mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
28162290b3
|
@ -3,7 +3,7 @@ pathlib
|
|||
numpy>=1.7
|
||||
cymem>=1.30,<1.32
|
||||
preshed>=1.0.0,<2.0.0
|
||||
thinc>=6.8.1,<6.9.0
|
||||
thinc>=6.8.0,<6.9.0
|
||||
murmurhash>=0.28,<0.29
|
||||
plac<1.0.0,>=0.9.6
|
||||
six
|
||||
|
|
3
setup.py
3
setup.py
|
@ -29,6 +29,7 @@ MOD_NAMES = [
|
|||
'spacy.syntax.stateclass',
|
||||
'spacy.syntax._state',
|
||||
'spacy.tokenizer',
|
||||
'spacy._cfile',
|
||||
'spacy.syntax.parser',
|
||||
'spacy.syntax.nn_parser',
|
||||
'spacy.syntax.beam_parser',
|
||||
|
@ -193,7 +194,7 @@ def setup_package():
|
|||
'murmurhash>=0.28,<0.29',
|
||||
'cymem>=1.30,<1.32',
|
||||
'preshed>=1.0.0,<2.0.0',
|
||||
'thinc>=6.8.1,<6.9.0',
|
||||
'thinc>=6.8.0,<6.9.0',
|
||||
'plac<1.0.0,>=0.9.6',
|
||||
'pip>=9.0.0,<10.0.0',
|
||||
'six',
|
||||
|
|
26
spacy/_cfile.pxd
Normal file
26
spacy/_cfile.pxd
Normal file
|
@ -0,0 +1,26 @@
|
|||
from libc.stdio cimport fopen, fclose, fread, fwrite, FILE
|
||||
from cymem.cymem cimport Pool
|
||||
|
||||
cdef class CFile:
|
||||
cdef FILE* fp
|
||||
cdef bint is_open
|
||||
cdef Pool mem
|
||||
cdef int size # For compatibility with subclass
|
||||
cdef int _capacity # For compatibility with subclass
|
||||
|
||||
cdef int read_into(self, void* dest, size_t number, size_t elem_size) except -1
|
||||
|
||||
cdef int write_from(self, void* src, size_t number, size_t elem_size) except -1
|
||||
|
||||
cdef void* alloc_read(self, Pool mem, size_t number, size_t elem_size) except *
|
||||
|
||||
|
||||
|
||||
cdef class StringCFile(CFile):
|
||||
cdef unsigned char* data
|
||||
|
||||
cdef int read_into(self, void* dest, size_t number, size_t elem_size) except -1
|
||||
|
||||
cdef int write_from(self, void* src, size_t number, size_t elem_size) except -1
|
||||
|
||||
cdef void* alloc_read(self, Pool mem, size_t number, size_t elem_size) except *
|
88
spacy/_cfile.pyx
Normal file
88
spacy/_cfile.pyx
Normal file
|
@ -0,0 +1,88 @@
|
|||
from libc.stdio cimport fopen, fclose, fread, fwrite, FILE
|
||||
from libc.string cimport memcpy
|
||||
|
||||
|
||||
cdef class CFile:
|
||||
def __init__(self, loc, mode, on_open_error=None):
|
||||
if isinstance(mode, unicode):
|
||||
mode_str = mode.encode('ascii')
|
||||
else:
|
||||
mode_str = mode
|
||||
if hasattr(loc, 'as_posix'):
|
||||
loc = loc.as_posix()
|
||||
self.mem = Pool()
|
||||
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
||||
self.fp = fopen(<char*>bytes_loc, mode_str)
|
||||
if self.fp == NULL:
|
||||
if on_open_error is not None:
|
||||
on_open_error()
|
||||
else:
|
||||
raise IOError("Could not open binary file %s" % bytes_loc)
|
||||
self.is_open = True
|
||||
|
||||
def __dealloc__(self):
|
||||
if self.is_open:
|
||||
fclose(self.fp)
|
||||
|
||||
def close(self):
|
||||
fclose(self.fp)
|
||||
self.is_open = False
|
||||
|
||||
cdef int read_into(self, void* dest, size_t number, size_t elem_size) except -1:
|
||||
st = fread(dest, elem_size, number, self.fp)
|
||||
if st != number:
|
||||
raise IOError
|
||||
|
||||
cdef int write_from(self, void* src, size_t number, size_t elem_size) except -1:
|
||||
st = fwrite(src, elem_size, number, self.fp)
|
||||
if st != number:
|
||||
raise IOError
|
||||
|
||||
cdef void* alloc_read(self, Pool mem, size_t number, size_t elem_size) except *:
|
||||
cdef void* dest = mem.alloc(number, elem_size)
|
||||
self.read_into(dest, number, elem_size)
|
||||
return dest
|
||||
|
||||
def write_unicode(self, unicode value):
|
||||
cdef bytes py_bytes = value.encode('utf8')
|
||||
cdef char* chars = <char*>py_bytes
|
||||
self.write(sizeof(char), len(py_bytes), chars)
|
||||
|
||||
|
||||
cdef class StringCFile:
|
||||
def __init__(self, mode, bytes data=b'', on_open_error=None):
|
||||
self.mem = Pool()
|
||||
self.is_open = 'w' in mode
|
||||
self._capacity = max(len(data), 8)
|
||||
self.size = len(data)
|
||||
self.data = <unsigned char*>self.mem.alloc(1, self._capacity)
|
||||
for i in range(len(data)):
|
||||
self.data[i] = data[i]
|
||||
|
||||
def close(self):
|
||||
self.is_open = False
|
||||
|
||||
def string_data(self):
|
||||
return (self.data-self.size)[:self.size]
|
||||
|
||||
cdef int read_into(self, void* dest, size_t number, size_t elem_size) except -1:
|
||||
memcpy(dest, self.data, elem_size * number)
|
||||
self.data += elem_size * number
|
||||
|
||||
cdef int write_from(self, void* src, size_t elem_size, size_t number) except -1:
|
||||
write_size = number * elem_size
|
||||
if (self.size + write_size) >= self._capacity:
|
||||
self._capacity = (self.size + write_size) * 2
|
||||
self.data = <unsigned char*>self.mem.realloc(self.data, self._capacity)
|
||||
memcpy(&self.data[self.size], src, elem_size * number)
|
||||
self.size += write_size
|
||||
|
||||
cdef void* alloc_read(self, Pool mem, size_t number, size_t elem_size) except *:
|
||||
cdef void* dest = mem.alloc(number, elem_size)
|
||||
self.read_into(dest, number, elem_size)
|
||||
return dest
|
||||
|
||||
def write_unicode(self, unicode value):
|
||||
cdef bytes py_bytes = value.encode('utf8')
|
||||
cdef char* chars = <char*>py_bytes
|
||||
self.write(sizeof(char), len(py_bytes), chars)
|
|
@ -37,14 +37,11 @@ from preshed.maps cimport MapStruct
|
|||
from preshed.maps cimport map_get
|
||||
|
||||
from thinc.api import layerize, chain, noop, clone
|
||||
<<<<<<< HEAD
|
||||
from thinc.neural import Model, Affine, ELU, ReLu, Maxout
|
||||
=======
|
||||
from thinc.neural import Model, Affine, ReLu, Maxout
|
||||
from thinc.neural._classes.batchnorm import BatchNorm as BN
|
||||
from thinc.neural._classes.selu import SELU
|
||||
from thinc.neural._classes.layernorm import LayerNorm
|
||||
>>>>>>> feature/nn-beam-parser
|
||||
from thinc.neural.ops import NumpyOps, CupyOps
|
||||
from thinc.neural.util import get_array_module
|
||||
|
||||
|
@ -54,6 +51,7 @@ from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
|
|||
from .._ml import Tok2Vec, doc2feats, rebatch
|
||||
from ..compat import json_dumps
|
||||
|
||||
from . import _beam_utils
|
||||
from . import _parse_features
|
||||
from ._parse_features cimport CONTEXT_SIZE
|
||||
from ._parse_features cimport fill_context
|
||||
|
@ -68,10 +66,6 @@ from ..strings cimport StringStore
|
|||
from ..gold cimport GoldParse
|
||||
from ..attrs cimport TAG, DEP
|
||||
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
USE_FINE_TUNE = True
|
||||
>>>>>>> feature/nn-beam-parser
|
||||
|
||||
def get_templates(*args, **kwargs):
|
||||
return []
|
||||
|
@ -259,7 +253,6 @@ cdef class Parser:
|
|||
nI=token_vector_width)
|
||||
|
||||
with Model.use_device('cpu'):
|
||||
<<<<<<< HEAD
|
||||
if depth == 0:
|
||||
upper = chain()
|
||||
upper.is_noop = True
|
||||
|
@ -269,12 +262,6 @@ cdef class Parser:
|
|||
zero_init(Affine(nr_class, drop_factor=0.0))
|
||||
)
|
||||
upper.is_noop = False
|
||||
=======
|
||||
upper = chain(
|
||||
clone(Maxout(hidden_width), (depth-1)),
|
||||
zero_init(Affine(nr_class, drop_factor=0.0))
|
||||
)
|
||||
>>>>>>> feature/nn-beam-parser
|
||||
# TODO: This is an unfortunate hack atm!
|
||||
# Used to set input dimensions in network.
|
||||
lower.begin_training(lower.ops.allocate((500, token_vector_width)))
|
||||
|
@ -422,7 +409,6 @@ cdef class Parser:
|
|||
c_is_valid = <int*>is_valid.data
|
||||
cdef int has_hidden = not getattr(vec2scores, 'is_noop', False)
|
||||
while not next_step.empty():
|
||||
<<<<<<< HEAD
|
||||
if not has_hidden:
|
||||
for i in cython.parallel.prange(
|
||||
next_step.size(), num_threads=6, nogil=True):
|
||||
|
@ -442,21 +428,6 @@ cdef class Parser:
|
|||
&c_scores[i*nr_class], &c_is_valid[i*nr_class], nr_class)
|
||||
action = self.moves.c[guess]
|
||||
action.do(st, action.label)
|
||||
=======
|
||||
for i in range(next_step.size()):
|
||||
st = next_step[i]
|
||||
st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat)
|
||||
self.moves.set_valid(&c_is_valid[i*nr_class], st)
|
||||
vectors = state2vec(token_ids[:next_step.size()])
|
||||
scores = vec2scores(vectors)
|
||||
c_scores = <float*>scores.data
|
||||
for i in range(next_step.size()):
|
||||
st = next_step[i]
|
||||
guess = arg_max_if_valid(
|
||||
&c_scores[i*nr_class], &c_is_valid[i*nr_class], nr_class)
|
||||
action = self.moves.c[guess]
|
||||
action.do(st, action.label)
|
||||
>>>>>>> feature/nn-beam-parser
|
||||
this_step, next_step = next_step, this_step
|
||||
next_step.clear()
|
||||
for st in this_step:
|
||||
|
@ -526,17 +497,17 @@ cdef class Parser:
|
|||
free(token_ids)
|
||||
|
||||
def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
if self.cfg.get('beam_width', 1) >= 2 and numpy.random.random() >= 0.5:
|
||||
return self.update_beam(docs_tokvecs, golds,
|
||||
self.cfg['beam_width'], self.cfg['beam_density'],
|
||||
drop=drop, sgd=sgd, losses=losses)
|
||||
>>>>>>> feature/nn-beam-parser
|
||||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
docs, tokvec_lists = docs_tokvecs
|
||||
tokvecs = self.model[0].ops.flatten(tokvec_lists)
|
||||
my_tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=drop)
|
||||
tokvecs += self.model[0].ops.flatten(my_tokvecs)
|
||||
|
||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
docs = [docs]
|
||||
golds = [golds]
|
||||
|
@ -589,12 +560,8 @@ cdef class Parser:
|
|||
break
|
||||
self._make_updates(d_tokvecs,
|
||||
backprops, sgd, cuda_stream)
|
||||
<<<<<<< HEAD
|
||||
return self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
|
||||
=======
|
||||
d_tokvecs = self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
|
||||
if USE_FINE_TUNE:
|
||||
bp_my_tokvecs(d_tokvecs, sgd=sgd)
|
||||
bp_my_tokvecs(d_tokvecs, sgd=sgd)
|
||||
return d_tokvecs
|
||||
|
||||
def update_beam(self, docs_tokvecs, golds, width=None, density=None,
|
||||
|
@ -609,10 +576,9 @@ cdef class Parser:
|
|||
lengths = [len(d) for d in docs]
|
||||
assert min(lengths) >= 1
|
||||
tokvecs = self.model[0].ops.flatten(tokvecs)
|
||||
if USE_FINE_TUNE:
|
||||
my_tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=drop)
|
||||
my_tokvecs = self.model[0].ops.flatten(my_tokvecs)
|
||||
tokvecs += my_tokvecs
|
||||
my_tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=drop)
|
||||
my_tokvecs = self.model[0].ops.flatten(my_tokvecs)
|
||||
tokvecs += my_tokvecs
|
||||
|
||||
states = self.moves.init_batch(docs)
|
||||
for gold in golds:
|
||||
|
@ -643,10 +609,8 @@ cdef class Parser:
|
|||
d_tokvecs = self.model[0].ops.allocate(tokvecs.shape)
|
||||
self._make_updates(d_tokvecs, backprop_lower, sgd, cuda_stream)
|
||||
d_tokvecs = self.model[0].ops.unflatten(d_tokvecs, lengths)
|
||||
if USE_FINE_TUNE:
|
||||
bp_my_tokvecs(d_tokvecs, sgd=sgd)
|
||||
bp_my_tokvecs(d_tokvecs, sgd=sgd)
|
||||
return d_tokvecs
|
||||
>>>>>>> feature/nn-beam-parser
|
||||
|
||||
def _init_gold_batch(self, whole_docs, whole_golds):
|
||||
"""Make a square batch, of length equal to the shortest doc. A long
|
||||
|
@ -691,21 +655,10 @@ cdef class Parser:
|
|||
xp = get_array_module(d_tokvecs)
|
||||
for ids, d_vector, bp_vector in backprops:
|
||||
d_state_features = bp_vector(d_vector, sgd=sgd)
|
||||
<<<<<<< HEAD
|
||||
active_feats = ids * (ids >= 0)
|
||||
active_feats = active_feats.reshape((ids.shape[0], ids.shape[1], 1))
|
||||
if hasattr(xp, 'scatter_add'):
|
||||
xp.scatter_add(d_tokvecs,
|
||||
ids, d_state_features * active_feats)
|
||||
else:
|
||||
xp.add.at(d_tokvecs,
|
||||
ids, d_state_features * active_feats)
|
||||
=======
|
||||
mask = ids >= 0
|
||||
d_state_features *= mask.reshape(ids.shape + (1,))
|
||||
self.model[0].ops.scatter_add(d_tokvecs, ids * mask,
|
||||
d_state_features)
|
||||
>>>>>>> feature/nn-beam-parser
|
||||
|
||||
@property
|
||||
def move_names(self):
|
||||
|
|
|
@ -1,18 +1,26 @@
|
|||
from libc.stdint cimport int32_t, uint64_t
|
||||
import numpy
|
||||
from collections import OrderedDict
|
||||
import msgpack
|
||||
import msgpack_numpy
|
||||
msgpack_numpy.patch()
|
||||
from cymem.cymem cimport Pool
|
||||
cimport numpy as np
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
from .typedefs cimport attr_t
|
||||
from .strings cimport StringStore
|
||||
from . import util
|
||||
from ._cfile cimport CFile
|
||||
|
||||
MAX_VEC_SIZE = 10000
|
||||
|
||||
|
||||
cdef class Vectors:
|
||||
'''Store, save and load word vectors.'''
|
||||
cdef public object data
|
||||
cdef readonly StringStore strings
|
||||
cdef public object key2i
|
||||
cdef public object index
|
||||
|
||||
def __init__(self, strings, data_or_width):
|
||||
self.strings = StringStore()
|
||||
|
@ -22,9 +30,9 @@ cdef class Vectors:
|
|||
else:
|
||||
data = data_or_width
|
||||
self.data = data
|
||||
self.key2i = {}
|
||||
self.index = {}
|
||||
for i, string in enumerate(strings):
|
||||
self.key2i[self.strings.add(string)] = i
|
||||
self.index[self.strings.add(string)] = i
|
||||
|
||||
def __reduce__(self):
|
||||
return (Vectors, (self.strings, self.data))
|
||||
|
@ -32,7 +40,7 @@ cdef class Vectors:
|
|||
def __getitem__(self, key):
|
||||
if isinstance(key, basestring):
|
||||
key = self.strings[key]
|
||||
i = self.key2i[key]
|
||||
i = self.index[key]
|
||||
if i is None:
|
||||
raise KeyError(key)
|
||||
else:
|
||||
|
@ -41,7 +49,7 @@ cdef class Vectors:
|
|||
def __setitem__(self, key, vector):
|
||||
if isinstance(key, basestring):
|
||||
key = self.strings.add(key)
|
||||
i = self.key2i[key]
|
||||
i = self.index[key]
|
||||
self.data[i] = vector
|
||||
|
||||
def __iter__(self):
|
||||
|
@ -61,34 +69,119 @@ cdef class Vectors:
|
|||
def most_similar(self, key):
|
||||
raise NotImplementedError
|
||||
|
||||
def to_disk(self, path):
|
||||
raise NotImplementedError
|
||||
def to_disk(self, path, **exclude):
|
||||
def serialize_vectors(p):
|
||||
write_vectors_to_bin_loc(self.strings, self.key2i, self.data, str(p))
|
||||
|
||||
def from_disk(self, path):
|
||||
raise NotImplementedError
|
||||
serializers = OrderedDict((
|
||||
('vec.bin', serialize_vectors),
|
||||
))
|
||||
return util.to_disk(serializers, exclude)
|
||||
|
||||
def from_disk(self, path, **exclude):
|
||||
def deserialize_vectors(p):
|
||||
self.key2i, self.vectors = load_vectors_from_bin_loc(self.strings, str(p))
|
||||
|
||||
serializers = OrderedDict((
|
||||
('vec.bin', deserialize_vectors)
|
||||
))
|
||||
return util.to_disk(serializers, exclude)
|
||||
|
||||
def to_bytes(self, **exclude):
|
||||
def serialize_weights():
|
||||
if hasattr(self.weights, 'to_bytes'):
|
||||
return self.weights.to_bytes()
|
||||
if hasattr(self.data, 'to_bytes'):
|
||||
return self.data.to_bytes()
|
||||
else:
|
||||
return msgpack.dumps(self.weights)
|
||||
return msgpack.dumps(self.data)
|
||||
|
||||
serializers = OrderedDict((
|
||||
('key2row', lambda: msgpack.dumps(self.key2i)),
|
||||
('strings', lambda: self.strings.to_bytes()),
|
||||
('weights', serialize_weights)
|
||||
('vectors', serialize_weights)
|
||||
))
|
||||
return util.to_bytes(serializers, exclude)
|
||||
|
||||
def from_bytes(self, data, **exclude):
|
||||
def deserialize_weights(b):
|
||||
if hasattr(self.weights, 'from_bytes'):
|
||||
self.weights.from_bytes()
|
||||
if hasattr(self.data, 'from_bytes'):
|
||||
self.data.from_bytes()
|
||||
else:
|
||||
self.weights = msgpack.loads(b)
|
||||
self.data = msgpack.loads(b)
|
||||
|
||||
deserializers = OrderedDict((
|
||||
('key2row', lambda b: self.key2i.update(msgpack.loads(b))),
|
||||
('strings', lambda b: self.strings.from_bytes(b)),
|
||||
('weights', deserialize_weights)
|
||||
('vectors', deserialize_weights)
|
||||
))
|
||||
return util.from_bytes(deserializers, exclude)
|
||||
|
||||
|
||||
def write_vectors_to_bin_loc(StringStore strings, dict key2i,
|
||||
np.ndarray vectors, out_loc):
|
||||
|
||||
cdef int32_t vec_len = vectors.shape[1]
|
||||
cdef int32_t word_len
|
||||
cdef bytes word_str
|
||||
cdef char* chars
|
||||
cdef uint64_t key
|
||||
cdef int32_t i
|
||||
cdef float* vec
|
||||
|
||||
cdef CFile out_file = CFile(out_loc, 'wb')
|
||||
keys = [(i, key) for (key, i) in key2i.item()]
|
||||
keys.sort()
|
||||
for i, key in keys:
|
||||
vec = <float*>vectors.data[i * vec_len]
|
||||
word_str = strings[key].encode('utf8')
|
||||
word_len = len(word_str)
|
||||
|
||||
out_file.write_from(&word_len, 1, sizeof(word_len))
|
||||
out_file.write_from(&vec_len, 1, sizeof(vec_len))
|
||||
|
||||
chars = <char*>word_str
|
||||
out_file.write_from(chars, word_len, sizeof(char))
|
||||
out_file.write_from(vec, vec_len, sizeof(float))
|
||||
out_file.close()
|
||||
|
||||
|
||||
def load_vectors_from_bin_loc(StringStore strings, loc):
|
||||
"""
|
||||
Load vectors from the location of a binary file.
|
||||
Arguments:
|
||||
loc (unicode): The path of the binary file to load from.
|
||||
Returns:
|
||||
vec_len (int): The length of the vectors loaded.
|
||||
"""
|
||||
cdef CFile file_ = CFile(loc, b'rb')
|
||||
cdef int32_t word_len
|
||||
cdef int32_t vec_len = 0
|
||||
cdef int32_t prev_vec_len = 0
|
||||
cdef float* vec
|
||||
cdef attr_t string_id
|
||||
cdef bytes py_word
|
||||
cdef vector[float*] vectors
|
||||
cdef int line_num = 0
|
||||
cdef Pool mem = Pool()
|
||||
cdef dict key2i = {}
|
||||
while True:
|
||||
try:
|
||||
file_.read_into(&word_len, sizeof(word_len), 1)
|
||||
except IOError:
|
||||
break
|
||||
file_.read_into(&vec_len, sizeof(vec_len), 1)
|
||||
if prev_vec_len != 0 and vec_len != prev_vec_len:
|
||||
raise Exception("Mismatched vector sizes")
|
||||
if 0 >= vec_len >= MAX_VEC_SIZE:
|
||||
raise Exception("Mismatched vector sizes")
|
||||
|
||||
chars = <char*>file_.alloc_read(mem, word_len, sizeof(char))
|
||||
vec = <float*>file_.alloc_read(mem, vec_len, sizeof(float))
|
||||
|
||||
key = strings.add(chars[:word_len])
|
||||
key2i[key] = vectors.size()
|
||||
vectors.push_back(vec)
|
||||
numpy_vectors = numpy.zeros((vectors.size(), vec_len), dtype='f')
|
||||
for i in range(vectors.size()):
|
||||
for j in range(vec_len):
|
||||
numpy_vectors[i, j] = vectors[i][j]
|
||||
return key2i, numpy_vectors
|
||||
|
|
|
@ -280,7 +280,7 @@ cdef class Vocab:
|
|||
or int ID."""
|
||||
return False
|
||||
|
||||
def to_disk(self, path):
|
||||
def to_disk(self, path, **exclude):
|
||||
"""Save the current state to a directory.
|
||||
|
||||
path (unicode or Path): A path to a directory, which will be created if
|
||||
|
@ -292,8 +292,10 @@ cdef class Vocab:
|
|||
self.strings.to_disk(path / 'strings.json')
|
||||
with (path / 'lexemes.bin').open('wb') as file_:
|
||||
file_.write(self.lexemes_to_bytes())
|
||||
if self.vectors is not None:
|
||||
self.vectors.to_disk(path, exclude='strings.json')
|
||||
|
||||
def from_disk(self, path):
|
||||
def from_disk(self, path, **exclude):
|
||||
"""Loads state from a directory. Modifies the object in place and
|
||||
returns it.
|
||||
|
||||
|
@ -305,6 +307,8 @@ cdef class Vocab:
|
|||
self.strings.from_disk(path / 'strings.json')
|
||||
with (path / 'lexemes.bin').open('rb') as file_:
|
||||
self.lexemes_from_bytes(file_.read())
|
||||
if self.vectors is not None:
|
||||
self.vectors.from_disk(path, exclude='string.json')
|
||||
return self
|
||||
|
||||
def to_bytes(self, **exclude):
|
||||
|
@ -313,9 +317,16 @@ cdef class Vocab:
|
|||
**exclude: Named attributes to prevent from being serialized.
|
||||
RETURNS (bytes): The serialized form of the `Vocab` object.
|
||||
"""
|
||||
def deserialize_vectors():
|
||||
if self.vectors is None:
|
||||
return None
|
||||
else:
|
||||
return self.vectors.to_bytes(exclude='strings')
|
||||
|
||||
getters = OrderedDict((
|
||||
('strings', lambda: self.strings.to_bytes()),
|
||||
('lexemes', lambda: self.lexemes_to_bytes()),
|
||||
('vectors', deserialize_vectors)
|
||||
))
|
||||
return util.to_bytes(getters, exclude)
|
||||
|
||||
|
@ -326,9 +337,15 @@ cdef class Vocab:
|
|||
**exclude: Named attributes to prevent from being loaded.
|
||||
RETURNS (Vocab): The `Vocab` object.
|
||||
"""
|
||||
def serialize_vectors(b):
|
||||
if self.vectors is None:
|
||||
return None
|
||||
else:
|
||||
return self.vectors.from_bytes(b, exclude='strings')
|
||||
setters = OrderedDict((
|
||||
('strings', lambda b: self.strings.from_bytes(b)),
|
||||
('lexemes', lambda b: self.lexemes_from_bytes(b)),
|
||||
('vectors', lambda b: serialize_vectors(b))
|
||||
))
|
||||
util.from_bytes(bytes_data, setters, exclude)
|
||||
return self
|
||||
|
|
Loading…
Reference in New Issue
Block a user