mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	Merge from develop
This commit is contained in:
		
							parent
							
								
									7f5715a081
								
							
						
					
					
						commit
						24efd54a42
					
				| 
						 | 
				
			
			@ -224,8 +224,9 @@ def train_from_config(
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
def create_train_batches(nlp, corpus, cfg):
 | 
			
		||||
    is_first = True
 | 
			
		||||
    while True:
 | 
			
		||||
        train_examples = list(corpus.train_dataset(
 | 
			
		||||
        train_examples = corpus.train_dataset(
 | 
			
		||||
            nlp,
 | 
			
		||||
            noise_level=0.0,
 | 
			
		||||
            orth_variant_level=cfg["orth_variant_level"],
 | 
			
		||||
| 
						 | 
				
			
			@ -323,6 +324,8 @@ def train_while_improving(
 | 
			
		|||
            for subbatch in subdivide_batch(batch, accumulate_gradient):
 | 
			
		||||
                nlp.update(subbatch, drop=dropout, losses=losses, sgd=False)
 | 
			
		||||
            for name, proc in nlp.pipeline:
 | 
			
		||||
        for name, proc in nlp.pipeline:
 | 
			
		||||
            if hasattr(proc, "model"):
 | 
			
		||||
                proc.model.finish_update(optimizer)
 | 
			
		||||
        optimizer.step_schedules()
 | 
			
		||||
        if not (step % eval_frequency):
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -474,7 +474,11 @@ cdef class precompute_hiddens:
 | 
			
		|||
            # This will usually be on GPU
 | 
			
		||||
            d_best = ops.asarray(d_best)
 | 
			
		||||
            # Fix nans (which can occur from unseen classes.)
 | 
			
		||||
            try:
 | 
			
		||||
                d_best[ops.xp.isnan(d_best)] = 0.
 | 
			
		||||
            except:
 | 
			
		||||
                print(ops.xp.isnan(d_best))
 | 
			
		||||
                raise
 | 
			
		||||
            if self.activation == "maxout":
 | 
			
		||||
                mask_ = ops.asarray(mask)
 | 
			
		||||
                return ops.backprop_maxout(d_best, mask_, self.nP)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -598,13 +598,6 @@ def minibatch_by_words(examples, size, tuples=True, count_words=len, tolerance=0
 | 
			
		|||
            try:
 | 
			
		||||
                example = next(examples)
 | 
			
		||||
            except StopIteration:
 | 
			
		||||
                if oversize:
 | 
			
		||||
                    examples = iter(oversize)
 | 
			
		||||
                    oversize = []
 | 
			
		||||
                    if batch:
 | 
			
		||||
                        yield batch
 | 
			
		||||
                    break
 | 
			
		||||
                else:
 | 
			
		||||
                if batch:
 | 
			
		||||
                    yield batch
 | 
			
		||||
                return
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user