Update with WIP

This commit is contained in:
Ines Montani 2020-07-10 13:31:27 +02:00
parent a60562f208
commit 240e0a62ca
3 changed files with 137 additions and 193 deletions

View File

@ -1,13 +1,12 @@
from typing import Optional, Dict, List, Union, Sequence from typing import Optional, Dict
from timeit import default_timer as timer from timeit import default_timer as timer
import srsly import srsly
import tqdm import tqdm
from pydantic import BaseModel, FilePath
from pathlib import Path from pathlib import Path
from wasabi import msg from wasabi import msg
import thinc import thinc
import thinc.schedules import thinc.schedules
from thinc.api import Model, use_pytorch_for_gpu_memory, require_gpu, fix_random_seed from thinc.api import use_pytorch_for_gpu_memory, require_gpu, fix_random_seed
import random import random
from ._app import app, Arg, Opt from ._app import app, Arg, Opt
@ -15,108 +14,15 @@ from ..gold import Corpus, Example
from ..lookups import Lookups from ..lookups import Lookups
from .. import util from .. import util
from ..errors import Errors from ..errors import Errors
from ..schemas import ConfigSchema
# Don't remove - required to load the built-in architectures # Don't remove - required to load the built-in architectures
from ..ml import models # noqa: F401 from ..ml import models # noqa: F401
# from ..schemas import ConfigSchema # TODO: include?
registry = util.registry registry = util.registry
CONFIG_STR = """
[training]
patience = 10
eval_frequency = 10
dropout = 0.2
init_tok2vec = null
max_epochs = 100
orth_variant_level = 0.0
gold_preproc = false
max_length = 0
use_gpu = 0
scores = ["ents_p", "ents_r", "ents_f"]
score_weights = {"ents_f": 1.0}
limit = 0
[training.batch_size]
@schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001
[optimizer]
@optimizers = "Adam.v1"
learn_rate = 0.001
beta1 = 0.9
beta2 = 0.999
[nlp]
lang = "en"
vectors = null
[nlp.pipeline.tok2vec]
factory = "tok2vec"
[nlp.pipeline.ner]
factory = "ner"
[nlp.pipeline.ner.model]
@architectures = "spacy.TransitionBasedParser.v1"
nr_feature_tokens = 3
hidden_width = 64
maxout_pieces = 3
[nlp.pipeline.ner.model.tok2vec]
@architectures = "spacy.Tok2VecTensors.v1"
width = ${nlp.pipeline.tok2vec.model:width}
[nlp.pipeline.tok2vec.model]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = ${nlp:vectors}
width = 128
depth = 4
window_size = 1
embed_size = 10000
maxout_pieces = 3
subword_features = true
"""
class PipelineComponent(BaseModel):
factory: str
model: Model
class Config:
arbitrary_types_allowed = True
class ConfigSchema(BaseModel):
optimizer: Optional["Optimizer"]
class training(BaseModel):
patience: int = 10
eval_frequency: int = 100
dropout: float = 0.2
init_tok2vec: Optional[FilePath] = None
max_epochs: int = 100
orth_variant_level: float = 0.0
gold_preproc: bool = False
max_length: int = 0
use_gpu: int = 0
scores: List[str] = ["ents_p", "ents_r", "ents_f"]
score_weights: Dict[str, Union[int, float]] = {"ents_f": 1.0}
limit: int = 0
batch_size: Union[Sequence[int], int]
class nlp(BaseModel):
lang: str
vectors: Optional[str]
pipeline: Optional[Dict[str, PipelineComponent]]
class Config:
extra = "allow"
@app.command("train") @app.command("train")
def train_cli( def train_cli(
@ -126,12 +32,7 @@ def train_cli(
config_path: Path = Arg(..., help="Path to config file", exists=True), config_path: Path = Arg(..., help="Path to config file", exists=True),
output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store model in"), output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store model in"),
code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"), code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
init_tok2vec: Optional[Path] = Opt(None, "--init-tok2vec", "-t2v", help="Path to pretrained weights for the tok2vec components. See 'spacy pretrain'. Experimental."),
raw_text: Optional[Path] = Opt(None, "--raw-text", "-rt", help="Path to jsonl file with unlabelled text documents."),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
use_gpu: int = Opt(-1, "--use-gpu", "-g", help="Use GPU"),
tag_map_path: Optional[Path] = Opt(None, "--tag-map-path", "-tm", help="Location of JSON-formatted tag map"),
omit_extra_lookups: bool = Opt(False, "--omit-extra-lookups", "-OEL", help="Don't include extra lookups in model"),
# fmt: on # fmt: on
): ):
""" """
@ -141,33 +42,11 @@ def train_cli(
""" """
util.set_env_log(verbose) util.set_env_log(verbose)
verify_cli_args(**locals()) verify_cli_args(**locals())
try:
if raw_text is not None: util.import_file("python_code", code_path)
raw_text = list(srsly.read_jsonl(raw_text)) except Exception as e:
tag_map = {} msg.fail(f"Couldn't load Python code: {code_path}", e, exits=1)
if tag_map_path is not None: train(config_path, {"train": train_path, "dev": dev_path}, output_path=output_path)
tag_map = srsly.read_json(tag_map_path)
weights_data = None
if init_tok2vec is not None:
with init_tok2vec.open("rb") as file_:
weights_data = file_.read()
if use_gpu >= 0:
msg.info("Using GPU: {use_gpu}")
require_gpu(use_gpu)
else:
msg.info("Using CPU")
train(
config_path,
{"train": train_path, "dev": dev_path},
output_path=output_path,
raw_text=raw_text,
tag_map=tag_map,
weights_data=weights_data,
omit_extra_lookups=omit_extra_lookups,
)
def train( def train(
@ -175,19 +54,24 @@ def train(
data_paths: Dict[str, Path], data_paths: Dict[str, Path],
raw_text: Optional[Path] = None, raw_text: Optional[Path] = None,
output_path: Optional[Path] = None, output_path: Optional[Path] = None,
tag_map: Optional[Path] = None,
weights_data: Optional[bytes] = None, weights_data: Optional[bytes] = None,
omit_extra_lookups: bool = False,
) -> None: ) -> None:
msg.info(f"Loading config from: {config_path}") msg.info(f"Loading config from: {config_path}")
# Read the config first without creating objects, to get to the original nlp_config # Read the config first without creating objects, to get to the original nlp_config
config = util.load_config(config_path, create_objects=False) config = util.load_config(config_path, create_objects=False, schema=ConfigSchema)
use_gpu = config["training"]["use_gpu"]
if use_gpu >= 0:
msg.info(f"Using GPU: {use_gpu}")
require_gpu(use_gpu)
else:
msg.info("Using CPU")
raw_text, tag_map, weights_data = load_from_paths(config)
fix_random_seed(config["training"]["seed"]) fix_random_seed(config["training"]["seed"])
if config["training"].get("use_pytorch_for_gpu_memory"): if config["training"].get("use_pytorch_for_gpu_memory"):
# It feels kind of weird to not have a default for this. # It feels kind of weird to not have a default for this.
use_pytorch_for_gpu_memory() use_pytorch_for_gpu_memory()
nlp_config = config["nlp"] nlp_config = config["nlp"]
config = util.load_config(config_path, create_objects=True) config = util.load_config(config_path, create_objects=True, schema=ConfigSchema)
training = config["training"] training = config["training"]
msg.info("Creating nlp from config") msg.info("Creating nlp from config")
nlp = util.load_model_from_config(nlp_config) nlp = util.load_model_from_config(nlp_config)
@ -216,7 +100,7 @@ def train(
# Create empty extra lexeme tables so the data from spacy-lookups-data # Create empty extra lexeme tables so the data from spacy-lookups-data
# isn't loaded if these features are accessed # isn't loaded if these features are accessed
if omit_extra_lookups: if config["omit_extra_lookups"]:
nlp.vocab.lookups_extra = Lookups() nlp.vocab.lookups_extra = Lookups()
nlp.vocab.lookups_extra.add_table("lexeme_cluster") nlp.vocab.lookups_extra.add_table("lexeme_cluster")
nlp.vocab.lookups_extra.add_table("lexeme_prob") nlp.vocab.lookups_extra.add_table("lexeme_prob")
@ -556,18 +440,36 @@ def update_meta(training, nlp, info):
nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name] nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name]
def load_from_paths(config):
# TODO: separate checks from loading
raw_text = util.ensure_path(config["training"]["raw_text"])
if raw_text is not None:
if not raw_text.exists():
msg.fail("Can't find raw text", raw_text, exits=1)
raw_text = list(srsly.read_jsonl(config["training"]["raw_text"]))
tag_map = {}
tag_map_path = util.ensure_path(config["training"]["tag_map"])
if tag_map_path is not None:
if not tag_map_path.exists():
msg.fail("Can't find tag map path", tag_map_path, exits=1)
tag_map = srsly.read_json(config["training"]["tag_map"])
weights_data = None
init_tok2vec = util.ensure_path(config["training"]["init_tok2vec"])
if init_tok2vec is not None:
if not init_tok2vec.exists():
msg.fail("Can't find pretrained tok2vec", init_tok2vec, exits=1)
with init_tok2vec.open("rb") as file_:
weights_data = file_.read()
return raw_text, tag_map, weights_data
def verify_cli_args( def verify_cli_args(
train_path, train_path: Path,
dev_path, dev_path: Path,
config_path, config_path: Path,
output_path=None, output_path: Optional[Path] = None,
code_path=None, code_path: Optional[Path] = None,
init_tok2vec=None, verbose: bool = False,
raw_text=None,
verbose=False,
use_gpu=-1,
tag_map_path=None,
omit_extra_lookups=False,
): ):
# Make sure all files and paths exists if they are needed # Make sure all files and paths exists if they are needed
if not config_path or not config_path.exists(): if not config_path or not config_path.exists():
@ -591,12 +493,6 @@ def verify_cli_args(
if code_path is not None: if code_path is not None:
if not code_path.exists(): if not code_path.exists():
msg.fail("Path to Python code not found", code_path, exits=1) msg.fail("Path to Python code not found", code_path, exits=1)
try:
util.import_file("python_code", code_path)
except Exception as e:
msg.fail(f"Couldn't load Python code: {code_path}", e, exits=1)
if init_tok2vec is not None and not init_tok2vec.exists():
msg.fail("Can't find pretrained tok2vec", init_tok2vec, exits=1)
def verify_textcat_config(nlp, nlp_config): def verify_textcat_config(nlp, nlp_config):

View File

@ -1,9 +1,10 @@
from typing import Dict, List, Union, Optional, Sequence, Any from typing import Dict, List, Union, Optional, Sequence, Any
from enum import Enum from enum import Enum
from pydantic import BaseModel, Field, ValidationError, validator from pydantic import BaseModel, Field, ValidationError, validator
from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool, FilePath from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool
from pydantic import FilePath, DirectoryPath
from collections import defaultdict from collections import defaultdict
from thinc.api import Model from thinc.api import Model, Optimizer
from .attrs import NAMES from .attrs import NAMES
@ -173,41 +174,6 @@ class ModelMetaSchema(BaseModel):
# JSON training format # JSON training format
class PipelineComponent(BaseModel):
factory: str
model: Model
class Config:
arbitrary_types_allowed = True
class ConfigSchema(BaseModel):
optimizer: Optional["Optimizer"]
class training(BaseModel):
patience: int = 10
eval_frequency: int = 100
dropout: float = 0.2
init_tok2vec: Optional[FilePath] = None
max_epochs: int = 100
orth_variant_level: float = 0.0
gold_preproc: bool = False
max_length: int = 0
use_gpu: int = 0
scores: List[str] = ["ents_p", "ents_r", "ents_f"]
score_weights: Dict[str, Union[int, float]] = {"ents_f": 1.0}
limit: int = 0
batch_size: Union[Sequence[int], int]
class nlp(BaseModel):
lang: str
vectors: Optional[str]
pipeline: Optional[Dict[str, PipelineComponent]]
class Config:
extra = "allow"
class TrainingSchema(BaseModel): class TrainingSchema(BaseModel):
# TODO: write # TODO: write
@ -216,6 +182,76 @@ class TrainingSchema(BaseModel):
extra = "forbid" extra = "forbid"
# Config schema
# We're not setting any defaults here (which is too messy) and are making all
# fields required, so we can raise validation errors for missing values. To
# provide a default, we include a separate .cfg file with all values and
# check that against this schema in the test suite to make sure it's always
# up to date.
class ConfigSchemaTraining(BaseModel):
# fmt: off
gold_preproc: StrictBool = Field(..., title="Whether to train on gold-standard sentences and tokens")
max_length: StrictInt = Field(..., title="Maximum length of examples (longer examples are divided into sentences if possible)")
limit: StrictInt = Field(..., title="Number of examples to use (0 for all)")
orth_variant_level: StrictFloat = Field(..., title="Orth variants for data augmentation")
dropout: StrictFloat = Field(..., title="Dropout rate")
patience: StrictInt = Field(..., title="How many steps to continue without improvement in evaluation score")
max_epochs: StrictInt = Field(..., title="Maximum number of epochs to train for")
max_steps: StrictInt = Field(..., title="Maximum number of update steps to train for")
eval_frequency: StrictInt = Field(..., title="How often to evaluate during training (steps)")
seed: StrictInt = Field(..., title="Random seed")
accumulate_gradient: StrictInt = Field(..., title="Whether to divide the batch up into substeps")
use_pytorch_for_gpu_memory: StrictBool = Field(..., title="Allocate memory via PyTorch")
use_gpu: StrictInt = Field(..., title="GPU ID or -1 for CPU")
scores: List[StrictStr] = Field(..., title="Score types to be printed in overview")
score_weights: Dict[StrictStr, Union[StrictFloat, StrictInt]] = Field(..., title="Weights of each score type for selecting final model")
init_tok2vec: Optional[FilePath] = Field(..., title="Path to pretrained tok2vec weights")
discard_oversize: StrictBool = Field(..., title="Whether to skip examples longer than batch size")
omit_extra_lookups: StrictBool = Field(..., title="Don't include extra lookups in model")
batch_by: StrictStr = Field(..., title="Batch examples by type")
raw_text: Optional[FilePath] = Field(..., title="Raw text")
tag_map: Optional[FilePath] = Field(..., title="Path to JSON-formatted tag map")
batch_size: Union[Sequence[int], int] = Field(..., title="The batch size or batch size schedule")
optimizer: Optimizer = Field(..., title="The optimizer to use")
# fmt: on
class Config:
extra = "forbid"
arbitrary_types_allowed = True
class ConfigSchemaNlpComponent(BaseModel):
factory: StrictStr = Field(..., title="Component factory name")
model: Model = Field(..., title="Component model")
# TODO: add config schema / types for components so we can fill and validate
# component options like learn_tokens, min_action_freq etc.
class Config:
extra = "allow"
arbitrary_types_allowed = True
class ConfigSchemaNlp(BaseModel):
lang: StrictStr = Field(..., title="The base language to use")
vectors: Optional[DirectoryPath] = Field(..., title="Path to vectors")
pipeline: Optional[Dict[str, ConfigSchemaNlpComponent]]
class Config:
extra = "forbid"
arbitrary_types_allowed = True
class ConfigSchema(BaseModel):
training: ConfigSchemaTraining
nlp: ConfigSchemaNlp
class Config:
extra = "allow"
arbitrary_types_allowed = True
# Project config Schema # Project config Schema

View File

@ -1,4 +1,4 @@
from typing import List, Union from typing import List, Union, Type, Dict, Any
import os import os
import importlib import importlib
import importlib.util import importlib.util
@ -6,6 +6,8 @@ import re
from pathlib import Path from pathlib import Path
import thinc import thinc
from thinc.api import NumpyOps, get_current_ops, Adam, Config from thinc.api import NumpyOps, get_current_ops, Adam, Config
from thinc.config import EmptySchema
from pydantic import BaseModel
import functools import functools
import itertools import itertools
import numpy.random import numpy.random
@ -20,6 +22,7 @@ import subprocess
from contextlib import contextmanager from contextlib import contextmanager
import tempfile import tempfile
import shutil import shutil
import hashlib
import shlex import shlex
try: try:
@ -326,20 +329,29 @@ def get_base_version(version):
return Version(version).base_version return Version(version).base_version
def load_config(path, create_objects=False): def load_config(
path: Union[Path, str],
*,
create_objects: bool = False,
schema: Type[BaseModel] = EmptySchema,
validate: bool = True,
) -> Dict[str, Any]:
"""Load a Thinc-formatted config file, optionally filling in objects where """Load a Thinc-formatted config file, optionally filling in objects where
the config references registry entries. See "Thinc config files" for details. the config references registry entries. See "Thinc config files" for details.
path (str / Path): Path to the config file path (str / Path): Path to the config file
create_objects (bool): Whether to automatically create objects when the config create_objects (bool): Whether to automatically create objects when the config
references registry entries. Defaults to False. references registry entries. Defaults to False.
schema (BaseModel): Optional pydantic base schema to use for validation.
RETURNS (dict): The objects from the config file. RETURNS (dict): The objects from the config file.
""" """
config = thinc.config.Config().from_disk(path) config = thinc.config.Config().from_disk(path)
if create_objects: if create_objects:
return registry.make_from_config(config, validate=True) return registry.make_from_config(config, validate=validate, schema=schema)
else: else:
# Just fill config here so we can validate and fail early
if validate and schema:
registry.fill_config(config, validate=validate, schema=schema)
return config return config