mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Add script to do conllu training
This commit is contained in:
parent
e624405cda
commit
24fb2c246f
236
examples/training/conllu.py
Normal file
236
examples/training/conllu.py
Normal file
|
@ -0,0 +1,236 @@
|
|||
'''Train for CONLL 2017 UD treebank evaluation. Takes .conllu files, writes
|
||||
.conllu format for development data, allowing the official scorer to be used.
|
||||
'''
|
||||
from __future__ import unicode_literals
|
||||
import plac
|
||||
import tqdm
|
||||
import re
|
||||
import spacy
|
||||
import spacy.util
|
||||
from spacy.gold import GoldParse, minibatch
|
||||
from spacy.syntax.nonproj import projectivize
|
||||
from collections import Counter
|
||||
from timeit import default_timer as timer
|
||||
|
||||
from spacy._align import align
|
||||
|
||||
def prevent_bad_sentences(doc):
|
||||
'''This is an example pipeline component for fixing sentence segmentation
|
||||
mistakes. The component sets is_sent_start to False, which means the
|
||||
parser will be prevented from making a sentence boundary there. The
|
||||
rules here aren't necessarily a good idea.'''
|
||||
for token in doc[1:]:
|
||||
if token.nbor(-1).text == ',':
|
||||
token.is_sent_start = False
|
||||
elif not token.nbor(-1).whitespace_:
|
||||
token.is_sent_start = False
|
||||
elif not token.nbor(-1).is_punct:
|
||||
token.is_sent_start = False
|
||||
return doc
|
||||
|
||||
|
||||
def load_model(lang):
|
||||
'''This shows how to adjust the tokenization rules, to special-case
|
||||
for ways the CoNLLU tokenization differs. We need to get the tokenizer
|
||||
accuracy high on the various treebanks in order to do well. If we don't
|
||||
align on a content word, all dependencies to and from that word will
|
||||
be marked as incorrect.
|
||||
'''
|
||||
English = spacy.util.get_lang_class(lang)
|
||||
English.Defaults.infixes += ('(?<=[^-\d])[+\-\*^](?=[^-\d])',)
|
||||
English.Defaults.infixes += ('(?<=[^-])[+\-\*^](?=[^-\d])',)
|
||||
English.Defaults.infixes += ('(?<=[^-\d])[+\-\*^](?=[^-])',)
|
||||
English.Defaults.token_match = re.compile(r'=+').match
|
||||
nlp = English()
|
||||
nlp.tokenizer.add_special_case('***', [{'ORTH': '***'}])
|
||||
nlp.tokenizer.add_special_case("):", [{'ORTH': ")"}, {"ORTH": ":"}])
|
||||
nlp.tokenizer.add_special_case("and/or", [{'ORTH': "and"}, {"ORTH": "/"}, {"ORTH": "or"}])
|
||||
nlp.tokenizer.add_special_case("non-Microsoft", [{'ORTH': "non-Microsoft"}])
|
||||
nlp.tokenizer.add_special_case("mis-matches", [{'ORTH': "mis-matches"}])
|
||||
nlp.tokenizer.add_special_case("X.", [{'ORTH': "X"}, {"ORTH": "."}])
|
||||
nlp.tokenizer.add_special_case("b/c", [{'ORTH': "b/c"}])
|
||||
return nlp
|
||||
|
||||
|
||||
def get_token_acc(docs, golds):
|
||||
'''Quick function to evaluate tokenization accuracy.'''
|
||||
miss = 0
|
||||
hit = 0
|
||||
for doc, gold in zip(docs, golds):
|
||||
for i in range(len(doc)):
|
||||
token = doc[i]
|
||||
align = gold.words[i]
|
||||
if align == None:
|
||||
miss += 1
|
||||
else:
|
||||
hit += 1
|
||||
return miss, hit
|
||||
|
||||
|
||||
def golds_to_gold_tuples(docs, golds):
|
||||
'''Get out the annoying 'tuples' format used by begin_training, given the
|
||||
GoldParse objects.'''
|
||||
tuples = []
|
||||
for doc, gold in zip(docs, golds):
|
||||
text = doc.text
|
||||
ids, words, tags, heads, labels, iob = zip(*gold.orig_annot)
|
||||
sents = [((ids, words, tags, heads, labels, iob), [])]
|
||||
tuples.append((text, sents))
|
||||
return tuples
|
||||
|
||||
|
||||
def split_text(text):
|
||||
paragraphs = text.split('\n\n')
|
||||
paragraphs = [par.strip().replace('\n', ' ') for par in paragraphs]
|
||||
return paragraphs
|
||||
|
||||
|
||||
def read_conllu(file_):
|
||||
docs = []
|
||||
doc = []
|
||||
sent = []
|
||||
for line in file_:
|
||||
if line.startswith('# newdoc'):
|
||||
if doc:
|
||||
docs.append(doc)
|
||||
doc = []
|
||||
elif line.startswith('#'):
|
||||
continue
|
||||
elif not line.strip():
|
||||
if sent:
|
||||
doc.append(sent)
|
||||
sent = []
|
||||
else:
|
||||
sent.append(line.strip().split())
|
||||
if sent:
|
||||
doc.append(sent)
|
||||
if doc:
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
|
||||
def get_docs(nlp, text):
|
||||
paragraphs = split_text(text)
|
||||
docs = [nlp.make_doc(par) for par in paragraphs]
|
||||
return docs
|
||||
|
||||
|
||||
def get_golds(docs, conllu):
|
||||
# sd is spacy doc; cd is conllu doc
|
||||
# cs is conllu sent, ct is conllu token
|
||||
golds = []
|
||||
for sd, cd in zip(docs, conllu):
|
||||
words = []
|
||||
tags = []
|
||||
heads = []
|
||||
deps = []
|
||||
for cs in cd:
|
||||
for id_, word, lemma, pos, tag, morph, head, dep, _1, _2 in cs:
|
||||
if '.' in id_:
|
||||
continue
|
||||
i = len(words)
|
||||
id_ = int(id_)-1
|
||||
head = int(head)-1 if head != '0' else id_
|
||||
head_dist = head - id_
|
||||
words.append(word)
|
||||
tags.append(tag)
|
||||
heads.append(i+head_dist)
|
||||
deps.append('ROOT' if dep == 'root' else dep)
|
||||
heads, deps = projectivize(heads, deps)
|
||||
entities = ['-'] * len(words)
|
||||
gold = GoldParse(sd, words=words, tags=tags, heads=heads, deps=deps,
|
||||
entities=entities)
|
||||
golds.append(gold)
|
||||
return golds
|
||||
|
||||
def parse_dev_data(nlp, text_loc, conllu_loc):
|
||||
with open(text_loc) as file_:
|
||||
docs = get_docs(nlp, file_.read())
|
||||
with open(conllu_loc) as file_:
|
||||
conllu_dev = read_conllu(file_)
|
||||
golds = list(get_golds(docs, conllu_dev))
|
||||
scorer = nlp.evaluate(zip(docs, golds))
|
||||
return docs, scorer
|
||||
|
||||
|
||||
def print_progress(itn, losses, scores):
|
||||
scores = {}
|
||||
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
|
||||
'ents_p', 'ents_r', 'ents_f', 'cpu_wps', 'gpu_wps']:
|
||||
scores[col] = 0.0
|
||||
scores['dep_loss'] = losses.get('parser', 0.0)
|
||||
scores['ner_loss'] = losses.get('ner', 0.0)
|
||||
scores['tag_loss'] = losses.get('tagger', 0.0)
|
||||
scores.update(scorer.scores)
|
||||
tpl = '\t'.join((
|
||||
'{:d}',
|
||||
'{dep_loss:.3f}',
|
||||
'{ner_loss:.3f}',
|
||||
'{uas:.3f}',
|
||||
'{ents_p:.3f}',
|
||||
'{ents_r:.3f}',
|
||||
'{ents_f:.3f}',
|
||||
'{tags_acc:.3f}',
|
||||
'{token_acc:.3f}',
|
||||
))
|
||||
print(tpl.format(itn, **scores))
|
||||
|
||||
def print_conllu(docs, file_):
|
||||
for i, doc in enumerate(docs):
|
||||
file_.write("# newdoc id = {i}\n".format(i=i))
|
||||
for j, sent in enumerate(doc.sents):
|
||||
file_.write("# sent_id = {i}.{j}\n".format(i=i, j=j))
|
||||
file_.write("# text = {text}\n".format(text=sent.text))
|
||||
for k, t in enumerate(sent):
|
||||
if t.head.i == t.i:
|
||||
head = 0
|
||||
else:
|
||||
head = k + (t.head.i - t.i) + 1
|
||||
fields = [str(k+1), t.text, t.lemma_, t.pos_, t.tag_, '_', str(head), t.dep_, '_', '_']
|
||||
file_.write('\t'.join(fields) + '\n')
|
||||
file_.write('\n')
|
||||
|
||||
|
||||
def main(spacy_model, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev_loc,
|
||||
output_loc):
|
||||
with open(conllu_train_loc) as file_:
|
||||
conllu_train = read_conllu(file_)
|
||||
nlp = load_model(spacy_model)
|
||||
print("Get docs")
|
||||
with open(text_train_loc) as file_:
|
||||
docs = get_docs(nlp, file_.read())
|
||||
golds = list(get_golds(docs, conllu_train))
|
||||
print("Create parser")
|
||||
nlp.add_pipe(nlp.create_pipe('parser'))
|
||||
nlp.add_pipe(nlp.create_pipe('tagger'))
|
||||
for gold in golds:
|
||||
for tag in gold.tags:
|
||||
if tag is not None:
|
||||
nlp.tagger.add_label(tag)
|
||||
optimizer = nlp.begin_training(lambda: golds_to_gold_tuples(docs, golds))
|
||||
n_train_words = sum(len(doc) for doc in docs)
|
||||
print(n_train_words)
|
||||
print("Begin training")
|
||||
for i in range(10):
|
||||
with open(text_train_loc) as file_:
|
||||
docs = get_docs(nlp, file_.read())
|
||||
docs = docs[:len(golds)]
|
||||
with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
|
||||
losses = {}
|
||||
for batch in minibatch(list(zip(docs, golds)), size=1):
|
||||
if not batch:
|
||||
continue
|
||||
batch_docs, batch_gold = zip(*batch)
|
||||
|
||||
nlp.update(batch_docs, batch_gold, sgd=optimizer,
|
||||
drop=0.2, losses=losses)
|
||||
pbar.update(sum(len(doc) for doc in batch_docs))
|
||||
|
||||
with nlp.use_params(optimizer.averages):
|
||||
dev_docs, scorer = parse_dev_data(nlp, text_dev_loc, conllu_dev_loc)
|
||||
print_progress(i, losses, scorer.scores)
|
||||
with open(output_loc, 'w') as file_:
|
||||
print_conllu(dev_docs, file_)
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
Loading…
Reference in New Issue
Block a user