mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
Fix parser resizing when there is no upper layer (#6460)
* allow resizing of the parser model even when upper=False * update from spacy.TransitionBasedParser.v1 to v2 * bugfix
This commit is contained in:
parent
0a923a7915
commit
282a3b49ea
|
@ -75,7 +75,7 @@ grad_factor = 1.0
|
|||
factory = "parser"
|
||||
|
||||
[components.parser.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v1"
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 128
|
||||
|
@ -96,7 +96,7 @@ grad_factor = 1.0
|
|||
factory = "ner"
|
||||
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v1"
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
|
@ -226,7 +226,7 @@ width = ${components.tok2vec.model.encode.width}
|
|||
factory = "parser"
|
||||
|
||||
[components.parser.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v1"
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 128
|
||||
|
@ -244,7 +244,7 @@ width = ${components.tok2vec.model.encode.width}
|
|||
factory = "ner"
|
||||
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v1"
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
|
|
|
@ -11,7 +11,7 @@ from ...tokens import Doc
|
|||
|
||||
|
||||
@registry.architectures.register("spacy.TransitionBasedParser.v1")
|
||||
def build_tb_parser_model(
|
||||
def transition_parser_v1(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
state_type: Literal["parser", "ner"],
|
||||
extra_state_tokens: bool,
|
||||
|
@ -19,6 +19,46 @@ def build_tb_parser_model(
|
|||
maxout_pieces: int,
|
||||
use_upper: bool = True,
|
||||
nO: Optional[int] = None,
|
||||
) -> Model:
|
||||
return build_tb_parser_model(
|
||||
tok2vec,
|
||||
state_type,
|
||||
extra_state_tokens,
|
||||
hidden_width,
|
||||
maxout_pieces,
|
||||
use_upper,
|
||||
nO,
|
||||
)
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.TransitionBasedParser.v2")
|
||||
def transition_parser_v2(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
state_type: Literal["parser", "ner"],
|
||||
extra_state_tokens: bool,
|
||||
hidden_width: int,
|
||||
maxout_pieces: int,
|
||||
use_upper: bool,
|
||||
nO: Optional[int] = None,
|
||||
) -> Model:
|
||||
return build_tb_parser_model(
|
||||
tok2vec,
|
||||
state_type,
|
||||
extra_state_tokens,
|
||||
hidden_width,
|
||||
maxout_pieces,
|
||||
use_upper,
|
||||
nO,
|
||||
)
|
||||
|
||||
def build_tb_parser_model(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
state_type: Literal["parser", "ner"],
|
||||
extra_state_tokens: bool,
|
||||
hidden_width: int,
|
||||
maxout_pieces: int,
|
||||
use_upper: bool,
|
||||
nO: Optional[int] = None,
|
||||
) -> Model:
|
||||
"""
|
||||
Build a transition-based parser model. Can apply to NER or dependency-parsing.
|
||||
|
@ -72,16 +112,100 @@ def build_tb_parser_model(
|
|||
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
|
||||
tok2vec = chain(tok2vec, list2array(), Linear(hidden_width, t2v_width))
|
||||
tok2vec.set_dim("nO", hidden_width)
|
||||
lower = PrecomputableAffine(
|
||||
lower = _define_lower(
|
||||
nO=hidden_width if use_upper else nO,
|
||||
nF=nr_feature_tokens,
|
||||
nI=tok2vec.get_dim("nO"),
|
||||
nP=maxout_pieces,
|
||||
)
|
||||
upper = None
|
||||
if use_upper:
|
||||
with use_ops("numpy"):
|
||||
# Initialize weights at zero, as it's a classification layer.
|
||||
upper = Linear(nO=nO, init_W=zero_init)
|
||||
else:
|
||||
upper = None
|
||||
return TransitionModel(tok2vec, lower, upper)
|
||||
upper = _define_upper(nO=nO, nI=None)
|
||||
return TransitionModel(tok2vec, lower, upper, resize_output)
|
||||
|
||||
|
||||
def _define_upper(nO, nI):
|
||||
return Linear(nO=nO, nI=nI, init_W=zero_init)
|
||||
|
||||
|
||||
def _define_lower(nO, nF, nI, nP):
|
||||
return PrecomputableAffine(nO=nO, nF=nF, nI=nI, nP=nP)
|
||||
|
||||
|
||||
def resize_output(model, new_nO):
|
||||
if model.attrs["has_upper"]:
|
||||
return _resize_upper(model, new_nO)
|
||||
return _resize_lower(model, new_nO)
|
||||
|
||||
|
||||
def _resize_upper(model, new_nO):
|
||||
upper = model.get_ref("upper")
|
||||
if upper.has_dim("nO") is None:
|
||||
upper.set_dim("nO", new_nO)
|
||||
return model
|
||||
elif new_nO == upper.get_dim("nO"):
|
||||
return model
|
||||
|
||||
smaller = upper
|
||||
nI = smaller.maybe_get_dim("nI")
|
||||
with use_ops("numpy"):
|
||||
larger = _define_upper(nO=new_nO, nI=nI)
|
||||
# it could be that the model is not initialized yet, then skip this bit
|
||||
if smaller.has_param("W"):
|
||||
larger_W = larger.ops.alloc2f(new_nO, nI)
|
||||
larger_b = larger.ops.alloc1f(new_nO)
|
||||
smaller_W = smaller.get_param("W")
|
||||
smaller_b = smaller.get_param("b")
|
||||
# Weights are stored in (nr_out, nr_in) format, so we're basically
|
||||
# just adding rows here.
|
||||
if smaller.has_dim("nO"):
|
||||
old_nO = smaller.get_dim("nO")
|
||||
larger_W[: old_nO] = smaller_W
|
||||
larger_b[: old_nO] = smaller_b
|
||||
for i in range(old_nO, new_nO):
|
||||
model.attrs["unseen_classes"].add(i)
|
||||
|
||||
larger.set_param("W", larger_W)
|
||||
larger.set_param("b", larger_b)
|
||||
model._layers[-1] = larger
|
||||
model.set_ref("upper", larger)
|
||||
return model
|
||||
|
||||
|
||||
def _resize_lower(model, new_nO):
|
||||
lower = model.get_ref("lower")
|
||||
if lower.has_dim("nO") is None:
|
||||
lower.set_dim("nO", new_nO)
|
||||
return model
|
||||
|
||||
smaller = lower
|
||||
nI = smaller.maybe_get_dim("nI")
|
||||
nF = smaller.maybe_get_dim("nF")
|
||||
nP = smaller.maybe_get_dim("nP")
|
||||
with use_ops("numpy"):
|
||||
larger = _define_lower(nO=new_nO, nI=nI, nF=nF, nP=nP)
|
||||
# it could be that the model is not initialized yet, then skip this bit
|
||||
if smaller.has_param("W"):
|
||||
larger_W = larger.ops.alloc4f(nF, new_nO, nP, nI)
|
||||
larger_b = larger.ops.alloc2f(new_nO, nP)
|
||||
larger_pad = larger.ops.alloc4f(1, nF, new_nO, nP)
|
||||
smaller_W = smaller.get_param("W")
|
||||
smaller_b = smaller.get_param("b")
|
||||
smaller_pad = smaller.get_param("pad")
|
||||
# Copy the old weights and padding into the new layer
|
||||
if smaller.has_dim("nO"):
|
||||
old_nO = smaller.get_dim("nO")
|
||||
larger_W[:, 0:old_nO, :, :] = smaller_W
|
||||
larger_pad[:, :, 0:old_nO, :] = smaller_pad
|
||||
larger_b[0:old_nO, :] = smaller_b
|
||||
for i in range(old_nO, new_nO):
|
||||
model.attrs["unseen_classes"].add(i)
|
||||
|
||||
larger.set_param("W", larger_W)
|
||||
larger.set_param("b", larger_b)
|
||||
larger.set_param("pad", larger_pad)
|
||||
model._layers[1] = larger
|
||||
model.set_ref("lower", larger)
|
||||
return model
|
||||
|
|
|
@ -2,7 +2,7 @@ from thinc.api import Model, noop, use_ops, Linear
|
|||
from .parser_model import ParserStepModel
|
||||
|
||||
|
||||
def TransitionModel(tok2vec, lower, upper, dropout=0.2, unseen_classes=set()):
|
||||
def TransitionModel(tok2vec, lower, upper, resize_output, dropout=0.2, unseen_classes=set()):
|
||||
"""Set up a stepwise transition-based model"""
|
||||
if upper is None:
|
||||
has_upper = False
|
||||
|
@ -45,42 +45,3 @@ def init(model, X=None, Y=None):
|
|||
statevecs = model.ops.alloc2f(2, lower.get_dim("nO"))
|
||||
model.get_ref("upper").initialize(X=statevecs)
|
||||
|
||||
|
||||
def resize_output(model, new_nO):
|
||||
lower = model.get_ref("lower")
|
||||
upper = model.get_ref("upper")
|
||||
if not model.attrs["has_upper"]:
|
||||
if lower.has_dim("nO") is None:
|
||||
lower.set_dim("nO", new_nO)
|
||||
return
|
||||
elif upper.has_dim("nO") is None:
|
||||
upper.set_dim("nO", new_nO)
|
||||
return
|
||||
elif new_nO == upper.get_dim("nO"):
|
||||
return
|
||||
smaller = upper
|
||||
nI = None
|
||||
if smaller.has_dim("nI"):
|
||||
nI = smaller.get_dim("nI")
|
||||
with use_ops("numpy"):
|
||||
larger = Linear(nO=new_nO, nI=nI)
|
||||
larger.init = smaller.init
|
||||
# it could be that the model is not initialized yet, then skip this bit
|
||||
if nI:
|
||||
larger_W = larger.ops.alloc2f(new_nO, nI)
|
||||
larger_b = larger.ops.alloc1f(new_nO)
|
||||
smaller_W = smaller.get_param("W")
|
||||
smaller_b = smaller.get_param("b")
|
||||
# Weights are stored in (nr_out, nr_in) format, so we're basically
|
||||
# just adding rows here.
|
||||
if smaller.has_dim("nO"):
|
||||
larger_W[: smaller.get_dim("nO")] = smaller_W
|
||||
larger_b[: smaller.get_dim("nO")] = smaller_b
|
||||
for i in range(smaller.get_dim("nO"), new_nO):
|
||||
model.attrs["unseen_classes"].add(i)
|
||||
|
||||
larger.set_param("W", larger_W)
|
||||
larger.set_param("b", larger_b)
|
||||
model._layers[-1] = larger
|
||||
model.set_ref("upper", larger)
|
||||
return model
|
||||
|
|
|
@ -14,11 +14,12 @@ from ..training import validate_examples
|
|||
|
||||
default_model_config = """
|
||||
[model]
|
||||
@architectures = "spacy.TransitionBasedParser.v1"
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.HashEmbedCNN.v1"
|
||||
|
|
|
@ -12,11 +12,12 @@ from ..training import validate_examples
|
|||
|
||||
default_model_config = """
|
||||
[model]
|
||||
@architectures = "spacy.TransitionBasedParser.v1"
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.HashEmbedCNN.v1"
|
||||
|
|
|
@ -301,10 +301,13 @@ def test_block_ner():
|
|||
assert [token.ent_type_ for token in doc] == expected_types
|
||||
|
||||
|
||||
def test_overfitting_IO():
|
||||
@pytest.mark.parametrize(
|
||||
"use_upper", [True, False]
|
||||
)
|
||||
def test_overfitting_IO(use_upper):
|
||||
# Simple test to try and quickly overfit the NER component - ensuring the ML models work correctly
|
||||
nlp = English()
|
||||
ner = nlp.add_pipe("ner")
|
||||
ner = nlp.add_pipe("ner", config={"model": {"use_upper": use_upper}})
|
||||
train_examples = []
|
||||
for text, annotations in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
||||
|
@ -334,6 +337,15 @@ def test_overfitting_IO():
|
|||
assert len(ents2) == 1
|
||||
assert ents2[0].text == "London"
|
||||
assert ents2[0].label_ == "LOC"
|
||||
# Ensure that the predictions are still the same, even after adding a new label
|
||||
ner2 = nlp2.get_pipe("ner")
|
||||
assert ner2.model.attrs["has_upper"] == use_upper
|
||||
ner2.add_label("RANDOM_NEW_LABEL")
|
||||
doc3 = nlp2(test_text)
|
||||
ents3 = doc3.ents
|
||||
assert len(ents3) == 1
|
||||
assert ents3[0].text == "London"
|
||||
assert ents3[0].label_ == "LOC"
|
||||
|
||||
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
||||
texts = [
|
||||
|
|
|
@ -117,13 +117,35 @@ width = ${components.tok2vec.model.width}
|
|||
"""
|
||||
|
||||
|
||||
parser_config_string = """
|
||||
parser_config_string_upper = """
|
||||
[model]
|
||||
@architectures = "spacy.TransitionBasedParser.v1"
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 66
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.HashEmbedCNN.v1"
|
||||
pretrained_vectors = null
|
||||
width = 333
|
||||
depth = 4
|
||||
embed_size = 5555
|
||||
window_size = 1
|
||||
maxout_pieces = 7
|
||||
subword_features = false
|
||||
"""
|
||||
|
||||
|
||||
parser_config_string_no_upper = """
|
||||
[model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 66
|
||||
maxout_pieces = 2
|
||||
use_upper = false
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.HashEmbedCNN.v1"
|
||||
|
@ -154,6 +176,7 @@ def my_parser():
|
|||
extra_state_tokens=True,
|
||||
hidden_width=65,
|
||||
maxout_pieces=5,
|
||||
use_upper=True,
|
||||
)
|
||||
return parser
|
||||
|
||||
|
@ -241,12 +264,15 @@ def test_serialize_custom_nlp():
|
|||
nlp2 = spacy.load(d)
|
||||
model = nlp2.get_pipe("parser").model
|
||||
model.get_ref("tok2vec")
|
||||
upper = model.get_ref("upper")
|
||||
# check that we have the correct settings, not the default ones
|
||||
assert upper.get_dim("nI") == 65
|
||||
assert model.get_ref("upper").get_dim("nI") == 65
|
||||
assert model.get_ref("lower").get_dim("nI") == 65
|
||||
|
||||
|
||||
def test_serialize_parser():
|
||||
@pytest.mark.parametrize(
|
||||
"parser_config_string", [parser_config_string_upper, parser_config_string_no_upper]
|
||||
)
|
||||
def test_serialize_parser(parser_config_string):
|
||||
""" Create a non-default parser config to check nlp serializes it correctly """
|
||||
nlp = English()
|
||||
model_config = Config().from_str(parser_config_string)
|
||||
|
@ -259,9 +285,11 @@ def test_serialize_parser():
|
|||
nlp2 = spacy.load(d)
|
||||
model = nlp2.get_pipe("parser").model
|
||||
model.get_ref("tok2vec")
|
||||
upper = model.get_ref("upper")
|
||||
# check that we have the correct settings, not the default ones
|
||||
assert upper.get_dim("nI") == 66
|
||||
if model.attrs["has_upper"]:
|
||||
assert model.get_ref("upper").get_dim("nI") == 66
|
||||
assert model.get_ref("lower").get_dim("nI") == 66
|
||||
|
||||
|
||||
|
||||
def test_config_nlp_roundtrip():
|
||||
|
@ -408,7 +436,10 @@ def test_config_auto_fill_extra_fields():
|
|||
load_model_from_config(nlp.config)
|
||||
|
||||
|
||||
def test_config_validate_literal():
|
||||
@pytest.mark.parametrize(
|
||||
"parser_config_string", [parser_config_string_upper, parser_config_string_no_upper]
|
||||
)
|
||||
def test_config_validate_literal(parser_config_string):
|
||||
nlp = English()
|
||||
config = Config().from_str(parser_config_string)
|
||||
config["model"]["state_type"] = "nonsense"
|
||||
|
|
|
@ -428,17 +428,18 @@ one component.
|
|||
|
||||
## Parser & NER architectures {#parser}
|
||||
|
||||
### spacy.TransitionBasedParser.v1 {#TransitionBasedParser source="spacy/ml/models/parser.py"}
|
||||
### spacy.TransitionBasedParser.v2 {#TransitionBasedParser source="spacy/ml/models/parser.py"}
|
||||
|
||||
> #### Example Config
|
||||
>
|
||||
> ```ini
|
||||
> [model]
|
||||
> @architectures = "spacy.TransitionBasedParser.v1"
|
||||
> @architectures = "spacy.TransitionBasedParser.v2"
|
||||
> state_type = "ner"
|
||||
> extra_state_tokens = false
|
||||
> hidden_width = 64
|
||||
> maxout_pieces = 2
|
||||
> use_upper = true
|
||||
>
|
||||
> [model.tok2vec]
|
||||
> @architectures = "spacy.HashEmbedCNN.v1"
|
||||
|
|
Loading…
Reference in New Issue
Block a user