Return optimizer from begin_training, creating if necessary

This commit is contained in:
Matthew Honnibal 2017-11-06 14:26:26 +01:00
parent 465adfee94
commit 25859dbb48
2 changed files with 46 additions and 14 deletions

View File

@ -30,6 +30,7 @@ from .attrs import POS
from .parts_of_speech import X
from ._ml import Tok2Vec, build_text_classifier, build_tagger_model
from ._ml import link_vectors_to_models, zero_init, flatten
from ._ml import create_default_optimizer
from . import util
@ -138,13 +139,20 @@ class Pipe(object):
problem.
"""
raise NotImplementedError
def create_optimizer(self):
return create_default_optimizer(self.model.ops,
**self.cfg.get('optimizer', {}))
def begin_training(self, gold_tuples=tuple(), pipeline=None):
def begin_training(self, gold_tuples=tuple(), pipeline=None, sgd=None):
"""Initialize the pipe for training, using data exampes if available.
If no model has been initialized yet, the model is added."""
if self.model is True:
self.model = self.Model(**self.cfg)
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
def use_params(self, params):
"""Modify the pipe's model, to use the given parameter values."""
@ -336,8 +344,8 @@ class Tensorizer(Pipe):
loss = (d_scores**2).sum()
return loss, d_scores
def begin_training(self, gold_tuples=tuple(), pipeline=None):
"""Allocate models, pre-process training data and acquire a trainer and
def begin_training(self, gold_tuples=tuple(), pipeline=None, sgd=None):
"""Allocate models, pre-process training data and acquire an
optimizer.
gold_tuples (iterable): Gold-standard training data.
@ -349,9 +357,11 @@ class Tensorizer(Pipe):
if self.model is True:
self.cfg['input_size'] = 384
self.cfg['output_size'] = 300
#self.cfg['pretrained_dims'] = self.vocab.vectors_length
self.model = self.Model(**self.cfg)
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
class Tagger(Pipe):
@ -457,7 +467,7 @@ class Tagger(Pipe):
d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs])
return float(loss), d_scores
def begin_training(self, gold_tuples=tuple(), pipeline=None):
def begin_training(self, gold_tuples=tuple(), pipeline=None, sgd=None):
orig_tag_map = dict(self.vocab.morphology.tag_map)
new_tag_map = {}
for raw_text, annots_brackets in gold_tuples:
@ -477,6 +487,9 @@ class Tagger(Pipe):
self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1]
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
@classmethod
def Model(cls, n_tags, **cfg):
@ -627,7 +640,8 @@ class MultitaskObjective(Tagger):
def set_annotations(self, docs, dep_ids, tensors=None):
pass
def begin_training(self, gold_tuples=tuple(), pipeline=None, tok2vec=None):
def begin_training(self, gold_tuples=tuple(), pipeline=None, tok2vec=None,
sgd=None):
gold_tuples = nonproj.preprocess_training_data(gold_tuples)
for raw_text, annots_brackets in gold_tuples:
for annots, brackets in annots_brackets:
@ -643,6 +657,9 @@ class MultitaskObjective(Tagger):
Softmax(len(self.labels), token_vector_width)
)
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
@classmethod
def Model(cls, n_tags, tok2vec=None, **cfg):
@ -739,7 +756,7 @@ class SimilarityHook(Pipe):
def update(self, doc1_doc2, golds, sgd=None, drop=0.):
sims, bp_sims = self.model.begin_update(doc1_doc2, drop=drop)
def begin_training(self, _=tuple(), pipeline=None):
def begin_training(self, _=tuple(), pipeline=None, sgd=None):
"""Allocate model, using width from tensorizer in pipeline.
gold_tuples (iterable): Gold-standard training data.
@ -748,6 +765,9 @@ class SimilarityHook(Pipe):
if self.model is True:
self.model = self.Model(pipeline[0].model.nO)
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
class TextCategorizer(Pipe):
@ -831,7 +851,7 @@ class TextCategorizer(Pipe):
self.labels.append(label)
return 1
def begin_training(self, gold_tuples=tuple(), pipeline=None):
def begin_training(self, gold_tuples=tuple(), pipeline=None, sgd=None):
if pipeline and getattr(pipeline[0], 'name', None) == 'tensorizer':
token_vector_width = pipeline[0].model.nO
else:
@ -841,6 +861,9 @@ class TextCategorizer(Pipe):
self.model = self.Model(len(self.labels), token_vector_width,
**self.cfg)
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
cdef class DependencyParser(Parser):
@ -851,12 +874,12 @@ cdef class DependencyParser(Parser):
def postprocesses(self):
return [nonproj.deprojectivize]
def init_multitask_objectives(self, gold_tuples, pipeline, **cfg):
def init_multitask_objectives(self, gold_tuples, pipeline, sgd=None, **cfg):
for target in []:
labeller = MultitaskObjective(self.vocab, target=target)
tok2vec = self.model[0]
labeller.begin_training(gold_tuples, pipeline=pipeline,
tok2vec=tok2vec)
tok2vec=tok2vec, sgd=sgd)
pipeline.append(labeller)
self._multitasks.append(labeller)
@ -871,7 +894,7 @@ cdef class EntityRecognizer(Parser):
nr_feature = 6
def init_multitask_objectives(self, gold_tuples, pipeline, **cfg):
def init_multitask_objectives(self, gold_tuples, pipeline, sgd=None, **cfg):
for target in []:
labeller = MultitaskObjective(self.vocab, target=target)
tok2vec = self.model[0]

View File

@ -30,7 +30,7 @@ from thinc.neural.util import get_array_module
from thinc.linalg cimport Vec, VecVec
from .._ml import zero_init, PrecomputableAffine, Tok2Vec, flatten
from .._ml import link_vectors_to_models
from .._ml import link_vectors_to_models, create_default_optimizer
from ..compat import json_dumps, copy_array
from ..tokens.doc cimport Doc
from ..gold cimport GoldParse
@ -273,6 +273,10 @@ cdef class Parser:
}
return (tok2vec, lower, upper), cfg
def create_optimizer(self):
return create_default_optimizer(self.model[0].ops,
**self.cfg.get('optimizer', {}))
def __init__(self, Vocab vocab, moves=True, model=True, **cfg):
"""Create a Parser.
@ -793,7 +797,7 @@ cdef class Parser:
copy_array(larger.b[:smaller.nO], smaller.b)
self.model[-1]._layers[-1] = larger
def begin_training(self, gold_tuples, pipeline=None, **cfg):
def begin_training(self, gold_tuples, pipeline=None, sgd=None, **cfg):
if 'model' in cfg:
self.model = cfg['model']
gold_tuples = nonproj.preprocess_training_data(gold_tuples,
@ -805,9 +809,14 @@ cdef class Parser:
if self.model is True:
cfg['pretrained_dims'] = self.vocab.vectors_length
self.model, cfg = self.Model(self.moves.n_moves, **cfg)
self.init_multitask_objectives(gold_tuples, pipeline, **cfg)
if sgd is None:
sgd = self.create_optimizer()
self.init_multitask_objectives(gold_tuples, pipeline, sgd=sgd, **cfg)
link_vectors_to_models(self.vocab)
self.cfg.update(cfg)
elif sgd is None:
sgd = self.create_optimizer()
return sgd
def init_multitask_objectives(self, gold_tuples, pipeline, **cfg):
'''Setup models for secondary objectives, to benefit from multi-task