Revert "Add support for .zip to init_model"

This reverts commit 7ee880a0ad.
This commit is contained in:
ines 2018-04-10 19:08:06 +02:00
parent 7ee880a0ad
commit 24d8bf348d

View File

@ -10,12 +10,17 @@ from pathlib import Path
from preshed.counter import PreshCounter
import tarfile
import gzip
import zipfile
from ..compat import fix_text
from ._messages import Messages
from ..vectors import Vectors
from ..errors import Warnings, user_warning
from ..util import prints, ensure_path, get_lang_class
try:
import ftfy
except ImportError:
ftfy = None
@plac.annotations(
lang=("model language", "positional", None, str),
@ -34,16 +39,13 @@ def init_model(lang, output_dir, freqs_loc=None, clusters_loc=None, vectors_loc=
and word vectors.
"""
if freqs_loc is not None and not freqs_loc.exists():
prints(freqs_loc, title="Can't find words frequencies file", exits=1)
prints(freqs_loc, title=Messages.M037, exits=1)
clusters_loc = ensure_path(clusters_loc)
vectors_loc = ensure_path(vectors_loc)
probs, oov_prob = read_freqs(freqs_loc) if freqs_loc is not None else ({}, -20)
vectors_data, vector_keys = read_vectors(vectors_loc) if vectors_loc else (None, None)
clusters = read_clusters(clusters_loc) if clusters_loc else {}
nlp = create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
@ -52,26 +54,20 @@ def init_model(lang, output_dir, freqs_loc=None, clusters_loc=None, vectors_loc=
def open_file(loc):
'''Handle .gz, .tar.gz or unzipped files'''
loc = ensure_path(loc)
print("Open loc")
if tarfile.is_tarfile(str(loc)):
return tarfile.open(str(loc), 'r:gz')
elif loc.parts[-1].endswith('gz'):
return (line.decode('utf8') for line in gzip.open(str(loc), 'r'))
elif loc.parts[-1].endswith('zip'):
zip_file = zipfile.ZipFile(str(loc))
names = zip_file.namelist()
file_ = zip_file.open(names[0])
return (line.decode('utf8') for line in file_)
else:
return loc.open('r', encoding='utf8')
def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors):
print("Creating model...")
lang_class = get_lang_class(lang)
nlp = lang_class()
for lexeme in nlp.vocab:
lexeme.rank = 0
lex_added = 0
for i, (word, prob) in enumerate(tqdm(sorted(probs.items(), key=lambda item: item[1], reverse=True))):
lexeme = nlp.vocab[word]
@ -91,15 +87,13 @@ def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, pru
lexeme = nlp.vocab[word]
lexeme.is_oov = False
lex_added += 1
if len(vectors_data):
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
if prune_vectors >= 1:
nlp.vocab.prune_vectors(prune_vectors)
vec_added = len(nlp.vocab.vectors)
prints("{} entries, {} vectors".format(lex_added, vec_added),
title="Sucessfully compiled vocab")
prints(Messages.M039.format(entries=lex_added, vectors=vec_added),
title=Messages.M038)
return nlp
@ -110,12 +104,8 @@ def read_vectors(vectors_loc):
vectors_data = numpy.zeros(shape=shape, dtype='f')
vectors_keys = []
for i, line in enumerate(tqdm(f)):
line = line.rstrip()
pieces = line.rsplit(' ', vectors_data.shape[1]+1)
pieces = line.split()
word = pieces.pop(0)
if len(pieces) != vectors_data.shape[1]:
print(word, repr(line))
raise ValueError("Bad line in file")
vectors_data[i] = numpy.asarray(pieces, dtype='f')
vectors_keys.append(word)
return vectors_data, vectors_keys
@ -150,11 +140,14 @@ def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50):
def read_clusters(clusters_loc):
print("Reading clusters...")
clusters = {}
if ftfy is None:
user_warning(Warnings.W004)
with clusters_loc.open() as f:
for line in tqdm(f):
try:
cluster, word, freq = line.split()
word = fix_text(word)
if ftfy is not None:
word = ftfy.fix_text(word)
except ValueError:
continue
# If the clusterer has only seen the word a few times, its