mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Fix tensorizer
This commit is contained in:
parent
0bf14082a4
commit
2527ba68e5
|
@ -532,7 +532,7 @@ def build_text_classifier(nr_class, width=64, **cfg):
|
|||
vectors = trained_vectors
|
||||
vectors_width = width
|
||||
static_vectors = None
|
||||
cnn_model = (
|
||||
tok2vec = (
|
||||
vectors
|
||||
>> with_flatten(
|
||||
LN(Maxout(width, vectors_width))
|
||||
|
@ -540,6 +540,9 @@ def build_text_classifier(nr_class, width=64, **cfg):
|
|||
(ExtractWindow(nW=1) >> LN(Maxout(width, width*3)))
|
||||
) ** depth, pad=depth
|
||||
)
|
||||
)
|
||||
cnn_model = (
|
||||
tok2vec
|
||||
>> flatten_add_lengths
|
||||
>> ParametricAttention(width)
|
||||
>> Pooling(sum_pool)
|
||||
|
@ -556,6 +559,7 @@ def build_text_classifier(nr_class, width=64, **cfg):
|
|||
>> zero_init(Affine(nr_class, nr_class*2, drop_factor=0.0))
|
||||
>> logistic
|
||||
)
|
||||
model.tok2vec = tok2vec
|
||||
model.nO = nr_class
|
||||
model.lsuv = False
|
||||
return model
|
||||
|
|
|
@ -434,7 +434,7 @@ class Tensorizer(Pipe):
|
|||
name = 'tensorizer'
|
||||
|
||||
@classmethod
|
||||
def Model(cls, output_size=300, input_size=384, **cfg):
|
||||
def Model(cls, output_size=300, input_size=128, **cfg):
|
||||
"""Create a new statistical model for the class.
|
||||
|
||||
width (int): Output size of the model.
|
||||
|
@ -442,11 +442,7 @@ class Tensorizer(Pipe):
|
|||
**cfg: Config parameters.
|
||||
RETURNS (Model): A `thinc.neural.Model` or similar instance.
|
||||
"""
|
||||
model = chain(
|
||||
SELU(output_size, input_size),
|
||||
SELU(output_size, output_size),
|
||||
zero_init(Affine(output_size, output_size)))
|
||||
return model
|
||||
return zero_init(Affine(output_size, input_size))
|
||||
|
||||
def __init__(self, vocab, model=True, **cfg):
|
||||
"""Construct a new statistical model. Weights are not allocated on
|
||||
|
@ -562,12 +558,11 @@ class Tensorizer(Pipe):
|
|||
gold_tuples (iterable): Gold-standard training data.
|
||||
pipeline (list): The pipeline the model is part of.
|
||||
"""
|
||||
for name, model in pipeline:
|
||||
if getattr(model, 'tok2vec', None):
|
||||
self.input_models.append(model.tok2vec)
|
||||
if pipeline is not None:
|
||||
for name, model in pipeline:
|
||||
if getattr(model, 'tok2vec', None):
|
||||
self.input_models.append(model.tok2vec)
|
||||
if self.model is True:
|
||||
self.cfg['input_size'] = 384
|
||||
self.cfg['output_size'] = 300
|
||||
self.model = self.Model(**self.cfg)
|
||||
link_vectors_to_models(self.vocab)
|
||||
if sgd is None:
|
||||
|
@ -1061,6 +1056,14 @@ class TextCategorizer(Pipe):
|
|||
def Model(cls, nr_class, **cfg):
|
||||
return build_text_classifier(nr_class, **cfg)
|
||||
|
||||
@property
|
||||
def tok2vec(self):
|
||||
if self.model in (None, True, False):
|
||||
return None
|
||||
else:
|
||||
return chain(self.model.tok2vec, flatten)
|
||||
|
||||
|
||||
def __init__(self, vocab, model=True, **cfg):
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
|
|
Loading…
Reference in New Issue
Block a user