0:6] + ents = list(span.ents) + assert ents[0].label == 346 + assert ents[0].label_ == 'PERSON' + assert ents[0].text == 'Mr. Best' + ++table(["Name", "Type", "Description"]) + +row("foot") + +cell yields + +cell #[code Span] + +cell Entities in the document. + + +h(2, "as_doc") Span.as_doc p diff --git a/website/models/_data.json b/website/models/_data.json index 4eda2564a..d1f3862f5 100644 --- a/website/models/_data.json +++ b/website/models/_data.json @@ -27,17 +27,6 @@ } }, - "comparison": { - "title": "Model Comparison", - "teaser": "Compare spaCy's statistical models and their accuracy.", - "tag": "experimental", - "compare_models": true, - "default_models": { - "model1": "en_core_web_sm", - "model2": "en_core_web_lg" - } - }, - "MODELS": { "en": ["en_core_web_sm", "en_core_web_md", "en_core_web_lg", "en_vectors_web_lg"], "de": ["de_core_news_sm"], @@ -122,6 +111,8 @@ "fa": "Persian", "ur": "Urdu", "tt": "Tatar", + "te": "Telugu", + "si": "Sinhala", "ga": "Irish", "bn": "Bengali", "hi": "Hindi",