mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-22 18:12:00 +03:00
Merge branch 'v4' into feature/tok2vec-distill-method
This commit is contained in:
commit
288d88a472
5
.github/azure-steps.yml
vendored
5
.github/azure-steps.yml
vendored
|
@ -62,6 +62,11 @@ steps:
|
|||
# - script: |
|
||||
# python -W error -c "import ca_core_news_sm; nlp = ca_core_news_sm.load(); doc=nlp('test')"
|
||||
# displayName: 'Test no warnings on load (#11713)'
|
||||
# condition: eq(variables['python_version'], '3.8')
|
||||
#
|
||||
# - script: |
|
||||
# python -m spacy download ca_core_news_sm 2>&1 | grep -q skipping
|
||||
# displayName: 'Test skip re-download (#12188)'
|
||||
# condition: eq(variables['python_version'], '3.8')
|
||||
|
||||
- script: |
|
||||
|
|
10
.gitignore
vendored
10
.gitignore
vendored
|
@ -10,16 +10,6 @@ spacy/tests/package/setup.cfg
|
|||
spacy/tests/package/pyproject.toml
|
||||
spacy/tests/package/requirements.txt
|
||||
|
||||
# Website
|
||||
website/.cache/
|
||||
website/public/
|
||||
website/node_modules
|
||||
website/.npm
|
||||
website/logs
|
||||
*.log
|
||||
npm-debug.log*
|
||||
quickstart-training-generator.js
|
||||
|
||||
# Cython / C extensions
|
||||
cythonize.json
|
||||
spacy/*.html
|
||||
|
|
|
@ -3,7 +3,7 @@ repos:
|
|||
rev: 22.3.0
|
||||
hooks:
|
||||
- id: black
|
||||
language_version: python3.7
|
||||
language_version: python3.8
|
||||
additional_dependencies: ['click==8.0.4']
|
||||
- repo: https://github.com/pycqa/flake8
|
||||
rev: 5.0.4
|
||||
|
|
|
@ -271,7 +271,7 @@ except: # noqa: E722
|
|||
|
||||
### Python conventions
|
||||
|
||||
All Python code must be written **compatible with Python 3.6+**. More detailed
|
||||
All Python code must be written **compatible with Python 3.8+**. More detailed
|
||||
code conventions can be found in the [developer docs](https://github.com/explosion/spaCy/blob/master/extra/DEVELOPER_DOCS/Code%20Conventions.md).
|
||||
|
||||
#### I/O and handling paths
|
||||
|
|
2
Makefile
2
Makefile
|
@ -5,7 +5,7 @@ override SPACY_EXTRAS = spacy-lookups-data==1.0.2 jieba spacy-pkuseg==0.0.28 sud
|
|||
endif
|
||||
|
||||
ifndef PYVER
|
||||
override PYVER = 3.6
|
||||
override PYVER = 3.8
|
||||
endif
|
||||
|
||||
VENV := ./env$(PYVER)
|
||||
|
|
|
@ -16,7 +16,7 @@ production-ready [**training system**](https://spacy.io/usage/training) and easy
|
|||
model packaging, deployment and workflow management. spaCy is commercial
|
||||
open-source software, released under the [MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
|
||||
|
||||
💫 **Version 3.4 out now!**
|
||||
💫 **Version 3.5 out now!**
|
||||
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
|
||||
|
||||
[](https://dev.azure.com/explosion-ai/public/_build?definitionId=8)
|
||||
|
@ -105,7 +105,7 @@ For detailed installation instructions, see the
|
|||
|
||||
- **Operating system**: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual
|
||||
Studio)
|
||||
- **Python version**: Python 3.6+ (only 64 bit)
|
||||
- **Python version**: Python 3.8+ (only 64 bit)
|
||||
- **Package managers**: [pip] · [conda] (via `conda-forge`)
|
||||
|
||||
[pip]: https://pypi.org/project/spacy/
|
||||
|
|
|
@ -11,25 +11,39 @@ trigger:
|
|||
exclude:
|
||||
- "website/*"
|
||||
- "*.md"
|
||||
- "*.mdx"
|
||||
- ".github/workflows/*"
|
||||
pr:
|
||||
paths:
|
||||
exclude:
|
||||
- "*.md"
|
||||
- "*.mdx"
|
||||
- "website/docs/*"
|
||||
- "website/src/*"
|
||||
- "website/meta/*.tsx"
|
||||
- "website/meta/*.mjs"
|
||||
- "website/meta/languages.json"
|
||||
- "website/meta/site.json"
|
||||
- "website/meta/sidebars.json"
|
||||
- "website/meta/type-annotations.json"
|
||||
- "website/pages/*"
|
||||
- ".github/workflows/*"
|
||||
|
||||
jobs:
|
||||
# Perform basic checks for most important errors (syntax etc.) Uses the config
|
||||
# defined in .flake8 and overwrites the selected codes.
|
||||
# Check formatting and linting. Perform basic checks for most important errors
|
||||
# (syntax etc.) Uses the config defined in setup.cfg and overwrites the
|
||||
# selected codes.
|
||||
- job: "Validate"
|
||||
pool:
|
||||
vmImage: "ubuntu-latest"
|
||||
steps:
|
||||
- task: UsePythonVersion@0
|
||||
inputs:
|
||||
versionSpec: "3.7"
|
||||
versionSpec: "3.8"
|
||||
- script: |
|
||||
pip install black==22.3.0
|
||||
python -m black spacy --check
|
||||
displayName: "black"
|
||||
- script: |
|
||||
pip install flake8==5.0.4
|
||||
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823,W605 --show-source --statistics
|
||||
|
@ -40,24 +54,6 @@ jobs:
|
|||
strategy:
|
||||
matrix:
|
||||
# We're only running one platform per Python version to speed up builds
|
||||
Python36Linux:
|
||||
imageName: "ubuntu-20.04"
|
||||
python.version: "3.6"
|
||||
# Python36Windows:
|
||||
# imageName: "windows-latest"
|
||||
# python.version: "3.6"
|
||||
# Python36Mac:
|
||||
# imageName: "macos-latest"
|
||||
# python.version: "3.6"
|
||||
# Python37Linux:
|
||||
# imageName: "ubuntu-20.04"
|
||||
# python.version: "3.7"
|
||||
Python37Windows:
|
||||
imageName: "windows-latest"
|
||||
python.version: "3.7"
|
||||
# Python37Mac:
|
||||
# imageName: "macos-latest"
|
||||
# python.version: "3.7"
|
||||
# Python38Linux:
|
||||
# imageName: "ubuntu-latest"
|
||||
# python.version: "3.8"
|
||||
|
|
|
@ -5,7 +5,7 @@ requires = [
|
|||
"cymem>=2.0.2,<2.1.0",
|
||||
"preshed>=3.0.2,<3.1.0",
|
||||
"murmurhash>=0.28.0,<1.1.0",
|
||||
"thinc>=9.0.0.dev1,<9.1.0",
|
||||
"thinc>=9.0.0.dev2,<9.1.0",
|
||||
"numpy>=1.15.0",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
# Our libraries
|
||||
spacy-legacy>=3.0.11,<3.1.0
|
||||
spacy-legacy>=4.0.0.dev0,<4.1.0
|
||||
spacy-loggers>=1.0.0,<2.0.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=9.0.0.dev1,<9.1.0
|
||||
thinc>=9.0.0.dev2,<9.1.0
|
||||
ml_datasets>=0.2.0,<0.3.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
wasabi>=0.9.1,<1.2.0
|
||||
|
@ -22,7 +22,6 @@ langcodes>=3.2.0,<4.0.0
|
|||
# Official Python utilities
|
||||
setuptools
|
||||
packaging>=20.0
|
||||
typing_extensions>=3.7.4.1,<4.2.0; python_version < "3.8"
|
||||
# Development dependencies
|
||||
pre-commit>=2.13.0
|
||||
cython>=0.25,<3.0
|
||||
|
@ -31,8 +30,7 @@ pytest-timeout>=1.3.0,<2.0.0
|
|||
mock>=2.0.0,<3.0.0
|
||||
flake8>=3.8.0,<6.0.0
|
||||
hypothesis>=3.27.0,<7.0.0
|
||||
mypy>=0.990,<0.1000; platform_machine != "aarch64" and python_version >= "3.7"
|
||||
types-dataclasses>=0.1.3; python_version < "3.7"
|
||||
mypy>=0.990,<0.1000; platform_machine != "aarch64"
|
||||
types-mock>=0.1.1
|
||||
types-setuptools>=57.0.0
|
||||
types-requests
|
||||
|
|
|
@ -17,8 +17,6 @@ classifiers =
|
|||
Operating System :: Microsoft :: Windows
|
||||
Programming Language :: Cython
|
||||
Programming Language :: Python :: 3
|
||||
Programming Language :: Python :: 3.6
|
||||
Programming Language :: Python :: 3.7
|
||||
Programming Language :: Python :: 3.8
|
||||
Programming Language :: Python :: 3.9
|
||||
Programming Language :: Python :: 3.10
|
||||
|
@ -31,15 +29,15 @@ project_urls =
|
|||
[options]
|
||||
zip_safe = false
|
||||
include_package_data = true
|
||||
python_requires = >=3.6
|
||||
python_requires = >=3.8
|
||||
install_requires =
|
||||
# Our libraries
|
||||
spacy-legacy>=3.0.11,<3.1.0
|
||||
spacy-legacy>=4.0.0.dev0,<4.1.0
|
||||
spacy-loggers>=1.0.0,<2.0.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=9.0.0.dev1,<9.1.0
|
||||
thinc>=9.0.0.dev2,<9.1.0
|
||||
wasabi>=0.9.1,<1.2.0
|
||||
srsly>=2.4.3,<3.0.0
|
||||
catalogue>=2.0.6,<2.1.0
|
||||
|
@ -55,7 +53,6 @@ install_requires =
|
|||
# Official Python utilities
|
||||
setuptools
|
||||
packaging>=20.0
|
||||
typing_extensions>=3.7.4,<4.2.0; python_version < "3.8"
|
||||
langcodes>=3.2.0,<4.0.0
|
||||
|
||||
[options.entry_points]
|
||||
|
|
6
setup.py
6
setup.py
|
@ -33,12 +33,10 @@ MOD_NAMES = [
|
|||
"spacy.kb.candidate",
|
||||
"spacy.kb.kb",
|
||||
"spacy.kb.kb_in_memory",
|
||||
"spacy.ml.parser_model",
|
||||
"spacy.ml.tb_framework",
|
||||
"spacy.morphology",
|
||||
"spacy.pipeline.dep_parser",
|
||||
"spacy.pipeline._edit_tree_internals.edit_trees",
|
||||
"spacy.pipeline.morphologizer",
|
||||
"spacy.pipeline.ner",
|
||||
"spacy.pipeline.pipe",
|
||||
"spacy.pipeline.trainable_pipe",
|
||||
"spacy.pipeline.sentencizer",
|
||||
|
@ -46,6 +44,7 @@ MOD_NAMES = [
|
|||
"spacy.pipeline.tagger",
|
||||
"spacy.pipeline.transition_parser",
|
||||
"spacy.pipeline._parser_internals.arc_eager",
|
||||
"spacy.pipeline._parser_internals.batch",
|
||||
"spacy.pipeline._parser_internals.ner",
|
||||
"spacy.pipeline._parser_internals.nonproj",
|
||||
"spacy.pipeline._parser_internals.search",
|
||||
|
@ -53,6 +52,7 @@ MOD_NAMES = [
|
|||
"spacy.pipeline._parser_internals.stateclass",
|
||||
"spacy.pipeline._parser_internals.transition_system",
|
||||
"spacy.pipeline._parser_internals._beam_utils",
|
||||
"spacy.pipeline._parser_internals._parser_utils",
|
||||
"spacy.tokenizer",
|
||||
"spacy.training.align",
|
||||
"spacy.training.gold_io",
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# fmt: off
|
||||
__title__ = "spacy"
|
||||
__version__ = "3.5.0"
|
||||
__version__ = "4.0.0.dev0"
|
||||
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
|
||||
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
|
||||
__projects__ = "https://github.com/explosion/projects"
|
||||
|
|
|
@ -4,6 +4,7 @@ from ._util import app, setup_cli # noqa: F401
|
|||
|
||||
# These are the actual functions, NOT the wrapped CLI commands. The CLI commands
|
||||
# are registered automatically and won't have to be imported here.
|
||||
from .benchmark_speed import benchmark_speed_cli # noqa: F401
|
||||
from .download import download # noqa: F401
|
||||
from .info import info # noqa: F401
|
||||
from .package import package # noqa: F401
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Dict, Any, Union, List, Optional, Tuple, Iterable
|
||||
from typing import Dict, Any, Union, List, Optional, Tuple, Iterable, Literal
|
||||
from typing import TYPE_CHECKING, overload
|
||||
import sys
|
||||
import shutil
|
||||
|
@ -16,7 +16,6 @@ from thinc.util import gpu_is_available
|
|||
from configparser import InterpolationError
|
||||
import os
|
||||
|
||||
from ..compat import Literal
|
||||
from ..schemas import ProjectConfigSchema, validate
|
||||
from ..util import import_file, run_command, make_tempdir, registry, logger
|
||||
from ..util import is_compatible_version, SimpleFrozenDict, ENV_VARS
|
||||
|
@ -46,6 +45,7 @@ DEBUG_HELP = """Suite of helpful commands for debugging and profiling. Includes
|
|||
commands to check and validate your config files, training and evaluation data,
|
||||
and custom model implementations.
|
||||
"""
|
||||
BENCHMARK_HELP = """Commands for benchmarking pipelines."""
|
||||
INIT_HELP = """Commands for initializing configs and pipeline packages."""
|
||||
|
||||
# Wrappers for Typer's annotations. Initially created to set defaults and to
|
||||
|
@ -54,12 +54,14 @@ Arg = typer.Argument
|
|||
Opt = typer.Option
|
||||
|
||||
app = typer.Typer(name=NAME, help=HELP)
|
||||
benchmark_cli = typer.Typer(name="benchmark", help=BENCHMARK_HELP, no_args_is_help=True)
|
||||
project_cli = typer.Typer(name="project", help=PROJECT_HELP, no_args_is_help=True)
|
||||
debug_cli = typer.Typer(name="debug", help=DEBUG_HELP, no_args_is_help=True)
|
||||
init_cli = typer.Typer(name="init", help=INIT_HELP, no_args_is_help=True)
|
||||
|
||||
app.add_typer(project_cli)
|
||||
app.add_typer(debug_cli)
|
||||
app.add_typer(benchmark_cli)
|
||||
app.add_typer(init_cli)
|
||||
|
||||
|
||||
|
|
174
spacy/cli/benchmark_speed.py
Normal file
174
spacy/cli/benchmark_speed.py
Normal file
|
@ -0,0 +1,174 @@
|
|||
from typing import Iterable, List, Optional
|
||||
import random
|
||||
from itertools import islice
|
||||
import numpy
|
||||
from pathlib import Path
|
||||
import time
|
||||
from tqdm import tqdm
|
||||
import typer
|
||||
from wasabi import msg
|
||||
|
||||
from .. import util
|
||||
from ..language import Language
|
||||
from ..tokens import Doc
|
||||
from ..training import Corpus
|
||||
from ._util import Arg, Opt, benchmark_cli, setup_gpu
|
||||
|
||||
|
||||
@benchmark_cli.command(
|
||||
"speed",
|
||||
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
|
||||
)
|
||||
def benchmark_speed_cli(
|
||||
# fmt: off
|
||||
ctx: typer.Context,
|
||||
model: str = Arg(..., help="Model name or path"),
|
||||
data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True),
|
||||
batch_size: Optional[int] = Opt(None, "--batch-size", "-b", min=1, help="Override the pipeline batch size"),
|
||||
no_shuffle: bool = Opt(False, "--no-shuffle", help="Do not shuffle benchmark data"),
|
||||
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
|
||||
n_batches: int = Opt(50, "--batches", help="Minimum number of batches to benchmark", min=30,),
|
||||
warmup_epochs: int = Opt(3, "--warmup", "-w", min=0, help="Number of iterations over the data for warmup"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
Benchmark a pipeline. Expects a loadable spaCy pipeline and benchmark
|
||||
data in the binary .spacy format.
|
||||
"""
|
||||
setup_gpu(use_gpu=use_gpu, silent=False)
|
||||
|
||||
nlp = util.load_model(model)
|
||||
batch_size = batch_size if batch_size is not None else nlp.batch_size
|
||||
corpus = Corpus(data_path)
|
||||
docs = [eg.predicted for eg in corpus(nlp)]
|
||||
|
||||
if len(docs) == 0:
|
||||
msg.fail("Cannot benchmark speed using an empty corpus.", exits=1)
|
||||
|
||||
print(f"Warming up for {warmup_epochs} epochs...")
|
||||
warmup(nlp, docs, warmup_epochs, batch_size)
|
||||
|
||||
print()
|
||||
print(f"Benchmarking {n_batches} batches...")
|
||||
wps = benchmark(nlp, docs, n_batches, batch_size, not no_shuffle)
|
||||
|
||||
print()
|
||||
print_outliers(wps)
|
||||
print_mean_with_ci(wps)
|
||||
|
||||
|
||||
# Lowercased, behaves as a context manager function.
|
||||
class time_context:
|
||||
"""Register the running time of a context."""
|
||||
|
||||
def __enter__(self):
|
||||
self.start = time.perf_counter()
|
||||
return self
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
self.elapsed = time.perf_counter() - self.start
|
||||
|
||||
|
||||
class Quartiles:
|
||||
"""Calculate the q1, q2, q3 quartiles and the inter-quartile range (iqr)
|
||||
of a sample."""
|
||||
|
||||
q1: float
|
||||
q2: float
|
||||
q3: float
|
||||
iqr: float
|
||||
|
||||
def __init__(self, sample: numpy.ndarray) -> None:
|
||||
self.q1 = numpy.quantile(sample, 0.25)
|
||||
self.q2 = numpy.quantile(sample, 0.5)
|
||||
self.q3 = numpy.quantile(sample, 0.75)
|
||||
self.iqr = self.q3 - self.q1
|
||||
|
||||
|
||||
def annotate(
|
||||
nlp: Language, docs: List[Doc], batch_size: Optional[int]
|
||||
) -> numpy.ndarray:
|
||||
docs = nlp.pipe(tqdm(docs, unit="doc"), batch_size=batch_size)
|
||||
wps = []
|
||||
while True:
|
||||
with time_context() as elapsed:
|
||||
batch_docs = list(
|
||||
islice(docs, batch_size if batch_size else nlp.batch_size)
|
||||
)
|
||||
if len(batch_docs) == 0:
|
||||
break
|
||||
n_tokens = count_tokens(batch_docs)
|
||||
wps.append(n_tokens / elapsed.elapsed)
|
||||
|
||||
return numpy.array(wps)
|
||||
|
||||
|
||||
def benchmark(
|
||||
nlp: Language,
|
||||
docs: List[Doc],
|
||||
n_batches: int,
|
||||
batch_size: int,
|
||||
shuffle: bool,
|
||||
) -> numpy.ndarray:
|
||||
if shuffle:
|
||||
bench_docs = [
|
||||
nlp.make_doc(random.choice(docs).text)
|
||||
for _ in range(n_batches * batch_size)
|
||||
]
|
||||
else:
|
||||
bench_docs = [
|
||||
nlp.make_doc(docs[i % len(docs)].text)
|
||||
for i in range(n_batches * batch_size)
|
||||
]
|
||||
|
||||
return annotate(nlp, bench_docs, batch_size)
|
||||
|
||||
|
||||
def bootstrap(x, statistic=numpy.mean, iterations=10000) -> numpy.ndarray:
|
||||
"""Apply a statistic to repeated random samples of an array."""
|
||||
return numpy.fromiter(
|
||||
(
|
||||
statistic(numpy.random.choice(x, len(x), replace=True))
|
||||
for _ in range(iterations)
|
||||
),
|
||||
numpy.float64,
|
||||
)
|
||||
|
||||
|
||||
def count_tokens(docs: Iterable[Doc]) -> int:
|
||||
return sum(len(doc) for doc in docs)
|
||||
|
||||
|
||||
def print_mean_with_ci(sample: numpy.ndarray):
|
||||
mean = numpy.mean(sample)
|
||||
bootstrap_means = bootstrap(sample)
|
||||
bootstrap_means.sort()
|
||||
|
||||
# 95% confidence interval
|
||||
low = bootstrap_means[int(len(bootstrap_means) * 0.025)]
|
||||
high = bootstrap_means[int(len(bootstrap_means) * 0.975)]
|
||||
|
||||
print(f"Mean: {mean:.1f} words/s (95% CI: {low-mean:.1f} +{high-mean:.1f})")
|
||||
|
||||
|
||||
def print_outliers(sample: numpy.ndarray):
|
||||
quartiles = Quartiles(sample)
|
||||
|
||||
n_outliers = numpy.sum(
|
||||
(sample < (quartiles.q1 - 1.5 * quartiles.iqr))
|
||||
| (sample > (quartiles.q3 + 1.5 * quartiles.iqr))
|
||||
)
|
||||
n_extreme_outliers = numpy.sum(
|
||||
(sample < (quartiles.q1 - 3.0 * quartiles.iqr))
|
||||
| (sample > (quartiles.q3 + 3.0 * quartiles.iqr))
|
||||
)
|
||||
print(
|
||||
f"Outliers: {(100 * n_outliers) / len(sample):.1f}%, extreme outliers: {(100 * n_extreme_outliers) / len(sample)}%"
|
||||
)
|
||||
|
||||
|
||||
def warmup(
|
||||
nlp: Language, docs: List[Doc], warmup_epochs: int, batch_size: Optional[int]
|
||||
) -> numpy.ndarray:
|
||||
docs = warmup_epochs * docs
|
||||
return annotate(nlp, docs, batch_size)
|
|
@ -1,5 +1,5 @@
|
|||
from typing import Any, Dict, Iterable, List, Optional, Sequence, Set, Tuple, Union
|
||||
from typing import cast, overload
|
||||
from typing import Literal, cast, overload
|
||||
from pathlib import Path
|
||||
from collections import Counter
|
||||
import sys
|
||||
|
@ -17,10 +17,10 @@ from ..pipeline import TrainablePipe
|
|||
from ..pipeline._parser_internals import nonproj
|
||||
from ..pipeline._parser_internals.nonproj import DELIMITER
|
||||
from ..pipeline import Morphologizer, SpanCategorizer
|
||||
from ..pipeline._edit_tree_internals.edit_trees import EditTrees
|
||||
from ..morphology import Morphology
|
||||
from ..language import Language
|
||||
from ..util import registry, resolve_dot_names
|
||||
from ..compat import Literal
|
||||
from ..vectors import Mode as VectorsMode
|
||||
from .. import util
|
||||
|
||||
|
@ -671,6 +671,59 @@ def debug_data(
|
|||
f"Found {gold_train_data['n_cycles']} projectivized train sentence(s) with cycles"
|
||||
)
|
||||
|
||||
if "trainable_lemmatizer" in factory_names:
|
||||
msg.divider("Trainable Lemmatizer")
|
||||
trees_train: Set[str] = gold_train_data["lemmatizer_trees"]
|
||||
trees_dev: Set[str] = gold_dev_data["lemmatizer_trees"]
|
||||
# This is necessary context when someone is attempting to interpret whether the
|
||||
# number of trees exclusively in the dev set is meaningful.
|
||||
msg.info(f"{len(trees_train)} lemmatizer trees generated from training data")
|
||||
msg.info(f"{len(trees_dev)} lemmatizer trees generated from dev data")
|
||||
dev_not_train = trees_dev - trees_train
|
||||
|
||||
if len(dev_not_train) != 0:
|
||||
pct = len(dev_not_train) / len(trees_dev)
|
||||
msg.info(
|
||||
f"{len(dev_not_train)} lemmatizer trees ({pct*100:.1f}% of dev trees)"
|
||||
" were found exclusively in the dev data."
|
||||
)
|
||||
else:
|
||||
# Would we ever expect this case? It seems like it would be pretty rare,
|
||||
# and we might actually want a warning?
|
||||
msg.info("All trees in dev data present in training data.")
|
||||
|
||||
if gold_train_data["n_low_cardinality_lemmas"] > 0:
|
||||
n = gold_train_data["n_low_cardinality_lemmas"]
|
||||
msg.warn(f"{n} training docs with 0 or 1 unique lemmas.")
|
||||
|
||||
if gold_dev_data["n_low_cardinality_lemmas"] > 0:
|
||||
n = gold_dev_data["n_low_cardinality_lemmas"]
|
||||
msg.warn(f"{n} dev docs with 0 or 1 unique lemmas.")
|
||||
|
||||
if gold_train_data["no_lemma_annotations"] > 0:
|
||||
n = gold_train_data["no_lemma_annotations"]
|
||||
msg.warn(f"{n} training docs with no lemma annotations.")
|
||||
else:
|
||||
msg.good("All training docs have lemma annotations.")
|
||||
|
||||
if gold_dev_data["no_lemma_annotations"] > 0:
|
||||
n = gold_dev_data["no_lemma_annotations"]
|
||||
msg.warn(f"{n} dev docs with no lemma annotations.")
|
||||
else:
|
||||
msg.good("All dev docs have lemma annotations.")
|
||||
|
||||
if gold_train_data["partial_lemma_annotations"] > 0:
|
||||
n = gold_train_data["partial_lemma_annotations"]
|
||||
msg.info(f"{n} training docs with partial lemma annotations.")
|
||||
else:
|
||||
msg.good("All training docs have complete lemma annotations.")
|
||||
|
||||
if gold_dev_data["partial_lemma_annotations"] > 0:
|
||||
n = gold_dev_data["partial_lemma_annotations"]
|
||||
msg.info(f"{n} dev docs with partial lemma annotations.")
|
||||
else:
|
||||
msg.good("All dev docs have complete lemma annotations.")
|
||||
|
||||
msg.divider("Summary")
|
||||
good_counts = msg.counts[MESSAGES.GOOD]
|
||||
warn_counts = msg.counts[MESSAGES.WARN]
|
||||
|
@ -732,7 +785,13 @@ def _compile_gold(
|
|||
"n_cats_multilabel": 0,
|
||||
"n_cats_bad_values": 0,
|
||||
"texts": set(),
|
||||
"lemmatizer_trees": set(),
|
||||
"no_lemma_annotations": 0,
|
||||
"partial_lemma_annotations": 0,
|
||||
"n_low_cardinality_lemmas": 0,
|
||||
}
|
||||
if "trainable_lemmatizer" in factory_names:
|
||||
trees = EditTrees(nlp.vocab.strings)
|
||||
for eg in examples:
|
||||
gold = eg.reference
|
||||
doc = eg.predicted
|
||||
|
@ -862,6 +921,25 @@ def _compile_gold(
|
|||
data["n_nonproj"] += 1
|
||||
if nonproj.contains_cycle(aligned_heads):
|
||||
data["n_cycles"] += 1
|
||||
if "trainable_lemmatizer" in factory_names:
|
||||
# from EditTreeLemmatizer._labels_from_data
|
||||
if all(token.lemma == 0 for token in gold):
|
||||
data["no_lemma_annotations"] += 1
|
||||
continue
|
||||
if any(token.lemma == 0 for token in gold):
|
||||
data["partial_lemma_annotations"] += 1
|
||||
lemma_set = set()
|
||||
for token in gold:
|
||||
if token.lemma != 0:
|
||||
lemma_set.add(token.lemma)
|
||||
tree_id = trees.add(token.text, token.lemma_)
|
||||
tree_str = trees.tree_to_str(tree_id)
|
||||
data["lemmatizer_trees"].add(tree_str)
|
||||
# We want to identify cases where lemmas aren't assigned
|
||||
# or are all assigned the same value, as this would indicate
|
||||
# an issue since we're expecting a large set of lemmas
|
||||
if len(lemma_set) < 2 and len(gold) > 1:
|
||||
data["n_low_cardinality_lemmas"] += 1
|
||||
return data
|
||||
|
||||
|
||||
|
|
|
@ -7,7 +7,8 @@ import typer
|
|||
from ._util import app, Arg, Opt, WHEEL_SUFFIX, SDIST_SUFFIX
|
||||
from .. import about
|
||||
from ..util import is_package, get_minor_version, run_command
|
||||
from ..util import is_prerelease_version
|
||||
from ..util import is_prerelease_version, get_installed_models
|
||||
from ..util import get_package_version
|
||||
|
||||
|
||||
@app.command(
|
||||
|
@ -63,6 +64,14 @@ def download(
|
|||
compatibility = get_compatibility()
|
||||
version = get_version(model_name, compatibility)
|
||||
|
||||
# If we already have this version installed, skip downloading
|
||||
installed = get_installed_models()
|
||||
if model_name in installed:
|
||||
installed_version = get_package_version(model_name)
|
||||
if installed_version == version:
|
||||
msg.warn(f"{model_name} v{version} already installed, skipping")
|
||||
return
|
||||
|
||||
filename = get_model_filename(model_name, version, sdist)
|
||||
|
||||
download_model(filename, pip_args)
|
||||
|
|
|
@ -7,12 +7,15 @@ from thinc.api import fix_random_seed
|
|||
|
||||
from ..training import Corpus
|
||||
from ..tokens import Doc
|
||||
from ._util import app, Arg, Opt, setup_gpu, import_code
|
||||
from ._util import app, Arg, Opt, setup_gpu, import_code, benchmark_cli
|
||||
from ..scorer import Scorer
|
||||
from .. import util
|
||||
from .. import displacy
|
||||
|
||||
|
||||
@benchmark_cli.command(
|
||||
"accuracy",
|
||||
)
|
||||
@app.command("evaluate")
|
||||
def evaluate_cli(
|
||||
# fmt: off
|
||||
|
@ -36,7 +39,7 @@ def evaluate_cli(
|
|||
dependency parses in a HTML file, set as output directory as the
|
||||
displacy_path argument.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#evaluate
|
||||
DOCS: https://spacy.io/api/cli#benchmark-accuracy
|
||||
"""
|
||||
import_code(code_path)
|
||||
evaluate(
|
||||
|
|
|
@ -8,7 +8,7 @@ import re
|
|||
from jinja2 import Template
|
||||
|
||||
from .. import util
|
||||
from ..language import DEFAULT_CONFIG_PRETRAIN_PATH
|
||||
from ..language import DEFAULT_CONFIG_DISTILL_PATH, DEFAULT_CONFIG_PRETRAIN_PATH
|
||||
from ..schemas import RecommendationSchema
|
||||
from ..util import SimpleFrozenList
|
||||
from ._util import init_cli, Arg, Opt, show_validation_error, COMMAND
|
||||
|
@ -83,6 +83,7 @@ def init_fill_config_cli(
|
|||
# fmt: off
|
||||
base_path: Path = Arg(..., help="Path to base config to fill", exists=True, dir_okay=False),
|
||||
output_file: Path = Arg("-", help="Path to output .cfg file (or - for stdout)", allow_dash=True),
|
||||
distillation: bool = Opt(False, "--distillation", "-dt", help="Include config for distillation (with 'spacy distill')"),
|
||||
pretraining: bool = Opt(False, "--pretraining", "-pt", help="Include config for pretraining (with 'spacy pretrain')"),
|
||||
diff: bool = Opt(False, "--diff", "-D", help="Print a visual diff highlighting the changes"),
|
||||
code_path: Optional[Path] = Opt(None, "--code-path", "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
|
||||
|
@ -98,13 +99,20 @@ def init_fill_config_cli(
|
|||
DOCS: https://spacy.io/api/cli#init-fill-config
|
||||
"""
|
||||
import_code(code_path)
|
||||
fill_config(output_file, base_path, pretraining=pretraining, diff=diff)
|
||||
fill_config(
|
||||
output_file,
|
||||
base_path,
|
||||
distillation=distillation,
|
||||
pretraining=pretraining,
|
||||
diff=diff,
|
||||
)
|
||||
|
||||
|
||||
def fill_config(
|
||||
output_file: Path,
|
||||
base_path: Path,
|
||||
*,
|
||||
distillation: bool = False,
|
||||
pretraining: bool = False,
|
||||
diff: bool = False,
|
||||
silent: bool = False,
|
||||
|
@ -123,6 +131,9 @@ def fill_config(
|
|||
# replaced with their actual config after loading, so we have to re-add them
|
||||
sourced = util.get_sourced_components(config)
|
||||
filled["components"].update(sourced)
|
||||
if distillation:
|
||||
distillation_config = util.load_config(DEFAULT_CONFIG_DISTILL_PATH)
|
||||
filled = distillation_config.merge(filled)
|
||||
if pretraining:
|
||||
validate_config_for_pretrain(filled, msg)
|
||||
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
|
||||
|
|
|
@ -87,12 +87,11 @@ grad_factor = 1.0
|
|||
factory = "parser"
|
||||
|
||||
[components.parser.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
@architectures = "spacy.TransitionBasedParser.v3"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 128
|
||||
maxout_pieces = 3
|
||||
use_upper = false
|
||||
nO = null
|
||||
|
||||
[components.parser.model.tok2vec]
|
||||
|
@ -108,12 +107,11 @@ grad_factor = 1.0
|
|||
factory = "ner"
|
||||
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
@architectures = "spacy.TransitionBasedParser.v3"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = false
|
||||
nO = null
|
||||
|
||||
[components.ner.model.tok2vec]
|
||||
|
@ -314,12 +312,11 @@ width = ${components.tok2vec.model.encode.width}
|
|||
factory = "parser"
|
||||
|
||||
[components.parser.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
@architectures = "spacy.TransitionBasedParser.v3"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 128
|
||||
maxout_pieces = 3
|
||||
use_upper = true
|
||||
nO = null
|
||||
|
||||
[components.parser.model.tok2vec]
|
||||
|
@ -332,12 +329,11 @@ width = ${components.tok2vec.model.encode.width}
|
|||
factory = "ner"
|
||||
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
@architectures = "spacy.TransitionBasedParser.v3"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
nO = null
|
||||
|
||||
[components.ner.model.tok2vec]
|
||||
|
|
|
@ -22,19 +22,6 @@ try:
|
|||
except ImportError:
|
||||
cupy = None
|
||||
|
||||
if sys.version_info[:2] >= (3, 8): # Python 3.8+
|
||||
from typing import Literal, Protocol, runtime_checkable
|
||||
else:
|
||||
from typing_extensions import Literal, Protocol, runtime_checkable # noqa: F401
|
||||
|
||||
# Important note: The importlib_metadata "backport" includes functionality
|
||||
# that's not part of the built-in importlib.metadata. We should treat this
|
||||
# import like the built-in and only use what's available there.
|
||||
try: # Python 3.8+
|
||||
import importlib.metadata as importlib_metadata
|
||||
except ImportError:
|
||||
from catalogue import _importlib_metadata as importlib_metadata # type: ignore[no-redef] # noqa: F401
|
||||
|
||||
from thinc.api import Optimizer # noqa: F401
|
||||
|
||||
pickle = pickle
|
||||
|
|
34
spacy/default_config_distillation.cfg
Normal file
34
spacy/default_config_distillation.cfg
Normal file
|
@ -0,0 +1,34 @@
|
|||
[paths]
|
||||
raw_text = null
|
||||
|
||||
[distillation]
|
||||
corpus = "corpora.distillation"
|
||||
dropout = 0.1
|
||||
max_epochs = 1
|
||||
max_steps = 0
|
||||
student_to_teacher = {}
|
||||
|
||||
[distillation.batcher]
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
size = 3000
|
||||
discard_oversize = false
|
||||
tolerance = 0.2
|
||||
|
||||
[distillation.optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
L2_is_weight_decay = true
|
||||
L2 = 0.01
|
||||
grad_clip = 1.0
|
||||
use_averages = true
|
||||
eps = 1e-8
|
||||
learn_rate = 1e-4
|
||||
|
||||
[corpora]
|
||||
|
||||
[corpora.distillation]
|
||||
@readers = "spacy.PlainTextCorpus.v1"
|
||||
path = ${paths.raw_text}
|
||||
min_length = 0
|
||||
max_length = 0
|
|
@ -106,9 +106,7 @@ def serve(
|
|||
|
||||
if is_in_jupyter():
|
||||
warnings.warn(Warnings.W011)
|
||||
render(
|
||||
docs, style=style, page=page, minify=minify, options=options, manual=manual
|
||||
)
|
||||
render(docs, style=style, page=page, minify=minify, options=options, manual=manual)
|
||||
httpd = simple_server.make_server(host, port, app)
|
||||
print(f"\nUsing the '{style}' visualizer")
|
||||
print(f"Serving on http://{host}:{port} ...\n")
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from typing import Literal
|
||||
import warnings
|
||||
from .compat import Literal
|
||||
|
||||
|
||||
class ErrorsWithCodes(type):
|
||||
|
@ -209,6 +209,8 @@ class Warnings(metaclass=ErrorsWithCodes):
|
|||
"`enabled` ({enabled}). Be aware that this might affect other components in your pipeline.")
|
||||
W124 = ("{host}:{port} is already in use, using the nearest available port {serve_port} as an alternative.")
|
||||
|
||||
W400 = ("`use_upper=False` is ignored, the upper layer is always enabled")
|
||||
|
||||
|
||||
class Errors(metaclass=ErrorsWithCodes):
|
||||
E001 = ("No component '{name}' found in pipeline. Available names: {opts}")
|
||||
|
@ -947,8 +949,8 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.")
|
||||
E1048 = ("Got '{unexpected}' as console progress bar type, but expected one of the following: {expected}")
|
||||
E1049 = ("No available port found for displaCy on host {host}. Please specify an available port "
|
||||
"with `displacy.serve(doc, port)`")
|
||||
E1050 = ("Port {port} is already in use. Please specify an available port with `displacy.serve(doc, port)` "
|
||||
"with `displacy.serve(doc, port=port)`")
|
||||
E1050 = ("Port {port} is already in use. Please specify an available port with `displacy.serve(doc, port=port)` "
|
||||
"or use `auto_switch_port=True` to pick an available port automatically.")
|
||||
|
||||
# v4 error strings
|
||||
|
@ -958,6 +960,7 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
E4002 = ("Pipe '{name}' requires a teacher pipe for distillation.")
|
||||
E4003 = ("Training examples for distillation must have the exact same tokens in the "
|
||||
"reference and predicted docs.")
|
||||
E4004 = ("Backprop is not supported when is_train is not set.")
|
||||
|
||||
|
||||
# fmt: on
|
||||
|
|
|
@ -25,7 +25,7 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
"""An `InMemoryLookupKB` instance stores unique identifiers for entities and their textual aliases,
|
||||
to support entity linking of named entities to real-world concepts.
|
||||
|
||||
DOCS: https://spacy.io/api/kb_in_memory
|
||||
DOCS: https://spacy.io/api/inmemorylookupkb
|
||||
"""
|
||||
|
||||
def __init__(self, Vocab vocab, entity_vector_length):
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Iterator, Optional, Any, Dict, Callable, Iterable
|
||||
from typing import Iterator, Optional, Any, Dict, Callable, Iterable, Literal
|
||||
from typing import Union, Tuple, List, Set, Pattern, Sequence
|
||||
from typing import NoReturn, TYPE_CHECKING, TypeVar, cast, overload
|
||||
|
||||
|
@ -22,7 +22,7 @@ from . import ty
|
|||
from .tokens.underscore import Underscore
|
||||
from .vocab import Vocab, create_vocab
|
||||
from .pipe_analysis import validate_attrs, analyze_pipes, print_pipe_analysis
|
||||
from .training import Example, validate_examples
|
||||
from .training import Example, validate_examples, validate_distillation_examples
|
||||
from .training.initialize import init_vocab, init_tok2vec
|
||||
from .scorer import Scorer
|
||||
from .util import registry, SimpleFrozenList, _pipe, raise_error, _DEFAULT_EMPTY_PIPES
|
||||
|
@ -40,7 +40,6 @@ from .git_info import GIT_VERSION
|
|||
from . import util
|
||||
from . import about
|
||||
from .lookups import load_lookups
|
||||
from .compat import Literal
|
||||
|
||||
|
||||
PipeCallable = Callable[[Doc], Doc]
|
||||
|
@ -49,6 +48,9 @@ PipeCallable = Callable[[Doc], Doc]
|
|||
# This is the base config will all settings (training etc.)
|
||||
DEFAULT_CONFIG_PATH = Path(__file__).parent / "default_config.cfg"
|
||||
DEFAULT_CONFIG = util.load_config(DEFAULT_CONFIG_PATH)
|
||||
# This is the base config for the [distillation] block and currently not included
|
||||
# in the main config and only added via the 'init fill-config' command
|
||||
DEFAULT_CONFIG_DISTILL_PATH = Path(__file__).parent / "default_config_distillation.cfg"
|
||||
# This is the base config for the [pretraining] block and currently not included
|
||||
# in the main config and only added via the 'init fill-config' command
|
||||
DEFAULT_CONFIG_PRETRAIN_PATH = Path(__file__).parent / "default_config_pretraining.cfg"
|
||||
|
@ -1018,6 +1020,102 @@ class Language:
|
|||
raise ValueError(Errors.E005.format(name=name, returned_type=type(doc)))
|
||||
return doc
|
||||
|
||||
def distill(
|
||||
self,
|
||||
teacher: "Language",
|
||||
examples: Iterable[Example],
|
||||
*,
|
||||
drop: float = 0.0,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
losses: Optional[Dict[str, float]] = None,
|
||||
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
|
||||
exclude: Iterable[str] = SimpleFrozenList(),
|
||||
annotates: Iterable[str] = SimpleFrozenList(),
|
||||
student_to_teacher: Optional[Dict[str, str]] = None,
|
||||
):
|
||||
"""Distill the models in a student pipeline from a teacher pipeline.
|
||||
teacher (Language): Teacher to distill from.
|
||||
examples (Iterable[Example]): Distillation examples. The reference
|
||||
(teacher) and predicted (student) docs must have the same number of
|
||||
tokens and the same orthography.
|
||||
drop (float): The dropout rate.
|
||||
sgd (Optional[Optimizer]): An optimizer.
|
||||
losses (Optional(Dict[str, float])): Dictionary to update with the loss,
|
||||
keyed by component.
|
||||
component_cfg (Optional[Dict[str, Dict[str, Any]]]): Config parameters
|
||||
for specific pipeline components, keyed by component name.
|
||||
exclude (Iterable[str]): Names of components that shouldn't be updated.
|
||||
annotates (Iterable[str]): Names of components that should set
|
||||
annotations on the predicted examples after updating.
|
||||
student_to_teacher (Optional[Dict[str, str]]): Map student pipe name to
|
||||
teacher pipe name, only needed for pipes where the student pipe
|
||||
name does not match the teacher pipe name.
|
||||
RETURNS (Dict[str, float]): The updated losses dictionary
|
||||
|
||||
DOCS: https://spacy.io/api/language#distill
|
||||
"""
|
||||
if student_to_teacher is None:
|
||||
student_to_teacher = {}
|
||||
if losses is None:
|
||||
losses = {}
|
||||
if isinstance(examples, list) and len(examples) == 0:
|
||||
return losses
|
||||
|
||||
validate_distillation_examples(examples, "Language.distill")
|
||||
examples = _copy_examples(examples, copy_x=True, copy_y=True)
|
||||
|
||||
if sgd is None:
|
||||
if self._optimizer is None:
|
||||
self._optimizer = self.create_optimizer()
|
||||
sgd = self._optimizer
|
||||
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
pipe_kwargs = {}
|
||||
for student_name, student_proc in self.pipeline:
|
||||
component_cfg.setdefault(student_name, {})
|
||||
pipe_kwargs[student_name] = deepcopy(component_cfg[student_name])
|
||||
component_cfg[student_name].setdefault("drop", drop)
|
||||
pipe_kwargs[student_name].setdefault("batch_size", self.batch_size)
|
||||
|
||||
teacher_pipes = dict(teacher.pipeline)
|
||||
for student_name, student_proc in self.pipeline:
|
||||
if student_name in annotates:
|
||||
for doc, eg in zip(
|
||||
_pipe(
|
||||
(eg.predicted for eg in examples),
|
||||
proc=student_proc,
|
||||
name=student_name,
|
||||
default_error_handler=self.default_error_handler,
|
||||
kwargs=pipe_kwargs[student_name],
|
||||
),
|
||||
examples,
|
||||
):
|
||||
eg.predicted = doc
|
||||
|
||||
if (
|
||||
student_name not in exclude
|
||||
and isinstance(student_proc, ty.DistillableComponent)
|
||||
and student_proc.is_distillable
|
||||
):
|
||||
# A missing teacher pipe is not an error, some student pipes
|
||||
# do not need a teacher, such as tok2vec layer losses.
|
||||
teacher_name = (
|
||||
student_to_teacher[student_name]
|
||||
if student_name in student_to_teacher
|
||||
else student_name
|
||||
)
|
||||
teacher_pipe = teacher_pipes.get(teacher_name, None)
|
||||
student_proc.distill(
|
||||
teacher_pipe,
|
||||
examples,
|
||||
sgd=sgd,
|
||||
losses=losses,
|
||||
**component_cfg[student_name],
|
||||
)
|
||||
|
||||
return losses
|
||||
|
||||
def disable_pipes(self, *names) -> "DisabledPipes":
|
||||
"""Disable one or more pipeline components. If used as a context
|
||||
manager, the pipeline will be restored to the initial state at the end
|
||||
|
@ -1243,12 +1341,16 @@ class Language:
|
|||
self,
|
||||
get_examples: Optional[Callable[[], Iterable[Example]]] = None,
|
||||
*,
|
||||
labels: Optional[Dict[str, Any]] = None,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
) -> Optimizer:
|
||||
"""Initialize the pipe for training, using data examples if available.
|
||||
|
||||
get_examples (Callable[[], Iterable[Example]]): Optional function that
|
||||
returns gold-standard Example objects.
|
||||
labels (Optional[Dict[str, Any]]): Labels to pass to pipe initialization,
|
||||
using the names of the pipes as keys. Overrides labels that are in
|
||||
the model configuration.
|
||||
sgd (Optional[Optimizer]): An optimizer to use for updates. If not
|
||||
provided, will be created using the .create_optimizer() method.
|
||||
RETURNS (thinc.api.Optimizer): The optimizer.
|
||||
|
@ -1293,6 +1395,8 @@ class Language:
|
|||
for name, proc in self.pipeline:
|
||||
if isinstance(proc, ty.InitializableComponent):
|
||||
p_settings = I["components"].get(name, {})
|
||||
if labels is not None and name in labels:
|
||||
p_settings["labels"] = labels[name]
|
||||
p_settings = validate_init_settings(
|
||||
proc.initialize, p_settings, section="components", name=name
|
||||
)
|
||||
|
@ -1726,6 +1830,7 @@ class Language:
|
|||
# using the nlp.config with all defaults.
|
||||
config = util.copy_config(config)
|
||||
orig_pipeline = config.pop("components", {})
|
||||
orig_distill = config.pop("distill", None)
|
||||
orig_pretraining = config.pop("pretraining", None)
|
||||
config["components"] = {}
|
||||
if auto_fill:
|
||||
|
@ -1734,6 +1839,9 @@ class Language:
|
|||
filled = config
|
||||
filled["components"] = orig_pipeline
|
||||
config["components"] = orig_pipeline
|
||||
if orig_distill is not None:
|
||||
filled["distill"] = orig_distill
|
||||
config["distill"] = orig_distill
|
||||
if orig_pretraining is not None:
|
||||
filled["pretraining"] = orig_pretraining
|
||||
config["pretraining"] = orig_pretraining
|
||||
|
@ -2223,13 +2331,18 @@ class DisabledPipes(list):
|
|||
self[:] = []
|
||||
|
||||
|
||||
def _copy_examples(examples: Iterable[Example]) -> List[Example]:
|
||||
def _copy_examples(
|
||||
examples: Iterable[Example], *, copy_x: bool = True, copy_y: bool = False
|
||||
) -> List[Example]:
|
||||
"""Make a copy of a batch of examples, copying the predicted Doc as well.
|
||||
This is used in contexts where we need to take ownership of the examples
|
||||
so that they can be mutated, for instance during Language.evaluate and
|
||||
Language.update.
|
||||
"""
|
||||
return [Example(eg.x.copy(), eg.y) for eg in examples]
|
||||
return [
|
||||
Example(eg.x.copy() if copy_x else eg.x, eg.y.copy() if copy_y else eg.y)
|
||||
for eg in examples
|
||||
]
|
||||
|
||||
|
||||
def _apply_pipes(
|
||||
|
|
|
@ -41,7 +41,7 @@ cdef class Lexeme:
|
|||
"""
|
||||
self.vocab = vocab
|
||||
self.orth = orth
|
||||
self.c = <LexemeC*><void*>vocab.get_by_orth(vocab.mem, orth)
|
||||
self.c = <LexemeC*><void*>vocab.get_by_orth(orth)
|
||||
if self.c.orth != orth:
|
||||
raise ValueError(Errors.E071.format(orth=orth, vocab_orth=self.c.orth))
|
||||
|
||||
|
|
|
@ -22,7 +22,7 @@ cpdef bint levenshtein_compare(input_text: str, pattern_text: str, fuzzy: int =
|
|||
max_edits = fuzzy
|
||||
else:
|
||||
# allow at least two edits (to allow at least one transposition) and up
|
||||
# to 20% of the pattern string length
|
||||
# to 30% of the pattern string length
|
||||
max_edits = max(2, round(0.3 * len(pattern_text)))
|
||||
return levenshtein(input_text, pattern_text, max_edits) <= max_edits
|
||||
|
||||
|
|
|
@ -1,12 +1,15 @@
|
|||
from typing import Any, List, Dict, Tuple, Optional, Callable, Union
|
||||
from typing import Any, List, Dict, Tuple, Optional, Callable, Union, Literal
|
||||
from typing import Iterator, Iterable, overload
|
||||
from ..compat import Literal
|
||||
from ..vocab import Vocab
|
||||
from ..tokens import Doc, Span
|
||||
|
||||
class Matcher:
|
||||
def __init__(self, vocab: Vocab, validate: bool = ...,
|
||||
fuzzy_compare: Callable[[str, str, int], bool] = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
vocab: Vocab,
|
||||
validate: bool = ...,
|
||||
fuzzy_compare: Callable[[str, str, int], bool] = ...,
|
||||
) -> None: ...
|
||||
def __reduce__(self) -> Any: ...
|
||||
def __len__(self) -> int: ...
|
||||
def __contains__(self, key: str) -> bool: ...
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from typing import List, Tuple, Union, Optional, Callable, Any, Dict, overload
|
||||
from ..compat import Literal
|
||||
from typing import List, Tuple, Union, Optional, Callable, Any, Dict, Literal
|
||||
from typing import overload
|
||||
from .matcher import Matcher
|
||||
from ..vocab import Vocab
|
||||
from ..tokens import Doc, Span
|
||||
|
|
|
@ -1,164 +0,0 @@
|
|||
from thinc.api import Model, normal_init
|
||||
|
||||
from ..util import registry
|
||||
|
||||
|
||||
@registry.layers("spacy.PrecomputableAffine.v1")
|
||||
def PrecomputableAffine(nO, nI, nF, nP, dropout=0.1):
|
||||
model = Model(
|
||||
"precomputable_affine",
|
||||
forward,
|
||||
init=init,
|
||||
dims={"nO": nO, "nI": nI, "nF": nF, "nP": nP},
|
||||
params={"W": None, "b": None, "pad": None},
|
||||
attrs={"dropout_rate": dropout},
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def forward(model, X, is_train):
|
||||
nF = model.get_dim("nF")
|
||||
nO = model.get_dim("nO")
|
||||
nP = model.get_dim("nP")
|
||||
nI = model.get_dim("nI")
|
||||
W = model.get_param("W")
|
||||
# Preallocate array for layer output, including padding.
|
||||
Yf = model.ops.alloc2f(X.shape[0] + 1, nF * nO * nP, zeros=False)
|
||||
model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True, out=Yf[1:])
|
||||
Yf = Yf.reshape((Yf.shape[0], nF, nO, nP))
|
||||
|
||||
# Set padding. Padding has shape (1, nF, nO, nP). Unfortunately, we cannot
|
||||
# change its shape to (nF, nO, nP) without breaking existing models. So
|
||||
# we'll squeeze the first dimension here.
|
||||
Yf[0] = model.ops.xp.squeeze(model.get_param("pad"), 0)
|
||||
|
||||
def backward(dY_ids):
|
||||
# This backprop is particularly tricky, because we get back a different
|
||||
# thing from what we put out. We put out an array of shape:
|
||||
# (nB, nF, nO, nP), and get back:
|
||||
# (nB, nO, nP) and ids (nB, nF)
|
||||
# The ids tell us the values of nF, so we would have:
|
||||
#
|
||||
# dYf = zeros((nB, nF, nO, nP))
|
||||
# for b in range(nB):
|
||||
# for f in range(nF):
|
||||
# dYf[b, ids[b, f]] += dY[b]
|
||||
#
|
||||
# However, we avoid building that array for efficiency -- and just pass
|
||||
# in the indices.
|
||||
dY, ids = dY_ids
|
||||
assert dY.ndim == 3
|
||||
assert dY.shape[1] == nO, dY.shape
|
||||
assert dY.shape[2] == nP, dY.shape
|
||||
# nB = dY.shape[0]
|
||||
model.inc_grad("pad", _backprop_precomputable_affine_padding(model, dY, ids))
|
||||
Xf = X[ids]
|
||||
Xf = Xf.reshape((Xf.shape[0], nF * nI))
|
||||
|
||||
model.inc_grad("b", dY.sum(axis=0))
|
||||
dY = dY.reshape((dY.shape[0], nO * nP))
|
||||
|
||||
Wopfi = W.transpose((1, 2, 0, 3))
|
||||
Wopfi = Wopfi.reshape((nO * nP, nF * nI))
|
||||
dXf = model.ops.gemm(dY.reshape((dY.shape[0], nO * nP)), Wopfi)
|
||||
|
||||
dWopfi = model.ops.gemm(dY, Xf, trans1=True)
|
||||
dWopfi = dWopfi.reshape((nO, nP, nF, nI))
|
||||
# (o, p, f, i) --> (f, o, p, i)
|
||||
dWopfi = dWopfi.transpose((2, 0, 1, 3))
|
||||
model.inc_grad("W", dWopfi)
|
||||
return dXf.reshape((dXf.shape[0], nF, nI))
|
||||
|
||||
return Yf, backward
|
||||
|
||||
|
||||
def _backprop_precomputable_affine_padding(model, dY, ids):
|
||||
nB = dY.shape[0]
|
||||
nF = model.get_dim("nF")
|
||||
nP = model.get_dim("nP")
|
||||
nO = model.get_dim("nO")
|
||||
# Backprop the "padding", used as a filler for missing values.
|
||||
# Values that are missing are set to -1, and each state vector could
|
||||
# have multiple missing values. The padding has different values for
|
||||
# different missing features. The gradient of the padding vector is:
|
||||
#
|
||||
# for b in range(nB):
|
||||
# for f in range(nF):
|
||||
# if ids[b, f] < 0:
|
||||
# d_pad[f] += dY[b]
|
||||
#
|
||||
# Which can be rewritten as:
|
||||
#
|
||||
# (ids < 0).T @ dY
|
||||
mask = model.ops.asarray(ids < 0, dtype="f")
|
||||
d_pad = model.ops.gemm(mask, dY.reshape(nB, nO * nP), trans1=True)
|
||||
return d_pad.reshape((1, nF, nO, nP))
|
||||
|
||||
|
||||
def init(model, X=None, Y=None):
|
||||
"""This is like the 'layer sequential unit variance', but instead
|
||||
of taking the actual inputs, we randomly generate whitened data.
|
||||
|
||||
Why's this all so complicated? We have a huge number of inputs,
|
||||
and the maxout unit makes guessing the dynamics tricky. Instead
|
||||
we set the maxout weights to values that empirically result in
|
||||
whitened outputs given whitened inputs.
|
||||
"""
|
||||
if model.has_param("W") and model.get_param("W").any():
|
||||
return
|
||||
|
||||
nF = model.get_dim("nF")
|
||||
nO = model.get_dim("nO")
|
||||
nP = model.get_dim("nP")
|
||||
nI = model.get_dim("nI")
|
||||
W = model.ops.alloc4f(nF, nO, nP, nI)
|
||||
b = model.ops.alloc2f(nO, nP)
|
||||
pad = model.ops.alloc4f(1, nF, nO, nP)
|
||||
|
||||
ops = model.ops
|
||||
W = normal_init(ops, W.shape, mean=float(ops.xp.sqrt(1.0 / nF * nI)))
|
||||
pad = normal_init(ops, pad.shape, mean=1.0)
|
||||
model.set_param("W", W)
|
||||
model.set_param("b", b)
|
||||
model.set_param("pad", pad)
|
||||
|
||||
ids = ops.alloc((5000, nF), dtype="f")
|
||||
ids += ops.xp.random.uniform(0, 1000, ids.shape)
|
||||
ids = ops.asarray(ids, dtype="i")
|
||||
tokvecs = ops.alloc((5000, nI), dtype="f")
|
||||
tokvecs += ops.xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
|
||||
tokvecs.shape
|
||||
)
|
||||
|
||||
def predict(ids, tokvecs):
|
||||
# nS ids. nW tokvecs. Exclude the padding array.
|
||||
hiddens = model.predict(tokvecs[:-1]) # (nW, f, o, p)
|
||||
vectors = model.ops.alloc((ids.shape[0], nO * nP), dtype="f")
|
||||
# need nS vectors
|
||||
hiddens = hiddens.reshape((hiddens.shape[0] * nF, nO * nP))
|
||||
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
|
||||
vectors = vectors.reshape((vectors.shape[0], nO, nP))
|
||||
vectors += b
|
||||
vectors = model.ops.asarray(vectors)
|
||||
if nP >= 2:
|
||||
return model.ops.maxout(vectors)[0]
|
||||
else:
|
||||
return vectors * (vectors >= 0)
|
||||
|
||||
tol_var = 0.01
|
||||
tol_mean = 0.01
|
||||
t_max = 10
|
||||
W = model.get_param("W").copy()
|
||||
b = model.get_param("b").copy()
|
||||
for t_i in range(t_max):
|
||||
acts1 = predict(ids, tokvecs)
|
||||
var = model.ops.xp.var(acts1)
|
||||
mean = model.ops.xp.mean(acts1)
|
||||
if abs(var - 1.0) >= tol_var:
|
||||
W /= model.ops.xp.sqrt(var)
|
||||
model.set_param("W", W)
|
||||
elif abs(mean) >= tol_mean:
|
||||
b -= mean
|
||||
model.set_param("b", b)
|
||||
else:
|
||||
break
|
|
@ -1,17 +1,19 @@
|
|||
from typing import Optional, List, cast
|
||||
from thinc.api import Model, chain, list2array, Linear, zero_init, use_ops
|
||||
from typing import Optional, List, Tuple, Any, Literal
|
||||
from thinc.types import Floats2d
|
||||
from thinc.api import Model
|
||||
import warnings
|
||||
|
||||
from ...errors import Errors
|
||||
from ...compat import Literal
|
||||
from ...errors import Errors, Warnings
|
||||
from ...util import registry
|
||||
from .._precomputable_affine import PrecomputableAffine
|
||||
from ..tb_framework import TransitionModel
|
||||
from ...tokens import Doc
|
||||
from ...tokens.doc import Doc
|
||||
|
||||
TransitionSystem = Any # TODO
|
||||
State = Any # TODO
|
||||
|
||||
|
||||
@registry.architectures("spacy.TransitionBasedParser.v2")
|
||||
def build_tb_parser_model(
|
||||
@registry.architectures.register("spacy.TransitionBasedParser.v2")
|
||||
def transition_parser_v2(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
state_type: Literal["parser", "ner"],
|
||||
extra_state_tokens: bool,
|
||||
|
@ -19,6 +21,46 @@ def build_tb_parser_model(
|
|||
maxout_pieces: int,
|
||||
use_upper: bool,
|
||||
nO: Optional[int] = None,
|
||||
) -> Model:
|
||||
if not use_upper:
|
||||
warnings.warn(Warnings.W400)
|
||||
|
||||
return build_tb_parser_model(
|
||||
tok2vec,
|
||||
state_type,
|
||||
extra_state_tokens,
|
||||
hidden_width,
|
||||
maxout_pieces,
|
||||
nO=nO,
|
||||
)
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.TransitionBasedParser.v3")
|
||||
def transition_parser_v3(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
state_type: Literal["parser", "ner"],
|
||||
extra_state_tokens: bool,
|
||||
hidden_width: int,
|
||||
maxout_pieces: int,
|
||||
nO: Optional[int] = None,
|
||||
) -> Model:
|
||||
return build_tb_parser_model(
|
||||
tok2vec,
|
||||
state_type,
|
||||
extra_state_tokens,
|
||||
hidden_width,
|
||||
maxout_pieces,
|
||||
nO=nO,
|
||||
)
|
||||
|
||||
|
||||
def build_tb_parser_model(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
state_type: Literal["parser", "ner"],
|
||||
extra_state_tokens: bool,
|
||||
hidden_width: int,
|
||||
maxout_pieces: int,
|
||||
nO: Optional[int] = None,
|
||||
) -> Model:
|
||||
"""
|
||||
Build a transition-based parser model. Can apply to NER or dependency-parsing.
|
||||
|
@ -51,14 +93,7 @@ def build_tb_parser_model(
|
|||
feature sets (for the NER) or 13 (for the parser).
|
||||
hidden_width (int): The width of the hidden layer.
|
||||
maxout_pieces (int): How many pieces to use in the state prediction layer.
|
||||
Recommended values are 1, 2 or 3. If 1, the maxout non-linearity
|
||||
is replaced with a ReLu non-linearity if use_upper=True, and no
|
||||
non-linearity if use_upper=False.
|
||||
use_upper (bool): Whether to use an additional hidden layer after the state
|
||||
vector in order to predict the action scores. It is recommended to set
|
||||
this to False for large pretrained models such as transformers, and True
|
||||
for smaller networks. The upper layer is computed on CPU, which becomes
|
||||
a bottleneck on larger GPU-based models, where it's also less necessary.
|
||||
Recommended values are 1, 2 or 3.
|
||||
nO (int or None): The number of actions the model will predict between.
|
||||
Usually inferred from data at the beginning of training, or loaded from
|
||||
disk.
|
||||
|
@ -69,106 +104,11 @@ def build_tb_parser_model(
|
|||
nr_feature_tokens = 6 if extra_state_tokens else 3
|
||||
else:
|
||||
raise ValueError(Errors.E917.format(value=state_type))
|
||||
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
|
||||
tok2vec = chain(
|
||||
tok2vec,
|
||||
list2array(),
|
||||
Linear(hidden_width, t2v_width),
|
||||
return TransitionModel(
|
||||
tok2vec=tok2vec,
|
||||
state_tokens=nr_feature_tokens,
|
||||
hidden_width=hidden_width,
|
||||
maxout_pieces=maxout_pieces,
|
||||
nO=nO,
|
||||
unseen_classes=set(),
|
||||
)
|
||||
tok2vec.set_dim("nO", hidden_width)
|
||||
lower = _define_lower(
|
||||
nO=hidden_width if use_upper else nO,
|
||||
nF=nr_feature_tokens,
|
||||
nI=tok2vec.get_dim("nO"),
|
||||
nP=maxout_pieces,
|
||||
)
|
||||
upper = None
|
||||
if use_upper:
|
||||
with use_ops("cpu"):
|
||||
# Initialize weights at zero, as it's a classification layer.
|
||||
upper = _define_upper(nO=nO, nI=None)
|
||||
return TransitionModel(tok2vec, lower, upper, resize_output)
|
||||
|
||||
|
||||
def _define_upper(nO, nI):
|
||||
return Linear(nO=nO, nI=nI, init_W=zero_init)
|
||||
|
||||
|
||||
def _define_lower(nO, nF, nI, nP):
|
||||
return PrecomputableAffine(nO=nO, nF=nF, nI=nI, nP=nP)
|
||||
|
||||
|
||||
def resize_output(model, new_nO):
|
||||
if model.attrs["has_upper"]:
|
||||
return _resize_upper(model, new_nO)
|
||||
return _resize_lower(model, new_nO)
|
||||
|
||||
|
||||
def _resize_upper(model, new_nO):
|
||||
upper = model.get_ref("upper")
|
||||
if upper.has_dim("nO") is None:
|
||||
upper.set_dim("nO", new_nO)
|
||||
return model
|
||||
elif new_nO == upper.get_dim("nO"):
|
||||
return model
|
||||
|
||||
smaller = upper
|
||||
nI = smaller.maybe_get_dim("nI")
|
||||
with use_ops("cpu"):
|
||||
larger = _define_upper(nO=new_nO, nI=nI)
|
||||
# it could be that the model is not initialized yet, then skip this bit
|
||||
if smaller.has_param("W"):
|
||||
larger_W = larger.ops.alloc2f(new_nO, nI)
|
||||
larger_b = larger.ops.alloc1f(new_nO)
|
||||
smaller_W = smaller.get_param("W")
|
||||
smaller_b = smaller.get_param("b")
|
||||
# Weights are stored in (nr_out, nr_in) format, so we're basically
|
||||
# just adding rows here.
|
||||
if smaller.has_dim("nO"):
|
||||
old_nO = smaller.get_dim("nO")
|
||||
larger_W[:old_nO] = smaller_W
|
||||
larger_b[:old_nO] = smaller_b
|
||||
for i in range(old_nO, new_nO):
|
||||
model.attrs["unseen_classes"].add(i)
|
||||
|
||||
larger.set_param("W", larger_W)
|
||||
larger.set_param("b", larger_b)
|
||||
model._layers[-1] = larger
|
||||
model.set_ref("upper", larger)
|
||||
return model
|
||||
|
||||
|
||||
def _resize_lower(model, new_nO):
|
||||
lower = model.get_ref("lower")
|
||||
if lower.has_dim("nO") is None:
|
||||
lower.set_dim("nO", new_nO)
|
||||
return model
|
||||
|
||||
smaller = lower
|
||||
nI = smaller.maybe_get_dim("nI")
|
||||
nF = smaller.maybe_get_dim("nF")
|
||||
nP = smaller.maybe_get_dim("nP")
|
||||
larger = _define_lower(nO=new_nO, nI=nI, nF=nF, nP=nP)
|
||||
# it could be that the model is not initialized yet, then skip this bit
|
||||
if smaller.has_param("W"):
|
||||
larger_W = larger.ops.alloc4f(nF, new_nO, nP, nI)
|
||||
larger_b = larger.ops.alloc2f(new_nO, nP)
|
||||
larger_pad = larger.ops.alloc4f(1, nF, new_nO, nP)
|
||||
smaller_W = smaller.get_param("W")
|
||||
smaller_b = smaller.get_param("b")
|
||||
smaller_pad = smaller.get_param("pad")
|
||||
# Copy the old weights and padding into the new layer
|
||||
if smaller.has_dim("nO"):
|
||||
old_nO = smaller.get_dim("nO")
|
||||
larger_W[:, 0:old_nO, :, :] = smaller_W
|
||||
larger_pad[:, :, 0:old_nO, :] = smaller_pad
|
||||
larger_b[0:old_nO, :] = smaller_b
|
||||
for i in range(old_nO, new_nO):
|
||||
model.attrs["unseen_classes"].add(i)
|
||||
|
||||
larger.set_param("W", larger_W)
|
||||
larger.set_param("b", larger_b)
|
||||
larger.set_param("pad", larger_pad)
|
||||
model._layers[1] = larger
|
||||
model.set_ref("lower", larger)
|
||||
return model
|
||||
|
|
|
@ -1,49 +0,0 @@
|
|||
from libc.string cimport memset, memcpy
|
||||
from thinc.backends.cblas cimport CBlas
|
||||
from ..typedefs cimport weight_t, hash_t
|
||||
from ..pipeline._parser_internals._state cimport StateC
|
||||
|
||||
|
||||
cdef struct SizesC:
|
||||
int states
|
||||
int classes
|
||||
int hiddens
|
||||
int pieces
|
||||
int feats
|
||||
int embed_width
|
||||
|
||||
|
||||
cdef struct WeightsC:
|
||||
const float* feat_weights
|
||||
const float* feat_bias
|
||||
const float* hidden_bias
|
||||
const float* hidden_weights
|
||||
const float* seen_classes
|
||||
|
||||
|
||||
cdef struct ActivationsC:
|
||||
int* token_ids
|
||||
float* unmaxed
|
||||
float* scores
|
||||
float* hiddens
|
||||
int* is_valid
|
||||
int _curr_size
|
||||
int _max_size
|
||||
|
||||
|
||||
cdef WeightsC get_c_weights(model) except *
|
||||
|
||||
cdef SizesC get_c_sizes(model, int batch_size) except *
|
||||
|
||||
cdef ActivationsC alloc_activations(SizesC n) nogil
|
||||
|
||||
cdef void free_activations(const ActivationsC* A) nogil
|
||||
|
||||
cdef void predict_states(CBlas cblas, ActivationsC* A, StateC** states,
|
||||
const WeightsC* W, SizesC n) nogil
|
||||
|
||||
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil
|
||||
|
||||
cdef void cpu_log_loss(float* d_scores,
|
||||
const float* costs, const int* is_valid, const float* scores, int O) nogil
|
||||
|
|
@ -1,500 +0,0 @@
|
|||
# cython: infer_types=True, cdivision=True, boundscheck=False
|
||||
cimport numpy as np
|
||||
from libc.math cimport exp
|
||||
from libc.string cimport memset, memcpy
|
||||
from libc.stdlib cimport calloc, free, realloc
|
||||
from thinc.backends.cblas cimport saxpy, sgemm
|
||||
|
||||
import numpy
|
||||
import numpy.random
|
||||
from thinc.api import Model, CupyOps, NumpyOps, get_ops
|
||||
|
||||
from .. import util
|
||||
from ..errors import Errors
|
||||
from ..typedefs cimport weight_t, class_t, hash_t
|
||||
from ..pipeline._parser_internals.stateclass cimport StateClass
|
||||
|
||||
|
||||
cdef WeightsC get_c_weights(model) except *:
|
||||
cdef WeightsC output
|
||||
cdef precompute_hiddens state2vec = model.state2vec
|
||||
output.feat_weights = state2vec.get_feat_weights()
|
||||
output.feat_bias = <const float*>state2vec.bias.data
|
||||
cdef np.ndarray vec2scores_W
|
||||
cdef np.ndarray vec2scores_b
|
||||
if model.vec2scores is None:
|
||||
output.hidden_weights = NULL
|
||||
output.hidden_bias = NULL
|
||||
else:
|
||||
vec2scores_W = model.vec2scores.get_param("W")
|
||||
vec2scores_b = model.vec2scores.get_param("b")
|
||||
output.hidden_weights = <const float*>vec2scores_W.data
|
||||
output.hidden_bias = <const float*>vec2scores_b.data
|
||||
cdef np.ndarray class_mask = model._class_mask
|
||||
output.seen_classes = <const float*>class_mask.data
|
||||
return output
|
||||
|
||||
|
||||
cdef SizesC get_c_sizes(model, int batch_size) except *:
|
||||
cdef SizesC output
|
||||
output.states = batch_size
|
||||
if model.vec2scores is None:
|
||||
output.classes = model.state2vec.get_dim("nO")
|
||||
else:
|
||||
output.classes = model.vec2scores.get_dim("nO")
|
||||
output.hiddens = model.state2vec.get_dim("nO")
|
||||
output.pieces = model.state2vec.get_dim("nP")
|
||||
output.feats = model.state2vec.get_dim("nF")
|
||||
output.embed_width = model.tokvecs.shape[1]
|
||||
return output
|
||||
|
||||
|
||||
cdef ActivationsC alloc_activations(SizesC n) nogil:
|
||||
cdef ActivationsC A
|
||||
memset(&A, 0, sizeof(A))
|
||||
resize_activations(&A, n)
|
||||
return A
|
||||
|
||||
|
||||
cdef void free_activations(const ActivationsC* A) nogil:
|
||||
free(A.token_ids)
|
||||
free(A.scores)
|
||||
free(A.unmaxed)
|
||||
free(A.hiddens)
|
||||
free(A.is_valid)
|
||||
|
||||
|
||||
cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
|
||||
if n.states <= A._max_size:
|
||||
A._curr_size = n.states
|
||||
return
|
||||
if A._max_size == 0:
|
||||
A.token_ids = <int*>calloc(n.states * n.feats, sizeof(A.token_ids[0]))
|
||||
A.scores = <float*>calloc(n.states * n.classes, sizeof(A.scores[0]))
|
||||
A.unmaxed = <float*>calloc(n.states * n.hiddens * n.pieces, sizeof(A.unmaxed[0]))
|
||||
A.hiddens = <float*>calloc(n.states * n.hiddens, sizeof(A.hiddens[0]))
|
||||
A.is_valid = <int*>calloc(n.states * n.classes, sizeof(A.is_valid[0]))
|
||||
A._max_size = n.states
|
||||
else:
|
||||
A.token_ids = <int*>realloc(A.token_ids,
|
||||
n.states * n.feats * sizeof(A.token_ids[0]))
|
||||
A.scores = <float*>realloc(A.scores,
|
||||
n.states * n.classes * sizeof(A.scores[0]))
|
||||
A.unmaxed = <float*>realloc(A.unmaxed,
|
||||
n.states * n.hiddens * n.pieces * sizeof(A.unmaxed[0]))
|
||||
A.hiddens = <float*>realloc(A.hiddens,
|
||||
n.states * n.hiddens * sizeof(A.hiddens[0]))
|
||||
A.is_valid = <int*>realloc(A.is_valid,
|
||||
n.states * n.classes * sizeof(A.is_valid[0]))
|
||||
A._max_size = n.states
|
||||
A._curr_size = n.states
|
||||
|
||||
|
||||
cdef void predict_states(CBlas cblas, ActivationsC* A, StateC** states,
|
||||
const WeightsC* W, SizesC n) nogil:
|
||||
cdef double one = 1.0
|
||||
resize_activations(A, n)
|
||||
for i in range(n.states):
|
||||
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
|
||||
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
|
||||
memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float))
|
||||
sum_state_features(cblas, A.unmaxed,
|
||||
W.feat_weights, A.token_ids, n.states, n.feats, n.hiddens * n.pieces)
|
||||
for i in range(n.states):
|
||||
saxpy(cblas)(n.hiddens * n.pieces, 1., W.feat_bias, 1, &A.unmaxed[i*n.hiddens*n.pieces], 1)
|
||||
for j in range(n.hiddens):
|
||||
index = i * n.hiddens * n.pieces + j * n.pieces
|
||||
which = _arg_max(&A.unmaxed[index], n.pieces)
|
||||
A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which]
|
||||
memset(A.scores, 0, n.states * n.classes * sizeof(float))
|
||||
if W.hidden_weights == NULL:
|
||||
memcpy(A.scores, A.hiddens, n.states * n.classes * sizeof(float))
|
||||
else:
|
||||
# Compute hidden-to-output
|
||||
sgemm(cblas)(False, True, n.states, n.classes, n.hiddens,
|
||||
1.0, <const float *>A.hiddens, n.hiddens,
|
||||
<const float *>W.hidden_weights, n.hiddens,
|
||||
0.0, A.scores, n.classes)
|
||||
# Add bias
|
||||
for i in range(n.states):
|
||||
saxpy(cblas)(n.classes, 1., W.hidden_bias, 1, &A.scores[i*n.classes], 1)
|
||||
# Set unseen classes to minimum value
|
||||
i = 0
|
||||
min_ = A.scores[0]
|
||||
for i in range(1, n.states * n.classes):
|
||||
if A.scores[i] < min_:
|
||||
min_ = A.scores[i]
|
||||
for i in range(n.states):
|
||||
for j in range(n.classes):
|
||||
if not W.seen_classes[j]:
|
||||
A.scores[i*n.classes+j] = min_
|
||||
|
||||
|
||||
cdef void sum_state_features(CBlas cblas, float* output,
|
||||
const float* cached, const int* token_ids, int B, int F, int O) nogil:
|
||||
cdef int idx, b, f, i
|
||||
cdef const float* feature
|
||||
padding = cached
|
||||
cached += F * O
|
||||
cdef int id_stride = F*O
|
||||
cdef float one = 1.
|
||||
for b in range(B):
|
||||
for f in range(F):
|
||||
if token_ids[f] < 0:
|
||||
feature = &padding[f*O]
|
||||
else:
|
||||
idx = token_ids[f] * id_stride + f*O
|
||||
feature = &cached[idx]
|
||||
saxpy(cblas)(O, one, <const float*>feature, 1, &output[b*O], 1)
|
||||
token_ids += F
|
||||
|
||||
|
||||
cdef void cpu_log_loss(float* d_scores,
|
||||
const float* costs, const int* is_valid, const float* scores,
|
||||
int O) nogil:
|
||||
"""Do multi-label log loss"""
|
||||
cdef double max_, gmax, Z, gZ
|
||||
best = arg_max_if_gold(scores, costs, is_valid, O)
|
||||
guess = _arg_max(scores, O)
|
||||
|
||||
if best == -1 or guess == -1:
|
||||
# These shouldn't happen, but if they do, we want to make sure we don't
|
||||
# cause an OOB access.
|
||||
return
|
||||
Z = 1e-10
|
||||
gZ = 1e-10
|
||||
max_ = scores[guess]
|
||||
gmax = scores[best]
|
||||
for i in range(O):
|
||||
Z += exp(scores[i] - max_)
|
||||
if costs[i] <= costs[best]:
|
||||
gZ += exp(scores[i] - gmax)
|
||||
for i in range(O):
|
||||
if costs[i] <= costs[best]:
|
||||
d_scores[i] = (exp(scores[i]-max_) / Z) - (exp(scores[i]-gmax)/gZ)
|
||||
else:
|
||||
d_scores[i] = exp(scores[i]-max_) / Z
|
||||
|
||||
|
||||
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs,
|
||||
const int* is_valid, int n) nogil:
|
||||
# Find minimum cost
|
||||
cdef float cost = 1
|
||||
for i in range(n):
|
||||
if is_valid[i] and costs[i] < cost:
|
||||
cost = costs[i]
|
||||
# Now find best-scoring with that cost
|
||||
cdef int best = -1
|
||||
for i in range(n):
|
||||
if costs[i] <= cost and is_valid[i]:
|
||||
if best == -1 or scores[i] > scores[best]:
|
||||
best = i
|
||||
return best
|
||||
|
||||
|
||||
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil:
|
||||
cdef int best = -1
|
||||
for i in range(n):
|
||||
if is_valid[i] >= 1:
|
||||
if best == -1 or scores[i] > scores[best]:
|
||||
best = i
|
||||
return best
|
||||
|
||||
|
||||
|
||||
class ParserStepModel(Model):
|
||||
def __init__(self, docs, layers, *, has_upper, unseen_classes=None, train=True,
|
||||
dropout=0.1):
|
||||
Model.__init__(self, name="parser_step_model", forward=step_forward)
|
||||
self.attrs["has_upper"] = has_upper
|
||||
self.attrs["dropout_rate"] = dropout
|
||||
self.tokvecs, self.bp_tokvecs = layers[0](docs, is_train=train)
|
||||
if layers[1].get_dim("nP") >= 2:
|
||||
activation = "maxout"
|
||||
elif has_upper:
|
||||
activation = None
|
||||
else:
|
||||
activation = "relu"
|
||||
self.state2vec = precompute_hiddens(len(docs), self.tokvecs, layers[1],
|
||||
activation=activation, train=train)
|
||||
if has_upper:
|
||||
self.vec2scores = layers[-1]
|
||||
else:
|
||||
self.vec2scores = None
|
||||
self.cuda_stream = util.get_cuda_stream(non_blocking=True)
|
||||
self.backprops = []
|
||||
self._class_mask = numpy.zeros((self.nO,), dtype='f')
|
||||
self._class_mask.fill(1)
|
||||
if unseen_classes is not None:
|
||||
for class_ in unseen_classes:
|
||||
self._class_mask[class_] = 0.
|
||||
|
||||
def clear_memory(self):
|
||||
del self.tokvecs
|
||||
del self.bp_tokvecs
|
||||
del self.state2vec
|
||||
del self.backprops
|
||||
del self._class_mask
|
||||
|
||||
@property
|
||||
def nO(self):
|
||||
if self.attrs["has_upper"]:
|
||||
return self.vec2scores.get_dim("nO")
|
||||
else:
|
||||
return self.state2vec.get_dim("nO")
|
||||
|
||||
def class_is_unseen(self, class_):
|
||||
return self._class_mask[class_]
|
||||
|
||||
def mark_class_unseen(self, class_):
|
||||
self._class_mask[class_] = 0
|
||||
|
||||
def mark_class_seen(self, class_):
|
||||
self._class_mask[class_] = 1
|
||||
|
||||
def get_token_ids(self, states):
|
||||
cdef StateClass state
|
||||
states = [state for state in states if not state.is_final()]
|
||||
cdef np.ndarray ids = numpy.zeros((len(states), self.state2vec.nF),
|
||||
dtype='i', order='C')
|
||||
ids.fill(-1)
|
||||
c_ids = <int*>ids.data
|
||||
for state in states:
|
||||
state.c.set_context_tokens(c_ids, ids.shape[1])
|
||||
c_ids += ids.shape[1]
|
||||
return ids
|
||||
|
||||
def backprop_step(self, token_ids, d_vector, get_d_tokvecs):
|
||||
if isinstance(self.state2vec.ops, CupyOps) \
|
||||
and not isinstance(token_ids, self.state2vec.ops.xp.ndarray):
|
||||
# Move token_ids and d_vector to GPU, asynchronously
|
||||
self.backprops.append((
|
||||
util.get_async(self.cuda_stream, token_ids),
|
||||
util.get_async(self.cuda_stream, d_vector),
|
||||
get_d_tokvecs
|
||||
))
|
||||
else:
|
||||
self.backprops.append((token_ids, d_vector, get_d_tokvecs))
|
||||
|
||||
|
||||
def finish_steps(self, golds):
|
||||
# Add a padding vector to the d_tokvecs gradient, so that missing
|
||||
# values don't affect the real gradient.
|
||||
d_tokvecs = self.ops.alloc((self.tokvecs.shape[0]+1, self.tokvecs.shape[1]))
|
||||
# Tells CUDA to block, so our async copies complete.
|
||||
if self.cuda_stream is not None:
|
||||
self.cuda_stream.synchronize()
|
||||
for ids, d_vector, bp_vector in self.backprops:
|
||||
d_state_features = bp_vector((d_vector, ids))
|
||||
ids = ids.flatten()
|
||||
d_state_features = d_state_features.reshape(
|
||||
(ids.size, d_state_features.shape[2]))
|
||||
self.ops.scatter_add(d_tokvecs, ids,
|
||||
d_state_features)
|
||||
# Padded -- see update()
|
||||
self.bp_tokvecs(d_tokvecs[:-1])
|
||||
return d_tokvecs
|
||||
|
||||
NUMPY_OPS = NumpyOps()
|
||||
|
||||
def step_forward(model: ParserStepModel, states, is_train):
|
||||
token_ids = model.get_token_ids(states)
|
||||
vector, get_d_tokvecs = model.state2vec(token_ids, is_train)
|
||||
mask = None
|
||||
if model.attrs["has_upper"]:
|
||||
dropout_rate = model.attrs["dropout_rate"]
|
||||
if is_train and dropout_rate > 0:
|
||||
mask = NUMPY_OPS.get_dropout_mask(vector.shape, 0.1)
|
||||
vector *= mask
|
||||
scores, get_d_vector = model.vec2scores(vector, is_train)
|
||||
else:
|
||||
scores = NumpyOps().asarray(vector)
|
||||
get_d_vector = lambda d_scores: d_scores
|
||||
# If the class is unseen, make sure its score is minimum
|
||||
scores[:, model._class_mask == 0] = numpy.nanmin(scores)
|
||||
|
||||
def backprop_parser_step(d_scores):
|
||||
# Zero vectors for unseen classes
|
||||
d_scores *= model._class_mask
|
||||
d_vector = get_d_vector(d_scores)
|
||||
if mask is not None:
|
||||
d_vector *= mask
|
||||
model.backprop_step(token_ids, d_vector, get_d_tokvecs)
|
||||
return None
|
||||
return scores, backprop_parser_step
|
||||
|
||||
|
||||
cdef class precompute_hiddens:
|
||||
"""Allow a model to be "primed" by pre-computing input features in bulk.
|
||||
|
||||
This is used for the parser, where we want to take a batch of documents,
|
||||
and compute vectors for each (token, position) pair. These vectors can then
|
||||
be reused, especially for beam-search.
|
||||
|
||||
Let's say we're using 12 features for each state, e.g. word at start of
|
||||
buffer, three words on stack, their children, etc. In the normal arc-eager
|
||||
system, a document of length N is processed in 2*N states. This means we'll
|
||||
create 2*N*12 feature vectors --- but if we pre-compute, we only need
|
||||
N*12 vector computations. The saving for beam-search is much better:
|
||||
if we have a beam of k, we'll normally make 2*N*12*K computations --
|
||||
so we can save the factor k. This also gives a nice CPU/GPU division:
|
||||
we can do all our hard maths up front, packed into large multiplications,
|
||||
and do the hard-to-program parsing on the CPU.
|
||||
"""
|
||||
cdef readonly int nF, nO, nP
|
||||
cdef bint _is_synchronized
|
||||
cdef public object ops
|
||||
cdef public object numpy_ops
|
||||
cdef public object _cpu_ops
|
||||
cdef np.ndarray _features
|
||||
cdef np.ndarray _cached
|
||||
cdef np.ndarray bias
|
||||
cdef object _cuda_stream
|
||||
cdef object _bp_hiddens
|
||||
cdef object activation
|
||||
|
||||
def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None,
|
||||
activation="maxout", train=False):
|
||||
gpu_cached, bp_features = lower_model(tokvecs, train)
|
||||
cdef np.ndarray cached
|
||||
if not isinstance(gpu_cached, numpy.ndarray):
|
||||
# Note the passing of cuda_stream here: it lets
|
||||
# cupy make the copy asynchronously.
|
||||
# We then have to block before first use.
|
||||
cached = gpu_cached.get(stream=cuda_stream)
|
||||
else:
|
||||
cached = gpu_cached
|
||||
if not isinstance(lower_model.get_param("b"), numpy.ndarray):
|
||||
self.bias = lower_model.get_param("b").get(stream=cuda_stream)
|
||||
else:
|
||||
self.bias = lower_model.get_param("b")
|
||||
self.nF = cached.shape[1]
|
||||
if lower_model.has_dim("nP"):
|
||||
self.nP = lower_model.get_dim("nP")
|
||||
else:
|
||||
self.nP = 1
|
||||
self.nO = cached.shape[2]
|
||||
self.ops = lower_model.ops
|
||||
self.numpy_ops = NumpyOps()
|
||||
self._cpu_ops = get_ops("cpu") if isinstance(self.ops, CupyOps) else self.ops
|
||||
assert activation in (None, "relu", "maxout")
|
||||
self.activation = activation
|
||||
self._is_synchronized = False
|
||||
self._cuda_stream = cuda_stream
|
||||
self._cached = cached
|
||||
self._bp_hiddens = bp_features
|
||||
|
||||
cdef const float* get_feat_weights(self) except NULL:
|
||||
if not self._is_synchronized and self._cuda_stream is not None:
|
||||
self._cuda_stream.synchronize()
|
||||
self._is_synchronized = True
|
||||
return <float*>self._cached.data
|
||||
|
||||
def has_dim(self, name):
|
||||
if name == "nF":
|
||||
return self.nF if self.nF is not None else True
|
||||
elif name == "nP":
|
||||
return self.nP if self.nP is not None else True
|
||||
elif name == "nO":
|
||||
return self.nO if self.nO is not None else True
|
||||
else:
|
||||
return False
|
||||
|
||||
def get_dim(self, name):
|
||||
if name == "nF":
|
||||
return self.nF
|
||||
elif name == "nP":
|
||||
return self.nP
|
||||
elif name == "nO":
|
||||
return self.nO
|
||||
else:
|
||||
raise ValueError(Errors.E1033.format(name=name))
|
||||
|
||||
def set_dim(self, name, value):
|
||||
if name == "nF":
|
||||
self.nF = value
|
||||
elif name == "nP":
|
||||
self.nP = value
|
||||
elif name == "nO":
|
||||
self.nO = value
|
||||
else:
|
||||
raise ValueError(Errors.E1033.format(name=name))
|
||||
|
||||
def __call__(self, X, bint is_train):
|
||||
if is_train:
|
||||
return self.begin_update(X)
|
||||
else:
|
||||
return self.predict(X), lambda X: X
|
||||
|
||||
def predict(self, X):
|
||||
return self.begin_update(X)[0]
|
||||
|
||||
def begin_update(self, token_ids):
|
||||
cdef np.ndarray state_vector = numpy.zeros(
|
||||
(token_ids.shape[0], self.nO, self.nP), dtype='f')
|
||||
# This is tricky, but (assuming GPU available);
|
||||
# - Input to forward on CPU
|
||||
# - Output from forward on CPU
|
||||
# - Input to backward on GPU!
|
||||
# - Output from backward on GPU
|
||||
bp_hiddens = self._bp_hiddens
|
||||
|
||||
cdef CBlas cblas = self._cpu_ops.cblas()
|
||||
|
||||
feat_weights = self.get_feat_weights()
|
||||
cdef int[:, ::1] ids = token_ids
|
||||
sum_state_features(cblas, <float*>state_vector.data,
|
||||
feat_weights, &ids[0,0],
|
||||
token_ids.shape[0], self.nF, self.nO*self.nP)
|
||||
state_vector += self.bias
|
||||
state_vector, bp_nonlinearity = self._nonlinearity(state_vector)
|
||||
|
||||
def backward(d_state_vector_ids):
|
||||
d_state_vector, token_ids = d_state_vector_ids
|
||||
d_state_vector = bp_nonlinearity(d_state_vector)
|
||||
d_tokens = bp_hiddens((d_state_vector, token_ids))
|
||||
return d_tokens
|
||||
return state_vector, backward
|
||||
|
||||
def _nonlinearity(self, state_vector):
|
||||
if self.activation == "maxout":
|
||||
return self._maxout_nonlinearity(state_vector)
|
||||
else:
|
||||
return self._relu_nonlinearity(state_vector)
|
||||
|
||||
def _maxout_nonlinearity(self, state_vector):
|
||||
state_vector, mask = self.numpy_ops.maxout(state_vector)
|
||||
# We're outputting to CPU, but we need this variable on GPU for the
|
||||
# backward pass.
|
||||
mask = self.ops.asarray(mask)
|
||||
|
||||
def backprop_maxout(d_best):
|
||||
return self.ops.backprop_maxout(d_best, mask, self.nP)
|
||||
|
||||
return state_vector, backprop_maxout
|
||||
|
||||
def _relu_nonlinearity(self, state_vector):
|
||||
state_vector = state_vector.reshape((state_vector.shape[0], -1))
|
||||
mask = state_vector >= 0.
|
||||
state_vector *= mask
|
||||
# We're outputting to CPU, but we need this variable on GPU for the
|
||||
# backward pass.
|
||||
mask = self.ops.asarray(mask)
|
||||
|
||||
def backprop_relu(d_best):
|
||||
d_best *= mask
|
||||
return d_best.reshape((d_best.shape + (1,)))
|
||||
|
||||
return state_vector, backprop_relu
|
||||
|
||||
cdef inline int _arg_max(const float* scores, const int n_classes) nogil:
|
||||
if n_classes == 2:
|
||||
return 0 if scores[0] > scores[1] else 1
|
||||
cdef int i
|
||||
cdef int best = 0
|
||||
cdef float mode = scores[0]
|
||||
for i in range(1, n_classes):
|
||||
if scores[i] > mode:
|
||||
mode = scores[i]
|
||||
best = i
|
||||
return best
|
28
spacy/ml/tb_framework.pxd
Normal file
28
spacy/ml/tb_framework.pxd
Normal file
|
@ -0,0 +1,28 @@
|
|||
from libc.stdint cimport int8_t
|
||||
|
||||
|
||||
cdef struct SizesC:
|
||||
int states
|
||||
int classes
|
||||
int hiddens
|
||||
int pieces
|
||||
int feats
|
||||
int embed_width
|
||||
int tokens
|
||||
|
||||
|
||||
cdef struct WeightsC:
|
||||
const float* feat_weights
|
||||
const float* feat_bias
|
||||
const float* hidden_bias
|
||||
const float* hidden_weights
|
||||
const int8_t* seen_mask
|
||||
|
||||
|
||||
cdef struct ActivationsC:
|
||||
int* token_ids
|
||||
float* unmaxed
|
||||
float* hiddens
|
||||
int* is_valid
|
||||
int _curr_size
|
||||
int _max_size
|
|
@ -1,50 +0,0 @@
|
|||
from thinc.api import Model, noop
|
||||
from .parser_model import ParserStepModel
|
||||
from ..util import registry
|
||||
|
||||
|
||||
@registry.layers("spacy.TransitionModel.v1")
|
||||
def TransitionModel(
|
||||
tok2vec, lower, upper, resize_output, dropout=0.2, unseen_classes=set()
|
||||
):
|
||||
"""Set up a stepwise transition-based model"""
|
||||
if upper is None:
|
||||
has_upper = False
|
||||
upper = noop()
|
||||
else:
|
||||
has_upper = True
|
||||
# don't define nO for this object, because we can't dynamically change it
|
||||
return Model(
|
||||
name="parser_model",
|
||||
forward=forward,
|
||||
dims={"nI": tok2vec.maybe_get_dim("nI")},
|
||||
layers=[tok2vec, lower, upper],
|
||||
refs={"tok2vec": tok2vec, "lower": lower, "upper": upper},
|
||||
init=init,
|
||||
attrs={
|
||||
"has_upper": has_upper,
|
||||
"unseen_classes": set(unseen_classes),
|
||||
"resize_output": resize_output,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def forward(model, X, is_train):
|
||||
step_model = ParserStepModel(
|
||||
X,
|
||||
model.layers,
|
||||
unseen_classes=model.attrs["unseen_classes"],
|
||||
train=is_train,
|
||||
has_upper=model.attrs["has_upper"],
|
||||
)
|
||||
|
||||
return step_model, step_model.finish_steps
|
||||
|
||||
|
||||
def init(model, X=None, Y=None):
|
||||
model.get_ref("tok2vec").initialize(X=X)
|
||||
lower = model.get_ref("lower")
|
||||
lower.initialize()
|
||||
if model.attrs["has_upper"]:
|
||||
statevecs = model.ops.alloc2f(2, lower.get_dim("nO"))
|
||||
model.get_ref("upper").initialize(X=statevecs)
|
621
spacy/ml/tb_framework.pyx
Normal file
621
spacy/ml/tb_framework.pyx
Normal file
|
@ -0,0 +1,621 @@
|
|||
# cython: infer_types=True, cdivision=True, boundscheck=False
|
||||
from typing import List, Tuple, Any, Optional, TypeVar, cast
|
||||
from libc.string cimport memset, memcpy
|
||||
from libc.stdlib cimport calloc, free, realloc
|
||||
from libcpp.vector cimport vector
|
||||
import numpy
|
||||
cimport numpy as np
|
||||
from thinc.api import Model, normal_init, chain, list2array, Linear
|
||||
from thinc.api import uniform_init, glorot_uniform_init, zero_init
|
||||
from thinc.api import NumpyOps
|
||||
from thinc.backends.cblas cimport CBlas, saxpy, sgemm
|
||||
from thinc.types import Floats1d, Floats2d, Floats3d, Floats4d
|
||||
from thinc.types import Ints1d, Ints2d
|
||||
|
||||
from ..errors import Errors
|
||||
from ..pipeline._parser_internals import _beam_utils
|
||||
from ..pipeline._parser_internals.batch import GreedyBatch
|
||||
from ..pipeline._parser_internals._parser_utils cimport arg_max
|
||||
from ..pipeline._parser_internals.transition_system cimport c_transition_batch, c_apply_actions
|
||||
from ..pipeline._parser_internals.transition_system cimport TransitionSystem
|
||||
from ..pipeline._parser_internals.stateclass cimport StateC, StateClass
|
||||
from ..tokens.doc import Doc
|
||||
from ..util import registry
|
||||
|
||||
|
||||
State = Any # TODO
|
||||
|
||||
|
||||
@registry.layers("spacy.TransitionModel.v2")
|
||||
def TransitionModel(
|
||||
*,
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
beam_width: int = 1,
|
||||
beam_density: float = 0.0,
|
||||
state_tokens: int,
|
||||
hidden_width: int,
|
||||
maxout_pieces: int,
|
||||
nO: Optional[int] = None,
|
||||
unseen_classes=set(),
|
||||
) -> Model[Tuple[List[Doc], TransitionSystem], List[Tuple[State, List[Floats2d]]]]:
|
||||
"""Set up a transition-based parsing model, using a maxout hidden
|
||||
layer and a linear output layer.
|
||||
"""
|
||||
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
|
||||
tok2vec_projected = chain(tok2vec, list2array(), Linear(hidden_width, t2v_width)) # type: ignore
|
||||
tok2vec_projected.set_dim("nO", hidden_width)
|
||||
|
||||
# FIXME: we use `output` as a container for the output layer's
|
||||
# weights and biases. Thinc optimizers cannot handle resizing
|
||||
# of parameters. So, when the parser model is resized, we
|
||||
# construct a new `output` layer, which has a different key in
|
||||
# the optimizer. Once the optimizer supports parameter resizing,
|
||||
# we can replace the `output` layer by `output_W` and `output_b`
|
||||
# parameters in this model.
|
||||
output = Linear(nO=None, nI=hidden_width, init_W=zero_init)
|
||||
|
||||
return Model(
|
||||
name="parser_model",
|
||||
forward=forward,
|
||||
init=init,
|
||||
layers=[tok2vec_projected, output],
|
||||
refs={
|
||||
"tok2vec": tok2vec_projected,
|
||||
"output": output,
|
||||
},
|
||||
params={
|
||||
"hidden_W": None, # Floats2d W for the hidden layer
|
||||
"hidden_b": None, # Floats1d bias for the hidden layer
|
||||
"hidden_pad": None, # Floats1d padding for the hidden layer
|
||||
},
|
||||
dims={
|
||||
"nO": None, # Output size
|
||||
"nP": maxout_pieces,
|
||||
"nH": hidden_width,
|
||||
"nI": tok2vec_projected.maybe_get_dim("nO"),
|
||||
"nF": state_tokens,
|
||||
},
|
||||
attrs={
|
||||
"beam_width": beam_width,
|
||||
"beam_density": beam_density,
|
||||
"unseen_classes": set(unseen_classes),
|
||||
"resize_output": resize_output,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def resize_output(model: Model, new_nO: int) -> Model:
|
||||
old_nO = model.maybe_get_dim("nO")
|
||||
output = model.get_ref("output")
|
||||
if old_nO is None:
|
||||
model.set_dim("nO", new_nO)
|
||||
output.set_dim("nO", new_nO)
|
||||
output.initialize()
|
||||
return model
|
||||
elif new_nO <= old_nO:
|
||||
return model
|
||||
elif output.has_param("W"):
|
||||
nH = model.get_dim("nH")
|
||||
new_output = Linear(nO=new_nO, nI=nH, init_W=zero_init)
|
||||
new_output.initialize()
|
||||
new_W = new_output.get_param("W")
|
||||
new_b = new_output.get_param("b")
|
||||
old_W = output.get_param("W")
|
||||
old_b = output.get_param("b")
|
||||
new_W[:old_nO] = old_W # type: ignore
|
||||
new_b[:old_nO] = old_b # type: ignore
|
||||
for i in range(old_nO, new_nO):
|
||||
model.attrs["unseen_classes"].add(i)
|
||||
model.layers[-1] = new_output
|
||||
model.set_ref("output", new_output)
|
||||
# TODO: Avoid this private intrusion
|
||||
model._dims["nO"] = new_nO
|
||||
return model
|
||||
|
||||
|
||||
def init(
|
||||
model,
|
||||
X: Optional[Tuple[List[Doc], TransitionSystem]] = None,
|
||||
Y: Optional[Tuple[List[State], List[Floats2d]]] = None,
|
||||
):
|
||||
if X is not None:
|
||||
docs, moves = X
|
||||
model.get_ref("tok2vec").initialize(X=docs)
|
||||
else:
|
||||
model.get_ref("tok2vec").initialize()
|
||||
inferred_nO = _infer_nO(Y)
|
||||
if inferred_nO is not None:
|
||||
current_nO = model.maybe_get_dim("nO")
|
||||
if current_nO is None or current_nO != inferred_nO:
|
||||
model.attrs["resize_output"](model, inferred_nO)
|
||||
nO = model.get_dim("nO")
|
||||
nP = model.get_dim("nP")
|
||||
nH = model.get_dim("nH")
|
||||
nI = model.get_dim("nI")
|
||||
nF = model.get_dim("nF")
|
||||
ops = model.ops
|
||||
|
||||
Wl = ops.alloc2f(nH * nP, nF * nI)
|
||||
bl = ops.alloc1f(nH * nP)
|
||||
padl = ops.alloc1f(nI)
|
||||
# Wl = zero_init(ops, Wl.shape)
|
||||
Wl = glorot_uniform_init(ops, Wl.shape)
|
||||
padl = uniform_init(ops, padl.shape) # type: ignore
|
||||
# TODO: Experiment with whether better to initialize output_W
|
||||
model.set_param("hidden_W", Wl)
|
||||
model.set_param("hidden_b", bl)
|
||||
model.set_param("hidden_pad", padl)
|
||||
# model = _lsuv_init(model)
|
||||
return model
|
||||
|
||||
|
||||
class TransitionModelInputs:
|
||||
"""
|
||||
Input to transition model.
|
||||
"""
|
||||
|
||||
# dataclass annotation is not yet supported in Cython 0.29.x,
|
||||
# so, we'll do something close to it.
|
||||
|
||||
actions: Optional[List[Ints1d]]
|
||||
docs: List[Doc]
|
||||
max_moves: int
|
||||
moves: TransitionSystem
|
||||
states: Optional[List[State]]
|
||||
|
||||
__slots__ = [
|
||||
"actions",
|
||||
"docs",
|
||||
"max_moves",
|
||||
"moves",
|
||||
"states",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
docs: List[Doc],
|
||||
moves: TransitionSystem,
|
||||
actions: Optional[List[Ints1d]]=None,
|
||||
max_moves: int=0,
|
||||
states: Optional[List[State]]=None):
|
||||
"""
|
||||
actions (Optional[List[Ints1d]]): actions to apply for each Doc.
|
||||
docs (List[Doc]): Docs to predict transition sequences for.
|
||||
max_moves: (int): the maximum number of moves to apply, values less
|
||||
than 1 will apply moves to states until they are final states.
|
||||
moves (TransitionSystem): the transition system to use when predicting
|
||||
the transition sequences.
|
||||
states (Optional[List[States]]): the initial states to predict the
|
||||
transition sequences for. When absent, the initial states are
|
||||
initialized from the provided Docs.
|
||||
"""
|
||||
self.actions = actions
|
||||
self.docs = docs
|
||||
self.moves = moves
|
||||
self.max_moves = max_moves
|
||||
self.states = states
|
||||
|
||||
|
||||
def forward(model, inputs: TransitionModelInputs, is_train: bool):
|
||||
docs = inputs.docs
|
||||
moves = inputs.moves
|
||||
actions = inputs.actions
|
||||
|
||||
beam_width = model.attrs["beam_width"]
|
||||
hidden_pad = model.get_param("hidden_pad")
|
||||
tok2vec = model.get_ref("tok2vec")
|
||||
|
||||
states = moves.init_batch(docs) if inputs.states is None else inputs.states
|
||||
tokvecs, backprop_tok2vec = tok2vec(docs, is_train)
|
||||
tokvecs = model.ops.xp.vstack((tokvecs, hidden_pad))
|
||||
feats, backprop_feats = _forward_precomputable_affine(model, tokvecs, is_train)
|
||||
seen_mask = _get_seen_mask(model)
|
||||
|
||||
if not is_train and beam_width == 1 and isinstance(model.ops, NumpyOps):
|
||||
# Note: max_moves is only used during training, so we don't need to
|
||||
# pass it to the greedy inference path.
|
||||
return _forward_greedy_cpu(model, moves, states, feats, seen_mask, actions=actions)
|
||||
else:
|
||||
return _forward_fallback(model, moves, states, tokvecs, backprop_tok2vec,
|
||||
feats, backprop_feats, seen_mask, is_train, actions=actions,
|
||||
max_moves=inputs.max_moves)
|
||||
|
||||
|
||||
def _forward_greedy_cpu(model: Model, TransitionSystem moves, states: List[StateClass], np.ndarray feats,
|
||||
np.ndarray[np.npy_bool, ndim=1] seen_mask, actions: Optional[List[Ints1d]]=None):
|
||||
cdef vector[StateC*] c_states
|
||||
cdef StateClass state
|
||||
for state in states:
|
||||
if not state.is_final():
|
||||
c_states.push_back(state.c)
|
||||
weights = _get_c_weights(model, <float*>feats.data, seen_mask)
|
||||
# Precomputed features have rows for each token, plus one for padding.
|
||||
cdef int n_tokens = feats.shape[0] - 1
|
||||
sizes = _get_c_sizes(model, c_states.size(), n_tokens)
|
||||
cdef CBlas cblas = model.ops.cblas()
|
||||
scores = _parse_batch(cblas, moves, &c_states[0], weights, sizes, actions=actions)
|
||||
|
||||
def backprop(dY):
|
||||
raise ValueError(Errors.E4004)
|
||||
|
||||
return (states, scores), backprop
|
||||
|
||||
cdef list _parse_batch(CBlas cblas, TransitionSystem moves, StateC** states,
|
||||
WeightsC weights, SizesC sizes, actions: Optional[List[Ints1d]]=None):
|
||||
cdef int i, j
|
||||
cdef vector[StateC *] unfinished
|
||||
cdef ActivationsC activations = _alloc_activations(sizes)
|
||||
cdef np.ndarray step_scores
|
||||
cdef np.ndarray step_actions
|
||||
|
||||
scores = []
|
||||
while sizes.states >= 1:
|
||||
step_scores = numpy.empty((sizes.states, sizes.classes), dtype="f")
|
||||
step_actions = actions[0] if actions is not None else None
|
||||
with nogil:
|
||||
_predict_states(cblas, &activations, <float*>step_scores.data, states, &weights, sizes)
|
||||
if actions is None:
|
||||
# Validate actions, argmax, take action.
|
||||
c_transition_batch(moves, states, <const float*>step_scores.data, sizes.classes,
|
||||
sizes.states)
|
||||
else:
|
||||
c_apply_actions(moves, states, <const int*>step_actions.data, sizes.states)
|
||||
for i in range(sizes.states):
|
||||
if not states[i].is_final():
|
||||
unfinished.push_back(states[i])
|
||||
for i in range(unfinished.size()):
|
||||
states[i] = unfinished[i]
|
||||
sizes.states = unfinished.size()
|
||||
scores.append(step_scores)
|
||||
unfinished.clear()
|
||||
actions = actions[1:] if actions is not None else None
|
||||
_free_activations(&activations)
|
||||
|
||||
return scores
|
||||
|
||||
|
||||
def _forward_fallback(
|
||||
model: Model,
|
||||
moves: TransitionSystem,
|
||||
states: List[StateClass],
|
||||
tokvecs, backprop_tok2vec,
|
||||
feats,
|
||||
backprop_feats,
|
||||
seen_mask,
|
||||
is_train: bool,
|
||||
actions: Optional[List[Ints1d]]=None,
|
||||
max_moves: int=0):
|
||||
nF = model.get_dim("nF")
|
||||
output = model.get_ref("output")
|
||||
hidden_b = model.get_param("hidden_b")
|
||||
nH = model.get_dim("nH")
|
||||
nP = model.get_dim("nP")
|
||||
|
||||
beam_width = model.attrs["beam_width"]
|
||||
beam_density = model.attrs["beam_density"]
|
||||
|
||||
ops = model.ops
|
||||
|
||||
all_ids = []
|
||||
all_which = []
|
||||
all_statevecs = []
|
||||
all_scores = []
|
||||
if beam_width == 1:
|
||||
batch = GreedyBatch(moves, states, None)
|
||||
else:
|
||||
batch = _beam_utils.BeamBatch(
|
||||
moves, states, None, width=beam_width, density=beam_density
|
||||
)
|
||||
arange = ops.xp.arange(nF)
|
||||
n_moves = 0
|
||||
while not batch.is_done:
|
||||
ids = numpy.zeros((len(batch.get_unfinished_states()), nF), dtype="i")
|
||||
for i, state in enumerate(batch.get_unfinished_states()):
|
||||
state.set_context_tokens(ids, i, nF)
|
||||
# Sum the state features, add the bias and apply the activation (maxout)
|
||||
# to create the state vectors.
|
||||
preacts2f = feats[ids, arange].sum(axis=1) # type: ignore
|
||||
preacts2f += hidden_b
|
||||
preacts = ops.reshape3f(preacts2f, preacts2f.shape[0], nH, nP)
|
||||
assert preacts.shape[0] == len(batch.get_unfinished_states()), preacts.shape
|
||||
statevecs, which = ops.maxout(preacts)
|
||||
# We don't use output's backprop, since we want to backprop for
|
||||
# all states at once, rather than a single state.
|
||||
scores = output.predict(statevecs)
|
||||
scores[:, seen_mask] = ops.xp.nanmin(scores)
|
||||
# Transition the states, filtering out any that are finished.
|
||||
cpu_scores = ops.to_numpy(scores)
|
||||
if actions is None:
|
||||
batch.advance(cpu_scores)
|
||||
else:
|
||||
batch.advance_with_actions(actions[0])
|
||||
actions = actions[1:]
|
||||
all_scores.append(scores)
|
||||
if is_train:
|
||||
# Remember intermediate results for the backprop.
|
||||
all_ids.append(ids)
|
||||
all_statevecs.append(statevecs)
|
||||
all_which.append(which)
|
||||
if n_moves >= max_moves >= 1:
|
||||
break
|
||||
n_moves += 1
|
||||
|
||||
def backprop_parser(d_states_d_scores):
|
||||
ids = ops.xp.vstack(all_ids)
|
||||
which = ops.xp.vstack(all_which)
|
||||
statevecs = ops.xp.vstack(all_statevecs)
|
||||
_, d_scores = d_states_d_scores
|
||||
if model.attrs.get("unseen_classes"):
|
||||
# If we have a negative gradient (i.e. the probability should
|
||||
# increase) on any classes we filtered out as unseen, mark
|
||||
# them as seen.
|
||||
for clas in set(model.attrs["unseen_classes"]):
|
||||
if (d_scores[:, clas] < 0).any():
|
||||
model.attrs["unseen_classes"].remove(clas)
|
||||
d_scores *= seen_mask == False
|
||||
# Calculate the gradients for the parameters of the output layer.
|
||||
# The weight gemm is (nS, nO) @ (nS, nH).T
|
||||
output.inc_grad("b", d_scores.sum(axis=0))
|
||||
output.inc_grad("W", ops.gemm(d_scores, statevecs, trans1=True))
|
||||
# Now calculate d_statevecs, by backproping through the output linear layer.
|
||||
# This gemm is (nS, nO) @ (nO, nH)
|
||||
output_W = output.get_param("W")
|
||||
d_statevecs = ops.gemm(d_scores, output_W)
|
||||
# Backprop through the maxout activation
|
||||
d_preacts = ops.backprop_maxout(d_statevecs, which, nP)
|
||||
d_preacts2f = ops.reshape2f(d_preacts, d_preacts.shape[0], nH * nP)
|
||||
model.inc_grad("hidden_b", d_preacts2f.sum(axis=0))
|
||||
# We don't need to backprop the summation, because we pass back the IDs instead
|
||||
d_state_features = backprop_feats((d_preacts2f, ids))
|
||||
d_tokvecs = ops.alloc2f(tokvecs.shape[0], tokvecs.shape[1])
|
||||
ops.scatter_add(d_tokvecs, ids, d_state_features)
|
||||
model.inc_grad("hidden_pad", d_tokvecs[-1])
|
||||
return (backprop_tok2vec(d_tokvecs[:-1]), None)
|
||||
|
||||
return (list(batch), all_scores), backprop_parser
|
||||
|
||||
|
||||
def _get_seen_mask(model: Model) -> numpy.array[bool, 1]:
|
||||
mask = model.ops.xp.zeros(model.get_dim("nO"), dtype="bool")
|
||||
for class_ in model.attrs.get("unseen_classes", set()):
|
||||
mask[class_] = True
|
||||
return mask
|
||||
|
||||
|
||||
def _forward_precomputable_affine(model, X: Floats2d, is_train: bool):
|
||||
W: Floats2d = model.get_param("hidden_W")
|
||||
nF = model.get_dim("nF")
|
||||
nH = model.get_dim("nH")
|
||||
nP = model.get_dim("nP")
|
||||
nI = model.get_dim("nI")
|
||||
# The weights start out (nH * nP, nF * nI). Transpose and reshape to (nF * nH *nP, nI)
|
||||
W3f = model.ops.reshape3f(W, nH * nP, nF, nI)
|
||||
W3f = W3f.transpose((1, 0, 2))
|
||||
W2f = model.ops.reshape2f(W3f, nF * nH * nP, nI)
|
||||
assert X.shape == (X.shape[0], nI), X.shape
|
||||
Yf_ = model.ops.gemm(X, W2f, trans2=True)
|
||||
Yf = model.ops.reshape3f(Yf_, Yf_.shape[0], nF, nH * nP)
|
||||
|
||||
def backward(dY_ids: Tuple[Floats3d, Ints2d]):
|
||||
# This backprop is particularly tricky, because we get back a different
|
||||
# thing from what we put out. We put out an array of shape:
|
||||
# (nB, nF, nH, nP), and get back:
|
||||
# (nB, nH, nP) and ids (nB, nF)
|
||||
# The ids tell us the values of nF, so we would have:
|
||||
#
|
||||
# dYf = zeros((nB, nF, nH, nP))
|
||||
# for b in range(nB):
|
||||
# for f in range(nF):
|
||||
# dYf[b, ids[b, f]] += dY[b]
|
||||
#
|
||||
# However, we avoid building that array for efficiency -- and just pass
|
||||
# in the indices.
|
||||
dY, ids = dY_ids
|
||||
dXf = model.ops.gemm(dY, W)
|
||||
Xf = X[ids].reshape((ids.shape[0], -1))
|
||||
dW = model.ops.gemm(dY, Xf, trans1=True)
|
||||
model.inc_grad("hidden_W", dW)
|
||||
return model.ops.reshape3f(dXf, dXf.shape[0], nF, nI)
|
||||
|
||||
return Yf, backward
|
||||
|
||||
|
||||
def _infer_nO(Y: Optional[Tuple[List[State], List[Floats2d]]]) -> Optional[int]:
|
||||
if Y is None:
|
||||
return None
|
||||
_, scores = Y
|
||||
if len(scores) == 0:
|
||||
return None
|
||||
assert scores[0].shape[0] >= 1
|
||||
assert len(scores[0].shape) == 2
|
||||
return scores[0].shape[1]
|
||||
|
||||
|
||||
def _lsuv_init(model: Model):
|
||||
"""This is like the 'layer sequential unit variance', but instead
|
||||
of taking the actual inputs, we randomly generate whitened data.
|
||||
|
||||
Why's this all so complicated? We have a huge number of inputs,
|
||||
and the maxout unit makes guessing the dynamics tricky. Instead
|
||||
we set the maxout weights to values that empirically result in
|
||||
whitened outputs given whitened inputs.
|
||||
"""
|
||||
W = model.maybe_get_param("hidden_W")
|
||||
if W is not None and W.any():
|
||||
return
|
||||
|
||||
nF = model.get_dim("nF")
|
||||
nH = model.get_dim("nH")
|
||||
nP = model.get_dim("nP")
|
||||
nI = model.get_dim("nI")
|
||||
W = model.ops.alloc4f(nF, nH, nP, nI)
|
||||
b = model.ops.alloc2f(nH, nP)
|
||||
pad = model.ops.alloc4f(1, nF, nH, nP)
|
||||
|
||||
ops = model.ops
|
||||
W = normal_init(ops, W.shape, mean=float(ops.xp.sqrt(1.0 / nF * nI)))
|
||||
pad = normal_init(ops, pad.shape, mean=1.0)
|
||||
model.set_param("W", W)
|
||||
model.set_param("b", b)
|
||||
model.set_param("pad", pad)
|
||||
|
||||
ids = ops.alloc_f((5000, nF), dtype="f")
|
||||
ids += ops.xp.random.uniform(0, 1000, ids.shape)
|
||||
ids = ops.asarray(ids, dtype="i")
|
||||
tokvecs = ops.alloc_f((5000, nI), dtype="f")
|
||||
tokvecs += ops.xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
|
||||
tokvecs.shape
|
||||
)
|
||||
|
||||
def predict(ids, tokvecs):
|
||||
# nS ids. nW tokvecs. Exclude the padding array.
|
||||
hiddens, _ = _forward_precomputable_affine(model, tokvecs[:-1], False)
|
||||
vectors = model.ops.alloc2f(ids.shape[0], nH * nP)
|
||||
# need nS vectors
|
||||
hiddens = hiddens.reshape((hiddens.shape[0] * nF, nH * nP))
|
||||
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
|
||||
vectors3f = model.ops.reshape3f(vectors, vectors.shape[0], nH, nP)
|
||||
vectors3f += b
|
||||
return model.ops.maxout(vectors3f)[0]
|
||||
|
||||
tol_var = 0.01
|
||||
tol_mean = 0.01
|
||||
t_max = 10
|
||||
W = cast(Floats4d, model.get_param("hidden_W").copy())
|
||||
b = cast(Floats2d, model.get_param("hidden_b").copy())
|
||||
for t_i in range(t_max):
|
||||
acts1 = predict(ids, tokvecs)
|
||||
var = model.ops.xp.var(acts1)
|
||||
mean = model.ops.xp.mean(acts1)
|
||||
if abs(var - 1.0) >= tol_var:
|
||||
W /= model.ops.xp.sqrt(var)
|
||||
model.set_param("hidden_W", W)
|
||||
elif abs(mean) >= tol_mean:
|
||||
b -= mean
|
||||
model.set_param("hidden_b", b)
|
||||
else:
|
||||
break
|
||||
return model
|
||||
|
||||
|
||||
cdef WeightsC _get_c_weights(model, const float* feats, np.ndarray[np.npy_bool, ndim=1] seen_mask) except *:
|
||||
output = model.get_ref("output")
|
||||
cdef np.ndarray hidden_b = model.get_param("hidden_b")
|
||||
cdef np.ndarray output_W = output.get_param("W")
|
||||
cdef np.ndarray output_b = output.get_param("b")
|
||||
|
||||
cdef WeightsC weights
|
||||
weights.feat_weights = feats
|
||||
weights.feat_bias = <const float*>hidden_b.data
|
||||
weights.hidden_weights = <const float *> output_W.data
|
||||
weights.hidden_bias = <const float *> output_b.data
|
||||
weights.seen_mask = <const int8_t*> seen_mask.data
|
||||
|
||||
return weights
|
||||
|
||||
|
||||
cdef SizesC _get_c_sizes(model, int batch_size, int tokens) except *:
|
||||
cdef SizesC sizes
|
||||
sizes.states = batch_size
|
||||
sizes.classes = model.get_dim("nO")
|
||||
sizes.hiddens = model.get_dim("nH")
|
||||
sizes.pieces = model.get_dim("nP")
|
||||
sizes.feats = model.get_dim("nF")
|
||||
sizes.embed_width = model.get_dim("nI")
|
||||
sizes.tokens = tokens
|
||||
return sizes
|
||||
|
||||
|
||||
cdef ActivationsC _alloc_activations(SizesC n) nogil:
|
||||
cdef ActivationsC A
|
||||
memset(&A, 0, sizeof(A))
|
||||
_resize_activations(&A, n)
|
||||
return A
|
||||
|
||||
|
||||
cdef void _free_activations(const ActivationsC* A) nogil:
|
||||
free(A.token_ids)
|
||||
free(A.unmaxed)
|
||||
free(A.hiddens)
|
||||
free(A.is_valid)
|
||||
|
||||
|
||||
cdef void _resize_activations(ActivationsC* A, SizesC n) nogil:
|
||||
if n.states <= A._max_size:
|
||||
A._curr_size = n.states
|
||||
return
|
||||
if A._max_size == 0:
|
||||
A.token_ids = <int*>calloc(n.states * n.feats, sizeof(A.token_ids[0]))
|
||||
A.unmaxed = <float*>calloc(n.states * n.hiddens * n.pieces, sizeof(A.unmaxed[0]))
|
||||
A.hiddens = <float*>calloc(n.states * n.hiddens, sizeof(A.hiddens[0]))
|
||||
A.is_valid = <int*>calloc(n.states * n.classes, sizeof(A.is_valid[0]))
|
||||
A._max_size = n.states
|
||||
else:
|
||||
A.token_ids = <int*>realloc(A.token_ids,
|
||||
n.states * n.feats * sizeof(A.token_ids[0]))
|
||||
A.unmaxed = <float*>realloc(A.unmaxed,
|
||||
n.states * n.hiddens * n.pieces * sizeof(A.unmaxed[0]))
|
||||
A.hiddens = <float*>realloc(A.hiddens,
|
||||
n.states * n.hiddens * sizeof(A.hiddens[0]))
|
||||
A.is_valid = <int*>realloc(A.is_valid,
|
||||
n.states * n.classes * sizeof(A.is_valid[0]))
|
||||
A._max_size = n.states
|
||||
A._curr_size = n.states
|
||||
|
||||
|
||||
cdef void _predict_states(CBlas cblas, ActivationsC* A, float* scores, StateC** states, const WeightsC* W, SizesC n) nogil:
|
||||
_resize_activations(A, n)
|
||||
for i in range(n.states):
|
||||
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
|
||||
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
|
||||
_sum_state_features(cblas, A.unmaxed, W.feat_weights, A.token_ids, n)
|
||||
for i in range(n.states):
|
||||
saxpy(cblas)(n.hiddens * n.pieces, 1., W.feat_bias, 1, &A.unmaxed[i*n.hiddens*n.pieces], 1)
|
||||
for j in range(n.hiddens):
|
||||
index = i * n.hiddens * n.pieces + j * n.pieces
|
||||
which = arg_max(&A.unmaxed[index], n.pieces)
|
||||
A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which]
|
||||
if W.hidden_weights == NULL:
|
||||
memcpy(scores, A.hiddens, n.states * n.classes * sizeof(float))
|
||||
else:
|
||||
# Compute hidden-to-output
|
||||
sgemm(cblas)(False, True, n.states, n.classes, n.hiddens,
|
||||
1.0, <const float *>A.hiddens, n.hiddens,
|
||||
<const float *>W.hidden_weights, n.hiddens,
|
||||
0.0, scores, n.classes)
|
||||
# Add bias
|
||||
for i in range(n.states):
|
||||
saxpy(cblas)(n.classes, 1., W.hidden_bias, 1, &scores[i*n.classes], 1)
|
||||
# Set unseen classes to minimum value
|
||||
i = 0
|
||||
min_ = scores[0]
|
||||
for i in range(1, n.states * n.classes):
|
||||
if scores[i] < min_:
|
||||
min_ = scores[i]
|
||||
for i in range(n.states):
|
||||
for j in range(n.classes):
|
||||
if W.seen_mask[j]:
|
||||
scores[i*n.classes+j] = min_
|
||||
|
||||
|
||||
cdef void _sum_state_features(CBlas cblas, float* output,
|
||||
const float* cached, const int* token_ids, SizesC n) nogil:
|
||||
cdef int idx, b, f, i
|
||||
cdef const float* feature
|
||||
cdef int B = n.states
|
||||
cdef int O = n.hiddens * n.pieces
|
||||
cdef int F = n.feats
|
||||
cdef int T = n.tokens
|
||||
padding = cached + (T * F * O)
|
||||
cdef int id_stride = F*O
|
||||
cdef float one = 1.
|
||||
for b in range(B):
|
||||
for f in range(F):
|
||||
if token_ids[f] < 0:
|
||||
feature = &padding[f*O]
|
||||
else:
|
||||
idx = token_ids[f] * id_stride + f*O
|
||||
feature = &cached[idx]
|
||||
saxpy(cblas)(O, one, <const float*>feature, 1, &output[b*O], 1)
|
||||
token_ids += F
|
||||
|
|
@ -7,6 +7,7 @@ from cpython.ref cimport PyObject, Py_XDECREF
|
|||
from ...typedefs cimport hash_t, class_t
|
||||
from .transition_system cimport TransitionSystem, Transition
|
||||
from ...errors import Errors
|
||||
from .batch cimport Batch
|
||||
from .search cimport Beam, MaxViolation
|
||||
from .search import MaxViolation
|
||||
from .stateclass cimport StateC, StateClass
|
||||
|
@ -26,7 +27,7 @@ cdef int check_final_state(void* _state, void* extra_args) except -1:
|
|||
return state.is_final()
|
||||
|
||||
|
||||
cdef class BeamBatch(object):
|
||||
cdef class BeamBatch(Batch):
|
||||
cdef public TransitionSystem moves
|
||||
cdef public object states
|
||||
cdef public object docs
|
||||
|
|
2
spacy/pipeline/_parser_internals/_parser_utils.pxd
Normal file
2
spacy/pipeline/_parser_internals/_parser_utils.pxd
Normal file
|
@ -0,0 +1,2 @@
|
|||
cdef int arg_max(const float* scores, const int n_classes) nogil
|
||||
cdef int arg_max_if_valid(const float* scores, const int* is_valid, int n) nogil
|
22
spacy/pipeline/_parser_internals/_parser_utils.pyx
Normal file
22
spacy/pipeline/_parser_internals/_parser_utils.pyx
Normal file
|
@ -0,0 +1,22 @@
|
|||
# cython: infer_types=True
|
||||
|
||||
cdef inline int arg_max(const float* scores, const int n_classes) nogil:
|
||||
if n_classes == 2:
|
||||
return 0 if scores[0] > scores[1] else 1
|
||||
cdef int i
|
||||
cdef int best = 0
|
||||
cdef float mode = scores[0]
|
||||
for i in range(1, n_classes):
|
||||
if scores[i] > mode:
|
||||
mode = scores[i]
|
||||
best = i
|
||||
return best
|
||||
|
||||
|
||||
cdef inline int arg_max_if_valid(const float* scores, const int* is_valid, int n) nogil:
|
||||
cdef int best = -1
|
||||
for i in range(n):
|
||||
if is_valid[i] >= 1:
|
||||
if best == -1 or scores[i] > scores[best]:
|
||||
best = i
|
||||
return best
|
|
@ -6,7 +6,6 @@ cimport libcpp
|
|||
from libcpp.unordered_map cimport unordered_map
|
||||
from libcpp.vector cimport vector
|
||||
from libcpp.set cimport set
|
||||
from cpython.exc cimport PyErr_CheckSignals, PyErr_SetFromErrno
|
||||
from murmurhash.mrmr cimport hash64
|
||||
|
||||
from ...vocab cimport EMPTY_LEXEME
|
||||
|
@ -26,7 +25,7 @@ cdef struct ArcC:
|
|||
|
||||
|
||||
cdef cppclass StateC:
|
||||
int* _heads
|
||||
vector[int] _heads
|
||||
const TokenC* _sent
|
||||
vector[int] _stack
|
||||
vector[int] _rebuffer
|
||||
|
@ -34,31 +33,34 @@ cdef cppclass StateC:
|
|||
unordered_map[int, vector[ArcC]] _left_arcs
|
||||
unordered_map[int, vector[ArcC]] _right_arcs
|
||||
vector[libcpp.bool] _unshiftable
|
||||
vector[int] history
|
||||
set[int] _sent_starts
|
||||
TokenC _empty_token
|
||||
int length
|
||||
int offset
|
||||
int _b_i
|
||||
|
||||
__init__(const TokenC* sent, int length) nogil:
|
||||
__init__(const TokenC* sent, int length) nogil except +:
|
||||
this._heads.resize(length, -1)
|
||||
this._unshiftable.resize(length, False)
|
||||
|
||||
# Reserve memory ahead of time to minimize allocations during parsing.
|
||||
# The initial capacity set here ideally reflects the expected average-case/majority usage.
|
||||
cdef int init_capacity = 32
|
||||
this._stack.reserve(init_capacity)
|
||||
this._rebuffer.reserve(init_capacity)
|
||||
this._ents.reserve(init_capacity)
|
||||
this._left_arcs.reserve(init_capacity)
|
||||
this._right_arcs.reserve(init_capacity)
|
||||
this.history.reserve(init_capacity)
|
||||
|
||||
this._sent = sent
|
||||
this._heads = <int*>calloc(length, sizeof(int))
|
||||
if not (this._sent and this._heads):
|
||||
with gil:
|
||||
PyErr_SetFromErrno(MemoryError)
|
||||
PyErr_CheckSignals()
|
||||
this.offset = 0
|
||||
this.length = length
|
||||
this._b_i = 0
|
||||
for i in range(length):
|
||||
this._heads[i] = -1
|
||||
this._unshiftable.push_back(0)
|
||||
memset(&this._empty_token, 0, sizeof(TokenC))
|
||||
this._empty_token.lex = &EMPTY_LEXEME
|
||||
|
||||
__dealloc__():
|
||||
free(this._heads)
|
||||
|
||||
void set_context_tokens(int* ids, int n) nogil:
|
||||
cdef int i, j
|
||||
if n == 1:
|
||||
|
@ -131,19 +133,20 @@ cdef cppclass StateC:
|
|||
ids[i] = -1
|
||||
|
||||
int S(int i) nogil const:
|
||||
if i >= this._stack.size():
|
||||
cdef int stack_size = this._stack.size()
|
||||
if i >= stack_size or i < 0:
|
||||
return -1
|
||||
elif i < 0:
|
||||
return -1
|
||||
return this._stack.at(this._stack.size() - (i+1))
|
||||
else:
|
||||
return this._stack[stack_size - (i+1)]
|
||||
|
||||
int B(int i) nogil const:
|
||||
cdef int buf_size = this._rebuffer.size()
|
||||
if i < 0:
|
||||
return -1
|
||||
elif i < this._rebuffer.size():
|
||||
return this._rebuffer.at(this._rebuffer.size() - (i+1))
|
||||
elif i < buf_size:
|
||||
return this._rebuffer[buf_size - (i+1)]
|
||||
else:
|
||||
b_i = this._b_i + (i - this._rebuffer.size())
|
||||
b_i = this._b_i + (i - buf_size)
|
||||
if b_i >= this.length:
|
||||
return -1
|
||||
else:
|
||||
|
@ -242,7 +245,7 @@ cdef cppclass StateC:
|
|||
return 0
|
||||
elif this._sent[word].sent_start == 1:
|
||||
return 1
|
||||
elif this._sent_starts.count(word) >= 1:
|
||||
elif this._sent_starts.const_find(word) != this._sent_starts.const_end():
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
|
@ -327,7 +330,7 @@ cdef cppclass StateC:
|
|||
if item >= this._unshiftable.size():
|
||||
return 0
|
||||
else:
|
||||
return this._unshiftable.at(item)
|
||||
return this._unshiftable[item]
|
||||
|
||||
void set_reshiftable(int item) nogil:
|
||||
if item < this._unshiftable.size():
|
||||
|
@ -347,6 +350,9 @@ cdef cppclass StateC:
|
|||
this._heads[child] = head
|
||||
|
||||
void map_del_arc(unordered_map[int, vector[ArcC]]* heads_arcs, int h_i, int c_i) nogil:
|
||||
cdef vector[ArcC]* arcs
|
||||
cdef ArcC* arc
|
||||
|
||||
arcs_it = heads_arcs.find(h_i)
|
||||
if arcs_it == heads_arcs.end():
|
||||
return
|
||||
|
@ -355,12 +361,12 @@ cdef cppclass StateC:
|
|||
if arcs.size() == 0:
|
||||
return
|
||||
|
||||
arc = arcs.back()
|
||||
arc = &arcs.back()
|
||||
if arc.head == h_i and arc.child == c_i:
|
||||
arcs.pop_back()
|
||||
else:
|
||||
for i in range(arcs.size()-1):
|
||||
arc = arcs.at(i)
|
||||
arc = &deref(arcs)[i]
|
||||
if arc.head == h_i and arc.child == c_i:
|
||||
arc.head = -1
|
||||
arc.child = -1
|
||||
|
@ -400,10 +406,11 @@ cdef cppclass StateC:
|
|||
this._rebuffer = src._rebuffer
|
||||
this._sent_starts = src._sent_starts
|
||||
this._unshiftable = src._unshiftable
|
||||
memcpy(this._heads, src._heads, this.length * sizeof(this._heads[0]))
|
||||
this._heads = src._heads
|
||||
this._ents = src._ents
|
||||
this._left_arcs = src._left_arcs
|
||||
this._right_arcs = src._right_arcs
|
||||
this._b_i = src._b_i
|
||||
this.offset = src.offset
|
||||
this._empty_token = src._empty_token
|
||||
this.history = src.history
|
||||
|
|
|
@ -773,6 +773,8 @@ cdef class ArcEager(TransitionSystem):
|
|||
return list(arcs)
|
||||
|
||||
def has_gold(self, Example eg, start=0, end=None):
|
||||
if end is not None and end < 0:
|
||||
end = None
|
||||
for word in eg.y[start:end]:
|
||||
if word.dep != 0:
|
||||
return True
|
||||
|
@ -858,6 +860,7 @@ cdef class ArcEager(TransitionSystem):
|
|||
state.print_state()
|
||||
)))
|
||||
action.do(state.c, action.label)
|
||||
state.c.history.push_back(i)
|
||||
break
|
||||
else:
|
||||
failed = False
|
||||
|
|
2
spacy/pipeline/_parser_internals/batch.pxd
Normal file
2
spacy/pipeline/_parser_internals/batch.pxd
Normal file
|
@ -0,0 +1,2 @@
|
|||
cdef class Batch:
|
||||
pass
|
52
spacy/pipeline/_parser_internals/batch.pyx
Normal file
52
spacy/pipeline/_parser_internals/batch.pyx
Normal file
|
@ -0,0 +1,52 @@
|
|||
from typing import Any
|
||||
|
||||
TransitionSystem = Any # TODO
|
||||
|
||||
cdef class Batch:
|
||||
def advance(self, scores):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_states(self):
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def is_done(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_unfinished_states(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def __getitem__(self, i):
|
||||
raise NotImplementedError
|
||||
|
||||
def __len__(self):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class GreedyBatch(Batch):
|
||||
def __init__(self, moves: TransitionSystem, states, golds):
|
||||
self._moves = moves
|
||||
self._states = states
|
||||
self._next_states = [s for s in states if not s.is_final()]
|
||||
|
||||
def advance(self, scores):
|
||||
self._next_states = self._moves.transition_states(self._next_states, scores)
|
||||
|
||||
def advance_with_actions(self, actions):
|
||||
self._next_states = self._moves.apply_actions(self._next_states, actions)
|
||||
|
||||
def get_states(self):
|
||||
return self._states
|
||||
|
||||
@property
|
||||
def is_done(self):
|
||||
return all(s.is_final() for s in self._states)
|
||||
|
||||
def get_unfinished_states(self):
|
||||
return [st for st in self._states if not st.is_final()]
|
||||
|
||||
def __getitem__(self, i):
|
||||
return self._states[i]
|
||||
|
||||
def __len__(self):
|
||||
return len(self._states)
|
|
@ -156,7 +156,7 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
if token.ent_type:
|
||||
labels.add(token.ent_type_)
|
||||
return labels
|
||||
|
||||
|
||||
def move_name(self, int move, attr_t label):
|
||||
if move == OUT:
|
||||
return 'O'
|
||||
|
@ -306,6 +306,8 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
for span in eg.y.spans.get(neg_key, []):
|
||||
if span.start >= start and span.end <= end:
|
||||
return True
|
||||
if end is not None and end < 0:
|
||||
end = None
|
||||
for word in eg.y[start:end]:
|
||||
if word.ent_iob != 0:
|
||||
return True
|
||||
|
@ -646,7 +648,7 @@ cdef class Unit:
|
|||
cost += 1
|
||||
break
|
||||
return cost
|
||||
|
||||
|
||||
|
||||
|
||||
cdef class Out:
|
||||
|
|
|
@ -20,6 +20,10 @@ cdef class StateClass:
|
|||
if self._borrowed != 1:
|
||||
del self.c
|
||||
|
||||
@property
|
||||
def history(self):
|
||||
return list(self.c.history)
|
||||
|
||||
@property
|
||||
def stack(self):
|
||||
return [self.S(i) for i in range(self.c.stack_depth())]
|
||||
|
@ -176,3 +180,6 @@ cdef class StateClass:
|
|||
|
||||
def clone(self, StateClass src):
|
||||
self.c.clone(src.c)
|
||||
|
||||
def set_context_tokens(self, int[:, :] output, int row, int n_feats):
|
||||
self.c.set_context_tokens(&output[row, 0], n_feats)
|
||||
|
|
|
@ -53,3 +53,10 @@ cdef class TransitionSystem:
|
|||
|
||||
cdef int set_costs(self, int* is_valid, weight_t* costs,
|
||||
const StateC* state, gold) except -1
|
||||
|
||||
|
||||
cdef void c_apply_actions(TransitionSystem moves, StateC** states, const int* actions,
|
||||
int batch_size) nogil
|
||||
|
||||
cdef void c_transition_batch(TransitionSystem moves, StateC** states, const float* scores,
|
||||
int nr_class, int batch_size) nogil
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
# cython: infer_types=True
|
||||
from __future__ import print_function
|
||||
from cymem.cymem cimport Pool
|
||||
from libc.stdlib cimport calloc, free
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
from collections import Counter
|
||||
import srsly
|
||||
|
@ -10,6 +12,7 @@ from ...typedefs cimport weight_t, attr_t
|
|||
from ...tokens.doc cimport Doc
|
||||
from ...structs cimport TokenC
|
||||
from .stateclass cimport StateClass
|
||||
from ._parser_utils cimport arg_max_if_valid
|
||||
|
||||
from ...errors import Errors
|
||||
from ... import util
|
||||
|
@ -73,7 +76,18 @@ cdef class TransitionSystem:
|
|||
offset += len(doc)
|
||||
return states
|
||||
|
||||
def follow_history(self, doc, history):
|
||||
cdef int clas
|
||||
cdef StateClass state = StateClass(doc)
|
||||
for clas in history:
|
||||
action = self.c[clas]
|
||||
action.do(state.c, action.label)
|
||||
state.c.history.push_back(clas)
|
||||
return state
|
||||
|
||||
def get_oracle_sequence(self, Example example, _debug=False):
|
||||
if not self.has_gold(example):
|
||||
return []
|
||||
states, golds, _ = self.init_gold_batch([example])
|
||||
if not states:
|
||||
return []
|
||||
|
@ -85,6 +99,8 @@ cdef class TransitionSystem:
|
|||
return self.get_oracle_sequence_from_state(state, gold)
|
||||
|
||||
def get_oracle_sequence_from_state(self, StateClass state, gold, _debug=None):
|
||||
if state.is_final():
|
||||
return []
|
||||
cdef Pool mem = Pool()
|
||||
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
|
||||
assert self.n_moves > 0
|
||||
|
@ -110,6 +126,7 @@ cdef class TransitionSystem:
|
|||
"S0 head?", str(state.has_head(state.S(0))),
|
||||
)))
|
||||
action.do(state.c, action.label)
|
||||
state.c.history.push_back(i)
|
||||
break
|
||||
else:
|
||||
if _debug:
|
||||
|
@ -137,6 +154,28 @@ cdef class TransitionSystem:
|
|||
raise ValueError(Errors.E170.format(name=name))
|
||||
action = self.lookup_transition(name)
|
||||
action.do(state.c, action.label)
|
||||
state.c.history.push_back(action.clas)
|
||||
|
||||
def apply_actions(self, states, const int[::1] actions):
|
||||
assert len(states) == actions.shape[0]
|
||||
cdef StateClass state
|
||||
cdef vector[StateC*] c_states
|
||||
c_states.resize(len(states))
|
||||
cdef int i
|
||||
for (i, state) in enumerate(states):
|
||||
c_states[i] = state.c
|
||||
c_apply_actions(self, &c_states[0], &actions[0], actions.shape[0])
|
||||
return [state for state in states if not state.c.is_final()]
|
||||
|
||||
def transition_states(self, states, float[:, ::1] scores):
|
||||
assert len(states) == scores.shape[0]
|
||||
cdef StateClass state
|
||||
cdef float* c_scores = &scores[0, 0]
|
||||
cdef vector[StateC*] c_states
|
||||
for state in states:
|
||||
c_states.push_back(state.c)
|
||||
c_transition_batch(self, &c_states[0], c_scores, scores.shape[1], scores.shape[0])
|
||||
return [state for state in states if not state.c.is_final()]
|
||||
|
||||
cdef Transition lookup_transition(self, object name) except *:
|
||||
raise NotImplementedError
|
||||
|
@ -250,3 +289,35 @@ cdef class TransitionSystem:
|
|||
self.cfg.update(msg['cfg'])
|
||||
self.initialize_actions(labels)
|
||||
return self
|
||||
|
||||
|
||||
cdef void c_apply_actions(TransitionSystem moves, StateC** states, const int* actions,
|
||||
int batch_size) nogil:
|
||||
cdef int i
|
||||
cdef Transition action
|
||||
cdef StateC* state
|
||||
for i in range(batch_size):
|
||||
state = states[i]
|
||||
action = moves.c[actions[i]]
|
||||
action.do(state, action.label)
|
||||
state.history.push_back(action.clas)
|
||||
|
||||
|
||||
cdef void c_transition_batch(TransitionSystem moves, StateC** states, const float* scores,
|
||||
int nr_class, int batch_size) nogil:
|
||||
is_valid = <int*>calloc(moves.n_moves, sizeof(int))
|
||||
cdef int i, guess
|
||||
cdef Transition action
|
||||
for i in range(batch_size):
|
||||
moves.set_valid(is_valid, states[i])
|
||||
guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class)
|
||||
if guess == -1:
|
||||
# This shouldn't happen, but it's hard to raise an error here,
|
||||
# and we don't want to infinite loop. So, force to end state.
|
||||
states[i].force_final()
|
||||
else:
|
||||
action = moves.c[guess]
|
||||
action.do(states[i], action.label)
|
||||
states[i].history.push_back(guess)
|
||||
free(is_valid)
|
||||
|
||||
|
|
|
@ -4,8 +4,8 @@ from typing import Optional, Iterable, Callable
|
|||
from thinc.api import Model, Config
|
||||
|
||||
from ._parser_internals.transition_system import TransitionSystem
|
||||
from .transition_parser cimport Parser
|
||||
from ._parser_internals.arc_eager cimport ArcEager
|
||||
from .transition_parser import Parser
|
||||
from ._parser_internals.arc_eager import ArcEager
|
||||
|
||||
from .functions import merge_subtokens
|
||||
from ..language import Language
|
||||
|
@ -18,12 +18,11 @@ from ..util import registry
|
|||
|
||||
default_model_config = """
|
||||
[model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
@architectures = "spacy.TransitionBasedParser.v3"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.HashEmbedCNN.v2"
|
||||
|
@ -123,6 +122,7 @@ def make_parser(
|
|||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"beam_parser",
|
||||
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
||||
|
@ -228,6 +228,7 @@ def parser_score(examples, **kwargs):
|
|||
|
||||
DOCS: https://spacy.io/api/dependencyparser#score
|
||||
"""
|
||||
|
||||
def has_sents(doc):
|
||||
return doc.has_annotation("SENT_START")
|
||||
|
||||
|
@ -235,8 +236,11 @@ def parser_score(examples, **kwargs):
|
|||
dep = getattr(token, attr)
|
||||
dep = token.vocab.strings.as_string(dep).lower()
|
||||
return dep
|
||||
|
||||
results = {}
|
||||
results.update(Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs))
|
||||
results.update(
|
||||
Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs)
|
||||
)
|
||||
kwargs.setdefault("getter", dep_getter)
|
||||
kwargs.setdefault("ignore_labels", ("p", "punct"))
|
||||
results.update(Scorer.score_deps(examples, "dep", **kwargs))
|
||||
|
@ -249,11 +253,12 @@ def make_parser_scorer():
|
|||
return parser_score
|
||||
|
||||
|
||||
cdef class DependencyParser(Parser):
|
||||
class DependencyParser(Parser):
|
||||
"""Pipeline component for dependency parsing.
|
||||
|
||||
DOCS: https://spacy.io/api/dependencyparser
|
||||
"""
|
||||
|
||||
TransitionSystem = ArcEager
|
||||
|
||||
def __init__(
|
||||
|
@ -273,8 +278,7 @@ cdef class DependencyParser(Parser):
|
|||
incorrect_spans_key=None,
|
||||
scorer=parser_score,
|
||||
):
|
||||
"""Create a DependencyParser.
|
||||
"""
|
||||
"""Create a DependencyParser."""
|
||||
super().__init__(
|
||||
vocab,
|
||||
model,
|
|
@ -5,7 +5,7 @@ from itertools import islice
|
|||
import numpy as np
|
||||
|
||||
import srsly
|
||||
from thinc.api import Config, Model
|
||||
from thinc.api import Config, Model, SequenceCategoricalCrossentropy, NumpyOps
|
||||
from thinc.types import ArrayXd, Floats2d, Ints1d
|
||||
from thinc.legacy import LegacySequenceCategoricalCrossentropy
|
||||
|
||||
|
@ -22,6 +22,8 @@ from .. import util
|
|||
|
||||
|
||||
ActivationsT = Dict[str, Union[List[Floats2d], List[Ints1d]]]
|
||||
# The cutoff value of *top_k* above which an alternative method is used to process guesses.
|
||||
TOP_K_GUARDRAIL = 20
|
||||
|
||||
|
||||
default_model_config = """
|
||||
|
@ -125,6 +127,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
self.cfg: Dict[str, Any] = {"labels": []}
|
||||
self.scorer = scorer
|
||||
self.save_activations = save_activations
|
||||
self.numpy_ops = NumpyOps()
|
||||
|
||||
def get_loss(
|
||||
self, examples: Iterable[Example], scores: List[Floats2d]
|
||||
|
@ -140,7 +143,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
for (predicted, gold_lemma) in zip(
|
||||
eg.predicted, eg.get_aligned("LEMMA", as_string=True)
|
||||
):
|
||||
if gold_lemma is None:
|
||||
if gold_lemma is None or gold_lemma == "":
|
||||
label = -1
|
||||
else:
|
||||
tree_id = self.trees.add(predicted.text, gold_lemma)
|
||||
|
@ -165,7 +168,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
student_scores: Scores representing the student model's predictions.
|
||||
|
||||
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||
|
||||
|
||||
DOCS: https://spacy.io/api/edittreelemmatizer#get_teacher_student_loss
|
||||
"""
|
||||
loss_func = LegacySequenceCategoricalCrossentropy(normalize=False)
|
||||
|
@ -175,6 +178,18 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
return float(loss), d_scores
|
||||
|
||||
def predict(self, docs: Iterable[Doc]) -> ActivationsT:
|
||||
if self.top_k == 1:
|
||||
scores2guesses = self._scores2guesses_top_k_equals_1
|
||||
elif self.top_k <= TOP_K_GUARDRAIL:
|
||||
scores2guesses = self._scores2guesses_top_k_greater_1
|
||||
else:
|
||||
scores2guesses = self._scores2guesses_top_k_guardrail
|
||||
# The behaviour of *_scores2guesses_top_k_greater_1()* is efficient for values
|
||||
# of *top_k>1* that are likely to be useful when the edit tree lemmatizer is used
|
||||
# for its principal purpose of lemmatizing tokens. However, the code could also
|
||||
# be used for other purposes, and with very large values of *top_k* the method
|
||||
# becomes inefficient. In such cases, *_scores2guesses_top_k_guardrail()* is used
|
||||
# instead.
|
||||
n_docs = len(list(docs))
|
||||
if not any(len(doc) for doc in docs):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
|
@ -189,20 +204,52 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
return {"probabilities": scores, "tree_ids": guesses}
|
||||
scores = self.model.predict(docs)
|
||||
assert len(scores) == n_docs
|
||||
guesses = self._scores2guesses(docs, scores)
|
||||
guesses = scores2guesses(docs, scores)
|
||||
assert len(guesses) == n_docs
|
||||
return {"probabilities": scores, "tree_ids": guesses}
|
||||
|
||||
def _scores2guesses(self, docs, scores):
|
||||
def _scores2guesses_top_k_equals_1(self, docs, scores):
|
||||
guesses = []
|
||||
for doc, doc_scores in zip(docs, scores):
|
||||
if self.top_k == 1:
|
||||
doc_guesses = doc_scores.argmax(axis=1).reshape(-1, 1)
|
||||
else:
|
||||
doc_guesses = np.argsort(doc_scores)[..., : -self.top_k - 1 : -1]
|
||||
doc_guesses = doc_scores.argmax(axis=1)
|
||||
doc_guesses = self.numpy_ops.asarray(doc_guesses)
|
||||
|
||||
if not isinstance(doc_guesses, np.ndarray):
|
||||
doc_guesses = doc_guesses.get()
|
||||
doc_compat_guesses = []
|
||||
for i, token in enumerate(doc):
|
||||
tree_id = self.cfg["labels"][doc_guesses[i]]
|
||||
if self.trees.apply(tree_id, token.text) is not None:
|
||||
doc_compat_guesses.append(tree_id)
|
||||
else:
|
||||
doc_compat_guesses.append(-1)
|
||||
guesses.append(np.array(doc_compat_guesses))
|
||||
|
||||
return guesses
|
||||
|
||||
def _scores2guesses_top_k_greater_1(self, docs, scores):
|
||||
guesses = []
|
||||
top_k = min(self.top_k, len(self.labels))
|
||||
for doc, doc_scores in zip(docs, scores):
|
||||
doc_scores = self.numpy_ops.asarray(doc_scores)
|
||||
doc_compat_guesses = []
|
||||
for i, token in enumerate(doc):
|
||||
for _ in range(top_k):
|
||||
candidate = int(doc_scores[i].argmax())
|
||||
candidate_tree_id = self.cfg["labels"][candidate]
|
||||
if self.trees.apply(candidate_tree_id, token.text) is not None:
|
||||
doc_compat_guesses.append(candidate_tree_id)
|
||||
break
|
||||
doc_scores[i, candidate] = np.finfo(np.float32).min
|
||||
else:
|
||||
doc_compat_guesses.append(-1)
|
||||
guesses.append(np.array(doc_compat_guesses))
|
||||
|
||||
return guesses
|
||||
|
||||
def _scores2guesses_top_k_guardrail(self, docs, scores):
|
||||
guesses = []
|
||||
for doc, doc_scores in zip(docs, scores):
|
||||
doc_guesses = np.argsort(doc_scores)[..., : -self.top_k - 1 : -1]
|
||||
doc_guesses = self.numpy_ops.asarray(doc_guesses)
|
||||
|
||||
doc_compat_guesses = []
|
||||
for token, candidates in zip(doc, doc_guesses):
|
||||
|
|
|
@ -453,7 +453,11 @@ class EntityLinker(TrainablePipe):
|
|||
docs_ents: List[Ragged] = []
|
||||
docs_scores: List[Ragged] = []
|
||||
if not docs:
|
||||
return {KNOWLEDGE_BASE_IDS: final_kb_ids, "ents": docs_ents, "scores": docs_scores}
|
||||
return {
|
||||
KNOWLEDGE_BASE_IDS: final_kb_ids,
|
||||
"ents": docs_ents,
|
||||
"scores": docs_scores,
|
||||
}
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
for doc in docs:
|
||||
|
@ -585,7 +589,11 @@ class EntityLinker(TrainablePipe):
|
|||
method="predict", msg="result variables not of equal length"
|
||||
)
|
||||
raise RuntimeError(err)
|
||||
return {KNOWLEDGE_BASE_IDS: final_kb_ids, "ents": docs_ents, "scores": docs_scores}
|
||||
return {
|
||||
KNOWLEDGE_BASE_IDS: final_kb_ids,
|
||||
"ents": docs_ents,
|
||||
"scores": docs_scores,
|
||||
}
|
||||
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT) -> None:
|
||||
"""Modify a batch of documents, using pre-computed scores.
|
||||
|
|
|
@ -4,22 +4,22 @@ from typing import Optional, Iterable, Callable
|
|||
from thinc.api import Model, Config
|
||||
|
||||
from ._parser_internals.transition_system import TransitionSystem
|
||||
from .transition_parser cimport Parser
|
||||
from ._parser_internals.ner cimport BiluoPushDown
|
||||
from .transition_parser import Parser
|
||||
from ._parser_internals.ner import BiluoPushDown
|
||||
from ..language import Language
|
||||
from ..scorer import get_ner_prf, PRFScore
|
||||
from ..training import validate_examples
|
||||
from ..util import registry
|
||||
from ..training import remove_bilu_prefix
|
||||
|
||||
|
||||
default_model_config = """
|
||||
[model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
@architectures = "spacy.TransitionBasedParser.v3"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.HashEmbedCNN.v2"
|
||||
|
@ -44,8 +44,12 @@ DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"incorrect_spans_key": None,
|
||||
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
|
||||
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)
|
||||
def make_ner(
|
||||
nlp: Language,
|
||||
|
@ -98,6 +102,7 @@ def make_ner(
|
|||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"beam_ner",
|
||||
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
||||
|
@ -111,7 +116,12 @@ def make_ner(
|
|||
"incorrect_spans_key": None,
|
||||
"scorer": None,
|
||||
},
|
||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)
|
||||
def make_beam_ner(
|
||||
nlp: Language,
|
||||
|
@ -185,11 +195,12 @@ def make_ner_scorer():
|
|||
return ner_score
|
||||
|
||||
|
||||
cdef class EntityRecognizer(Parser):
|
||||
class EntityRecognizer(Parser):
|
||||
"""Pipeline component for named entity recognition.
|
||||
|
||||
DOCS: https://spacy.io/api/entityrecognizer
|
||||
"""
|
||||
|
||||
TransitionSystem = BiluoPushDown
|
||||
|
||||
def __init__(
|
||||
|
@ -207,15 +218,14 @@ cdef class EntityRecognizer(Parser):
|
|||
incorrect_spans_key=None,
|
||||
scorer=ner_score,
|
||||
):
|
||||
"""Create an EntityRecognizer.
|
||||
"""
|
||||
"""Create an EntityRecognizer."""
|
||||
super().__init__(
|
||||
vocab,
|
||||
model,
|
||||
name,
|
||||
moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
min_action_freq=1, # not relevant for NER
|
||||
min_action_freq=1, # not relevant for NER
|
||||
learn_tokens=False, # not relevant for NER
|
||||
beam_width=beam_width,
|
||||
beam_density=beam_density,
|
||||
|
@ -242,8 +252,11 @@ cdef class EntityRecognizer(Parser):
|
|||
def labels(self):
|
||||
# Get the labels from the model by looking at the available moves, e.g.
|
||||
# B-PERSON, I-PERSON, L-PERSON, U-PERSON
|
||||
labels = set(remove_bilu_prefix(move) for move in self.move_names
|
||||
if move[0] in ("B", "I", "L", "U"))
|
||||
labels = set(
|
||||
remove_bilu_prefix(move)
|
||||
for move in self.move_names
|
||||
if move[0] in ("B", "I", "L", "U")
|
||||
)
|
||||
return tuple(sorted(labels))
|
||||
|
||||
def scored_ents(self, beams):
|
|
@ -1,12 +1,11 @@
|
|||
from typing import List, Dict, Callable, Tuple, Optional, Iterable, Any, cast
|
||||
from typing import Union
|
||||
from typing import Union, Protocol, runtime_checkable
|
||||
from thinc.api import Config, Model, get_current_ops, set_dropout_rate, Ops
|
||||
from thinc.api import Optimizer
|
||||
from thinc.types import Ragged, Ints2d, Floats2d
|
||||
|
||||
import numpy
|
||||
|
||||
from ..compat import Protocol, runtime_checkable
|
||||
from ..scorer import Scorer
|
||||
from ..language import Language
|
||||
from .trainable_pipe import TrainablePipe
|
||||
|
|
|
@ -71,8 +71,8 @@ cdef class TrainablePipe(Pipe):
|
|||
teacher_pipe (Optional[TrainablePipe]): The teacher pipe to learn
|
||||
from.
|
||||
examples (Iterable[Example]): Distillation examples. The reference
|
||||
and predicted docs must have the same number of tokens and the
|
||||
same orthography.
|
||||
(teacher) and predicted (student) docs must have the same number of
|
||||
tokens and the same orthography.
|
||||
drop (float): dropout rate.
|
||||
sgd (Optional[Optimizer]): An optimizer. Will be created via
|
||||
create_optimizer if not set.
|
||||
|
|
|
@ -1,21 +0,0 @@
|
|||
from cymem.cymem cimport Pool
|
||||
from thinc.backends.cblas cimport CBlas
|
||||
|
||||
from ..vocab cimport Vocab
|
||||
from .trainable_pipe cimport TrainablePipe
|
||||
from ._parser_internals.transition_system cimport Transition, TransitionSystem
|
||||
from ._parser_internals._state cimport StateC
|
||||
from ..ml.parser_model cimport WeightsC, ActivationsC, SizesC
|
||||
|
||||
|
||||
cdef class Parser(TrainablePipe):
|
||||
cdef public object _rehearsal_model
|
||||
cdef readonly TransitionSystem moves
|
||||
cdef public object _multitasks
|
||||
cdef object _cpu_ops
|
||||
|
||||
cdef void _parseC(self, CBlas cblas, StateC** states,
|
||||
WeightsC weights, SizesC sizes) nogil
|
||||
|
||||
cdef void c_transition_batch(self, StateC** states, const float* scores,
|
||||
int nr_class, int batch_size) nogil
|
|
@ -8,26 +8,27 @@ from libcpp.vector cimport vector
|
|||
from libc.string cimport memset, memcpy
|
||||
from libc.stdlib cimport calloc, free
|
||||
import random
|
||||
import contextlib
|
||||
|
||||
import srsly
|
||||
from thinc.api import get_ops, set_dropout_rate, CupyOps, NumpyOps, Optimizer
|
||||
from thinc.api import chain, softmax_activation, use_ops
|
||||
from thinc.api import chain, softmax_activation, use_ops, get_array_module
|
||||
from thinc.legacy import LegacySequenceCategoricalCrossentropy
|
||||
from thinc.types import Floats2d
|
||||
from thinc.types import Floats2d, Ints1d
|
||||
import numpy.random
|
||||
import numpy
|
||||
import warnings
|
||||
|
||||
from ._parser_internals.stateclass cimport StateClass
|
||||
from ..ml.tb_framework import TransitionModelInputs
|
||||
from ._parser_internals.stateclass cimport StateC, StateClass
|
||||
from ._parser_internals.search cimport Beam
|
||||
from ..ml.parser_model cimport alloc_activations, free_activations
|
||||
from ..ml.parser_model cimport predict_states, arg_max_if_valid
|
||||
from ..ml.parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss
|
||||
from ..ml.parser_model cimport get_c_weights, get_c_sizes
|
||||
from ..tokens.doc cimport Doc
|
||||
from .trainable_pipe import TrainablePipe
|
||||
from .trainable_pipe cimport TrainablePipe
|
||||
from ._parser_internals cimport _beam_utils
|
||||
from ._parser_internals import _beam_utils
|
||||
from ..vocab cimport Vocab
|
||||
from ._parser_internals.transition_system cimport Transition, TransitionSystem
|
||||
from ..typedefs cimport weight_t
|
||||
|
||||
from ..training import validate_examples, validate_get_examples
|
||||
from ..training import validate_distillation_examples
|
||||
|
@ -38,7 +39,7 @@ from .. import util
|
|||
NUMPY_OPS = NumpyOps()
|
||||
|
||||
|
||||
cdef class Parser(TrainablePipe):
|
||||
class Parser(TrainablePipe):
|
||||
"""
|
||||
Base class of the DependencyParser and EntityRecognizer.
|
||||
"""
|
||||
|
@ -138,8 +139,9 @@ cdef class Parser(TrainablePipe):
|
|||
@property
|
||||
def move_names(self):
|
||||
names = []
|
||||
cdef TransitionSystem moves = self.moves
|
||||
for i in range(self.moves.n_moves):
|
||||
name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label)
|
||||
name = self.moves.move_name(moves.c[i].move, moves.c[i].label)
|
||||
# Explicitly removing the internal "U-" token used for blocking entities
|
||||
if name != "U-":
|
||||
names.append(name)
|
||||
|
@ -222,8 +224,8 @@ cdef class Parser(TrainablePipe):
|
|||
teacher_pipe (Optional[TrainablePipe]): The teacher pipe to learn
|
||||
from.
|
||||
examples (Iterable[Example]): Distillation examples. The reference
|
||||
and predicted docs must have the same number of tokens and the
|
||||
same orthography.
|
||||
(teacher) and predicted (student) docs must have the same number of
|
||||
tokens and the same orthography.
|
||||
drop (float): dropout rate.
|
||||
sgd (Optional[Optimizer]): An optimizer. Will be created via
|
||||
create_optimizer if not set.
|
||||
|
@ -245,15 +247,6 @@ cdef class Parser(TrainablePipe):
|
|||
|
||||
student_docs = [eg.predicted for eg in examples]
|
||||
|
||||
teacher_step_model = teacher_pipe.model.predict([eg.reference for eg in examples])
|
||||
student_step_model, backprop_tok2vec = self.model.begin_update(student_docs)
|
||||
|
||||
# Add softmax activation, so that we can compute student losses
|
||||
# with cross-entropy loss.
|
||||
with use_ops("numpy"):
|
||||
teacher_model = chain(teacher_step_model, softmax_activation())
|
||||
student_model = chain(student_step_model, softmax_activation())
|
||||
|
||||
max_moves = self.cfg["update_with_oracle_cut_size"]
|
||||
if max_moves >= 1:
|
||||
# Chop sequences into lengths of this many words, to make the
|
||||
|
@ -261,51 +254,39 @@ cdef class Parser(TrainablePipe):
|
|||
# sequence, we use the teacher's predictions as the gold
|
||||
# standard.
|
||||
max_moves = int(random.uniform(max_moves // 2, max_moves * 2))
|
||||
states = self._init_batch(teacher_step_model, student_docs, max_moves)
|
||||
states = self._init_batch(teacher_pipe, student_docs, max_moves)
|
||||
else:
|
||||
states = self.moves.init_batch(student_docs)
|
||||
|
||||
loss = 0.0
|
||||
n_moves = 0
|
||||
while states:
|
||||
# We do distillation as follows: (1) for every state, we compute the
|
||||
# transition softmax distributions: (2) we backpropagate the error of
|
||||
# the student (compared to the teacher) into the student model; (3)
|
||||
# for all states, we move to the next state using the student's
|
||||
# predictions.
|
||||
teacher_scores = teacher_model.predict(states)
|
||||
student_scores, backprop = student_model.begin_update(states)
|
||||
state_loss, d_scores = self.get_teacher_student_loss(teacher_scores, student_scores)
|
||||
backprop(d_scores)
|
||||
loss += state_loss
|
||||
self.transition_states(states, student_scores)
|
||||
states = [state for state in states if not state.is_final()]
|
||||
# We distill as follows: 1. we first let the student predict transition
|
||||
# sequences (and the corresponding transition probabilities); (2) we
|
||||
# let the teacher follow the student's predicted transition sequences
|
||||
# to obtain the teacher's transition probabilities; (3) we compute the
|
||||
# gradients of the student's transition distributions relative to the
|
||||
# teacher's distributions.
|
||||
|
||||
# Stop when we reach the maximum number of moves, otherwise we start
|
||||
# to process the remainder of cut sequences again.
|
||||
if max_moves >= 1 and n_moves >= max_moves:
|
||||
break
|
||||
n_moves += 1
|
||||
student_inputs = TransitionModelInputs(docs=student_docs, moves=self.moves,
|
||||
max_moves=max_moves)
|
||||
(student_states, student_scores), backprop_scores = self.model.begin_update(student_inputs)
|
||||
actions = states2actions(student_states)
|
||||
teacher_inputs = TransitionModelInputs(docs=[eg.reference for eg in examples],
|
||||
moves=self.moves, actions=actions)
|
||||
(_, teacher_scores) = teacher_pipe.model.predict(teacher_inputs)
|
||||
|
||||
backprop_tok2vec(student_docs)
|
||||
loss, d_scores = self.get_teacher_student_loss(teacher_scores, student_scores)
|
||||
backprop_scores((student_states, d_scores))
|
||||
|
||||
if sgd is not None:
|
||||
self.finish_update(sgd)
|
||||
|
||||
losses[self.name] += loss
|
||||
|
||||
del backprop
|
||||
del backprop_tok2vec
|
||||
teacher_step_model.clear_memory()
|
||||
student_step_model.clear_memory()
|
||||
del teacher_model
|
||||
del student_model
|
||||
|
||||
return losses
|
||||
|
||||
|
||||
def get_teacher_student_loss(
|
||||
self, teacher_scores: List[Floats2d], student_scores: List[Floats2d]
|
||||
self, teacher_scores: List[Floats2d], student_scores: List[Floats2d],
|
||||
normalize: bool=False,
|
||||
) -> Tuple[float, List[Floats2d]]:
|
||||
"""Calculate the loss and its gradient for a batch of student
|
||||
scores, relative to teacher scores.
|
||||
|
@ -317,10 +298,28 @@ cdef class Parser(TrainablePipe):
|
|||
|
||||
DOCS: https://spacy.io/api/dependencyparser#get_teacher_student_loss
|
||||
"""
|
||||
loss_func = LegacySequenceCategoricalCrossentropy(normalize=False)
|
||||
d_scores, loss = loss_func(student_scores, teacher_scores)
|
||||
if self.model.ops.xp.isnan(loss):
|
||||
raise ValueError(Errors.E910.format(name=self.name))
|
||||
|
||||
# We can't easily hook up a softmax layer in the parsing model, since
|
||||
# the get_loss does additional masking. So, we could apply softmax
|
||||
# manually here and use Thinc's cross-entropy loss. But it's a bit
|
||||
# suboptimal, since we can have a lot of states that would result in
|
||||
# many kernel launches. Futhermore the parsing model's backprop expects
|
||||
# a XP array, so we'd have to concat the softmaxes anyway. So, like
|
||||
# the get_loss implementation, we'll compute the loss and gradients
|
||||
# ourselves.
|
||||
|
||||
teacher_scores = self.model.ops.softmax(self.model.ops.xp.vstack(teacher_scores),
|
||||
axis=-1, inplace=True)
|
||||
student_scores = self.model.ops.softmax(self.model.ops.xp.vstack(student_scores),
|
||||
axis=-1, inplace=True)
|
||||
|
||||
assert teacher_scores.shape == student_scores.shape
|
||||
|
||||
d_scores = student_scores - teacher_scores
|
||||
if normalize:
|
||||
d_scores /= d_scores.shape[0]
|
||||
loss = (d_scores**2).sum() / d_scores.size
|
||||
|
||||
return float(loss), d_scores
|
||||
|
||||
def init_multitask_objectives(self, get_examples, pipeline, **cfg):
|
||||
|
@ -343,9 +342,6 @@ cdef class Parser(TrainablePipe):
|
|||
|
||||
stream: The sequence of documents to process.
|
||||
batch_size (int): Number of documents to accumulate into a working set.
|
||||
error_handler (Callable[[str, List[Doc], Exception], Any]): Function that
|
||||
deals with a failing batch of documents. The default function just reraises
|
||||
the exception.
|
||||
|
||||
YIELDS (Doc): Documents, in order.
|
||||
"""
|
||||
|
@ -367,78 +363,29 @@ cdef class Parser(TrainablePipe):
|
|||
def predict(self, docs):
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
self._ensure_labels_are_added(docs)
|
||||
if not any(len(doc) for doc in docs):
|
||||
result = self.moves.init_batch(docs)
|
||||
return result
|
||||
if self.cfg["beam_width"] == 1:
|
||||
return self.greedy_parse(docs, drop=0.0)
|
||||
else:
|
||||
return self.beam_parse(
|
||||
docs,
|
||||
drop=0.0,
|
||||
beam_width=self.cfg["beam_width"],
|
||||
beam_density=self.cfg["beam_density"]
|
||||
)
|
||||
with _change_attrs(self.model, beam_width=self.cfg["beam_width"], beam_density=self.cfg["beam_density"]):
|
||||
inputs = TransitionModelInputs(docs=docs, moves=self.moves)
|
||||
states_or_beams, _ = self.model.predict(inputs)
|
||||
return states_or_beams
|
||||
|
||||
def greedy_parse(self, docs, drop=0.):
|
||||
cdef vector[StateC*] states
|
||||
cdef StateClass state
|
||||
cdef CBlas cblas = self._cpu_ops.cblas()
|
||||
self._resize()
|
||||
self._ensure_labels_are_added(docs)
|
||||
set_dropout_rate(self.model, drop)
|
||||
batch = self.moves.init_batch(docs)
|
||||
model = self.model.predict(docs)
|
||||
weights = get_c_weights(model)
|
||||
for state in batch:
|
||||
if not state.is_final():
|
||||
states.push_back(state.c)
|
||||
sizes = get_c_sizes(model, states.size())
|
||||
with nogil:
|
||||
self._parseC(cblas, &states[0], weights, sizes)
|
||||
model.clear_memory()
|
||||
del model
|
||||
return batch
|
||||
with _change_attrs(self.model, beam_width=1):
|
||||
inputs = TransitionModelInputs(docs=docs, moves=self.moves)
|
||||
states, _ = self.model.predict(inputs)
|
||||
return states
|
||||
|
||||
def beam_parse(self, docs, int beam_width, float drop=0., beam_density=0.):
|
||||
cdef Beam beam
|
||||
cdef Doc doc
|
||||
self._ensure_labels_are_added(docs)
|
||||
batch = _beam_utils.BeamBatch(
|
||||
self.moves,
|
||||
self.moves.init_batch(docs),
|
||||
None,
|
||||
beam_width,
|
||||
density=beam_density
|
||||
)
|
||||
model = self.model.predict(docs)
|
||||
while not batch.is_done:
|
||||
states = batch.get_unfinished_states()
|
||||
if not states:
|
||||
break
|
||||
scores = model.predict(states)
|
||||
batch.advance(scores)
|
||||
model.clear_memory()
|
||||
del model
|
||||
return list(batch)
|
||||
|
||||
cdef void _parseC(self, CBlas cblas, StateC** states,
|
||||
WeightsC weights, SizesC sizes) nogil:
|
||||
cdef int i, j
|
||||
cdef vector[StateC*] unfinished
|
||||
cdef ActivationsC activations = alloc_activations(sizes)
|
||||
while sizes.states >= 1:
|
||||
predict_states(cblas, &activations, states, &weights, sizes)
|
||||
# Validate actions, argmax, take action.
|
||||
self.c_transition_batch(states,
|
||||
activations.scores, sizes.classes, sizes.states)
|
||||
for i in range(sizes.states):
|
||||
if not states[i].is_final():
|
||||
unfinished.push_back(states[i])
|
||||
for i in range(unfinished.size()):
|
||||
states[i] = unfinished[i]
|
||||
sizes.states = unfinished.size()
|
||||
unfinished.clear()
|
||||
free_activations(&activations)
|
||||
with _change_attrs(self.model, beam_width=self.cfg["beam_width"], beam_density=self.cfg["beam_density"]):
|
||||
inputs = TransitionModelInputs(docs=docs, moves=self.moves)
|
||||
beams, _ = self.model.predict(inputs)
|
||||
return beams
|
||||
|
||||
def set_annotations(self, docs, states_or_beams):
|
||||
cdef StateClass state
|
||||
|
@ -450,35 +397,6 @@ cdef class Parser(TrainablePipe):
|
|||
for hook in self.postprocesses:
|
||||
hook(doc)
|
||||
|
||||
def transition_states(self, states, float[:, ::1] scores):
|
||||
cdef StateClass state
|
||||
cdef float* c_scores = &scores[0, 0]
|
||||
cdef vector[StateC*] c_states
|
||||
for state in states:
|
||||
c_states.push_back(state.c)
|
||||
self.c_transition_batch(&c_states[0], c_scores, scores.shape[1], scores.shape[0])
|
||||
return [state for state in states if not state.c.is_final()]
|
||||
|
||||
cdef void c_transition_batch(self, StateC** states, const float* scores,
|
||||
int nr_class, int batch_size) nogil:
|
||||
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
|
||||
with gil:
|
||||
assert self.moves.n_moves > 0, Errors.E924.format(name=self.name)
|
||||
is_valid = <int*>calloc(self.moves.n_moves, sizeof(int))
|
||||
cdef int i, guess
|
||||
cdef Transition action
|
||||
for i in range(batch_size):
|
||||
self.moves.set_valid(is_valid, states[i])
|
||||
guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class)
|
||||
if guess == -1:
|
||||
# This shouldn't happen, but it's hard to raise an error here,
|
||||
# and we don't want to infinite loop. So, force to end state.
|
||||
states[i].force_final()
|
||||
else:
|
||||
action = self.moves.c[guess]
|
||||
action.do(states[i], action.label)
|
||||
free(is_valid)
|
||||
|
||||
def update(self, examples, *, drop=0., sgd=None, losses=None):
|
||||
cdef StateClass state
|
||||
if losses is None:
|
||||
|
@ -490,67 +408,99 @@ cdef class Parser(TrainablePipe):
|
|||
)
|
||||
for multitask in self._multitasks:
|
||||
multitask.update(examples, drop=drop, sgd=sgd)
|
||||
# We need to take care to act on the whole batch, because we might be
|
||||
# getting vectors via a listener.
|
||||
n_examples = len([eg for eg in examples if self.moves.has_gold(eg)])
|
||||
if n_examples == 0:
|
||||
return losses
|
||||
set_dropout_rate(self.model, drop)
|
||||
# The probability we use beam update, instead of falling back to
|
||||
# a greedy update
|
||||
beam_update_prob = self.cfg["beam_update_prob"]
|
||||
if self.cfg['beam_width'] >= 2 and numpy.random.random() < beam_update_prob:
|
||||
return self.update_beam(
|
||||
examples,
|
||||
beam_width=self.cfg["beam_width"],
|
||||
sgd=sgd,
|
||||
losses=losses,
|
||||
beam_density=self.cfg["beam_density"]
|
||||
)
|
||||
docs = [eg.x for eg in examples if len(eg.x)]
|
||||
|
||||
max_moves = self.cfg["update_with_oracle_cut_size"]
|
||||
if max_moves >= 1:
|
||||
# Chop sequences into lengths of this many words, to make the
|
||||
# batch uniform length.
|
||||
max_moves = int(random.uniform(max_moves // 2, max_moves * 2))
|
||||
states, golds, _ = self._init_gold_batch(
|
||||
max_moves = int(random.uniform(max(max_moves // 2, 1), max_moves * 2))
|
||||
init_states, gold_states, _ = self._init_gold_batch(
|
||||
examples,
|
||||
max_length=max_moves
|
||||
)
|
||||
else:
|
||||
states, golds, _ = self.moves.init_gold_batch(examples)
|
||||
if not states:
|
||||
return losses
|
||||
model, backprop_tok2vec = self.model.begin_update([eg.x for eg in examples])
|
||||
|
||||
all_states = list(states)
|
||||
states_golds = list(zip(states, golds))
|
||||
n_moves = 0
|
||||
while states_golds:
|
||||
states, golds = zip(*states_golds)
|
||||
scores, backprop = model.begin_update(states)
|
||||
d_scores = self.get_batch_loss(states, golds, scores, losses)
|
||||
# Note that the gradient isn't normalized by the batch size
|
||||
# here, because our "samples" are really the states...But we
|
||||
# can't normalize by the number of states either, as then we'd
|
||||
# be getting smaller gradients for states in long sequences.
|
||||
backprop(d_scores)
|
||||
# Follow the predicted action
|
||||
self.transition_states(states, scores)
|
||||
states_golds = [(s, g) for (s, g) in zip(states, golds) if not s.is_final()]
|
||||
if max_moves >= 1 and n_moves >= max_moves:
|
||||
break
|
||||
n_moves += 1
|
||||
init_states, gold_states, _ = self.moves.init_gold_batch(examples)
|
||||
|
||||
backprop_tok2vec(golds)
|
||||
inputs = TransitionModelInputs(docs=docs, moves=self.moves,
|
||||
max_moves=max_moves, states=[state.copy() for state in init_states])
|
||||
(pred_states, scores), backprop_scores = self.model.begin_update(inputs)
|
||||
if sum(s.shape[0] for s in scores) == 0:
|
||||
return losses
|
||||
d_scores = self.get_loss((gold_states, init_states, pred_states, scores),
|
||||
examples, max_moves)
|
||||
backprop_scores((pred_states, d_scores))
|
||||
if sgd not in (None, False):
|
||||
self.finish_update(sgd)
|
||||
losses[self.name] += float((d_scores**2).sum())
|
||||
# Ugh, this is annoying. If we're working on GPU, we want to free the
|
||||
# memory ASAP. It seems that Python doesn't necessarily get around to
|
||||
# removing these in time if we don't explicitly delete? It's confusing.
|
||||
del backprop
|
||||
del backprop_tok2vec
|
||||
model.clear_memory()
|
||||
del model
|
||||
del backprop_scores
|
||||
return losses
|
||||
|
||||
def get_loss(self, states_scores, examples, max_moves):
|
||||
gold_states, init_states, pred_states, scores = states_scores
|
||||
scores = self.model.ops.xp.vstack(scores)
|
||||
costs = self._get_costs_from_histories(
|
||||
examples,
|
||||
gold_states,
|
||||
init_states,
|
||||
[list(state.history) for state in pred_states],
|
||||
max_moves
|
||||
)
|
||||
xp = get_array_module(scores)
|
||||
best_costs = costs.min(axis=1, keepdims=True)
|
||||
gscores = scores.copy()
|
||||
min_score = scores.min() - 1000
|
||||
assert costs.shape == scores.shape, (costs.shape, scores.shape)
|
||||
gscores[costs > best_costs] = min_score
|
||||
max_ = scores.max(axis=1, keepdims=True)
|
||||
gmax = gscores.max(axis=1, keepdims=True)
|
||||
exp_scores = xp.exp(scores - max_)
|
||||
exp_gscores = xp.exp(gscores - gmax)
|
||||
Z = exp_scores.sum(axis=1, keepdims=True)
|
||||
gZ = exp_gscores.sum(axis=1, keepdims=True)
|
||||
d_scores = exp_scores / Z
|
||||
d_scores -= (costs <= best_costs) * (exp_gscores / gZ)
|
||||
return d_scores
|
||||
|
||||
def _get_costs_from_histories(self, examples, gold_states, init_states, histories, max_moves):
|
||||
cdef TransitionSystem moves = self.moves
|
||||
cdef StateClass state
|
||||
cdef int clas
|
||||
cdef int nF = self.model.get_dim("nF")
|
||||
cdef int nO = moves.n_moves
|
||||
cdef int nS = sum([len(history) for history in histories])
|
||||
cdef Pool mem = Pool()
|
||||
cdef np.ndarray costs_i
|
||||
is_valid = <int*>mem.alloc(nO, sizeof(int))
|
||||
batch = list(zip(init_states, histories, gold_states))
|
||||
n_moves = 0
|
||||
output = []
|
||||
while batch:
|
||||
costs = numpy.zeros((len(batch), nO), dtype="f")
|
||||
for i, (state, history, gold) in enumerate(batch):
|
||||
costs_i = costs[i]
|
||||
clas = history.pop(0)
|
||||
moves.set_costs(is_valid, <weight_t*>costs_i.data, state.c, gold)
|
||||
action = moves.c[clas]
|
||||
action.do(state.c, action.label)
|
||||
state.c.history.push_back(clas)
|
||||
output.append(costs)
|
||||
batch = [(s, h, g) for s, h, g in batch if len(h) != 0]
|
||||
if n_moves >= max_moves >= 1:
|
||||
break
|
||||
n_moves += 1
|
||||
|
||||
return self.model.ops.xp.vstack(output)
|
||||
|
||||
def rehearse(self, examples, sgd=None, losses=None, **cfg):
|
||||
"""Perform a "rehearsal" update, to prevent catastrophic forgetting."""
|
||||
if losses is None:
|
||||
|
@ -560,10 +510,9 @@ cdef class Parser(TrainablePipe):
|
|||
multitask.rehearse(examples, losses=losses, sgd=sgd)
|
||||
if self._rehearsal_model is None:
|
||||
return None
|
||||
losses.setdefault(self.name, 0.)
|
||||
losses.setdefault(self.name, 0.0)
|
||||
validate_examples(examples, "Parser.rehearse")
|
||||
docs = [eg.predicted for eg in examples]
|
||||
states = self.moves.init_batch(docs)
|
||||
# This is pretty dirty, but the NER can resize itself in init_batch,
|
||||
# if labels are missing. We therefore have to check whether we need to
|
||||
# expand our model output.
|
||||
|
@ -571,85 +520,33 @@ cdef class Parser(TrainablePipe):
|
|||
# Prepare the stepwise model, and get the callback for finishing the batch
|
||||
set_dropout_rate(self._rehearsal_model, 0.0)
|
||||
set_dropout_rate(self.model, 0.0)
|
||||
tutor, _ = self._rehearsal_model.begin_update(docs)
|
||||
model, backprop_tok2vec = self.model.begin_update(docs)
|
||||
n_scores = 0.
|
||||
loss = 0.
|
||||
while states:
|
||||
targets, _ = tutor.begin_update(states)
|
||||
guesses, backprop = model.begin_update(states)
|
||||
d_scores = (guesses - targets) / targets.shape[0]
|
||||
# If all weights for an output are 0 in the original model, don't
|
||||
# supervise that output. This allows us to add classes.
|
||||
loss += (d_scores**2).sum()
|
||||
backprop(d_scores)
|
||||
# Follow the predicted action
|
||||
self.transition_states(states, guesses)
|
||||
states = [state for state in states if not state.is_final()]
|
||||
n_scores += d_scores.size
|
||||
# Do the backprop
|
||||
backprop_tok2vec(docs)
|
||||
student_inputs = TransitionModelInputs(docs=docs, moves=self.moves)
|
||||
(student_states, student_scores), backprop_scores = self.model.begin_update(student_inputs)
|
||||
actions = states2actions(student_states)
|
||||
teacher_inputs = TransitionModelInputs(docs=docs, moves=self.moves, actions=actions)
|
||||
_, teacher_scores = self._rehearsal_model.predict(teacher_inputs)
|
||||
|
||||
loss, d_scores = self.get_teacher_student_loss(teacher_scores, student_scores, normalize=True)
|
||||
|
||||
teacher_scores = self.model.ops.xp.vstack(teacher_scores)
|
||||
student_scores = self.model.ops.xp.vstack(student_scores)
|
||||
assert teacher_scores.shape == student_scores.shape
|
||||
|
||||
d_scores = (student_scores - teacher_scores) / teacher_scores.shape[0]
|
||||
# If all weights for an output are 0 in the original model, don't
|
||||
# supervise that output. This allows us to add classes.
|
||||
loss = (d_scores**2).sum() / d_scores.size
|
||||
backprop_scores((student_states, d_scores))
|
||||
|
||||
if sgd is not None:
|
||||
self.finish_update(sgd)
|
||||
losses[self.name] += loss / n_scores
|
||||
del backprop
|
||||
del backprop_tok2vec
|
||||
model.clear_memory()
|
||||
tutor.clear_memory()
|
||||
del model
|
||||
del tutor
|
||||
losses[self.name] += loss
|
||||
|
||||
return losses
|
||||
|
||||
def update_beam(self, examples, *, beam_width,
|
||||
drop=0., sgd=None, losses=None, beam_density=0.0):
|
||||
states, golds, _ = self.moves.init_gold_batch(examples)
|
||||
if not states:
|
||||
return losses
|
||||
# Prepare the stepwise model, and get the callback for finishing the batch
|
||||
model, backprop_tok2vec = self.model.begin_update(
|
||||
[eg.predicted for eg in examples])
|
||||
loss = _beam_utils.update_beam(
|
||||
self.moves,
|
||||
states,
|
||||
golds,
|
||||
model,
|
||||
beam_width,
|
||||
beam_density=beam_density,
|
||||
)
|
||||
losses[self.name] += loss
|
||||
backprop_tok2vec(golds)
|
||||
if sgd is not None:
|
||||
self.finish_update(sgd)
|
||||
|
||||
def get_batch_loss(self, states, golds, float[:, ::1] scores, losses):
|
||||
cdef StateClass state
|
||||
cdef Pool mem = Pool()
|
||||
cdef int i
|
||||
|
||||
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
|
||||
assert self.moves.n_moves > 0, Errors.E924.format(name=self.name)
|
||||
|
||||
is_valid = <int*>mem.alloc(self.moves.n_moves, sizeof(int))
|
||||
costs = <float*>mem.alloc(self.moves.n_moves, sizeof(float))
|
||||
cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves),
|
||||
dtype='f', order='C')
|
||||
c_d_scores = <float*>d_scores.data
|
||||
unseen_classes = self.model.attrs["unseen_classes"]
|
||||
for i, (state, gold) in enumerate(zip(states, golds)):
|
||||
memset(is_valid, 0, self.moves.n_moves * sizeof(int))
|
||||
memset(costs, 0, self.moves.n_moves * sizeof(float))
|
||||
self.moves.set_costs(is_valid, costs, state.c, gold)
|
||||
for j in range(self.moves.n_moves):
|
||||
if costs[j] <= 0.0 and j in unseen_classes:
|
||||
unseen_classes.remove(j)
|
||||
cpu_log_loss(c_d_scores,
|
||||
costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
||||
c_d_scores += d_scores.shape[1]
|
||||
# Note that we don't normalize this. See comment in update() for why.
|
||||
if losses is not None:
|
||||
losses.setdefault(self.name, 0.)
|
||||
losses[self.name] += (d_scores**2).sum()
|
||||
return d_scores
|
||||
raise NotImplementedError
|
||||
|
||||
def set_output(self, nO):
|
||||
self.model.attrs["resize_output"](self.model, nO)
|
||||
|
@ -688,7 +585,7 @@ cdef class Parser(TrainablePipe):
|
|||
for example in islice(get_examples(), 10):
|
||||
doc_sample.append(example.predicted)
|
||||
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
|
||||
self.model.initialize(doc_sample)
|
||||
self.model.initialize((doc_sample, self.moves))
|
||||
if nlp is not None:
|
||||
self.init_multitask_objectives(get_examples, nlp.pipeline)
|
||||
|
||||
|
@ -781,26 +678,27 @@ cdef class Parser(TrainablePipe):
|
|||
|
||||
def _init_gold_batch(self, examples, max_length):
|
||||
"""Make a square batch, of length equal to the shortest transition
|
||||
sequence or a cap. A long
|
||||
doc will get multiple states. Let's say we have a doc of length 2*N,
|
||||
where N is the shortest doc. We'll make two states, one representing
|
||||
long_doc[:N], and another representing long_doc[N:]."""
|
||||
sequence or a cap. A long doc will get multiple states. Let's say we
|
||||
have a doc of length 2*N, where N is the shortest doc. We'll make
|
||||
two states, one representing long_doc[:N], and another representing
|
||||
long_doc[N:]."""
|
||||
cdef:
|
||||
StateClass start_state
|
||||
StateClass state
|
||||
Transition action
|
||||
all_states = self.moves.init_batch([eg.predicted for eg in examples])
|
||||
TransitionSystem moves = self.moves
|
||||
all_states = moves.init_batch([eg.predicted for eg in examples])
|
||||
states = []
|
||||
golds = []
|
||||
to_cut = []
|
||||
for state, eg in zip(all_states, examples):
|
||||
if self.moves.has_gold(eg) and not state.is_final():
|
||||
gold = self.moves.init_gold(state, eg)
|
||||
if moves.has_gold(eg) and not state.is_final():
|
||||
gold = moves.init_gold(state, eg)
|
||||
if len(eg.x) < max_length:
|
||||
states.append(state)
|
||||
golds.append(gold)
|
||||
else:
|
||||
oracle_actions = self.moves.get_oracle_sequence_from_state(
|
||||
oracle_actions = moves.get_oracle_sequence_from_state(
|
||||
state.copy(), gold)
|
||||
to_cut.append((eg, state, gold, oracle_actions))
|
||||
if not to_cut:
|
||||
|
@ -810,13 +708,52 @@ cdef class Parser(TrainablePipe):
|
|||
for i in range(0, len(oracle_actions), max_length):
|
||||
start_state = state.copy()
|
||||
for clas in oracle_actions[i:i+max_length]:
|
||||
action = self.moves.c[clas]
|
||||
action = moves.c[clas]
|
||||
action.do(state.c, action.label)
|
||||
if state.is_final():
|
||||
break
|
||||
if self.moves.has_gold(eg, start_state.B(0), state.B(0)):
|
||||
if moves.has_gold(eg, start_state.B(0), state.B(0)):
|
||||
states.append(start_state)
|
||||
golds.append(gold)
|
||||
if state.is_final():
|
||||
break
|
||||
return states, golds, max_length
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def _change_attrs(model, **kwargs):
|
||||
"""Temporarily modify a thinc model's attributes."""
|
||||
unset = object()
|
||||
old_attrs = {}
|
||||
for key, value in kwargs.items():
|
||||
old_attrs[key] = model.attrs.get(key, unset)
|
||||
model.attrs[key] = value
|
||||
yield model
|
||||
for key, value in old_attrs.items():
|
||||
if value is unset:
|
||||
model.attrs.pop(key)
|
||||
else:
|
||||
model.attrs[key] = value
|
||||
|
||||
|
||||
def states2actions(states: List[StateClass]) -> List[Ints1d]:
|
||||
cdef int step
|
||||
cdef StateClass state
|
||||
cdef StateC* c_state
|
||||
actions = []
|
||||
while True:
|
||||
step = len(actions)
|
||||
|
||||
step_actions = []
|
||||
for state in states:
|
||||
c_state = state.c
|
||||
if step < c_state.history.size():
|
||||
step_actions.append(c_state.history[step])
|
||||
|
||||
# We are done if we have exhausted all histories.
|
||||
if len(step_actions) == 0:
|
||||
break
|
||||
|
||||
actions.append(numpy.array(step_actions, dtype="i"))
|
||||
|
||||
return actions
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
from typing import Dict, List, Union, Optional, Any, Callable, Type, Tuple
|
||||
from typing import Iterable, TypeVar, TYPE_CHECKING
|
||||
from .compat import Literal
|
||||
from typing import Iterable, TypeVar, Literal, TYPE_CHECKING
|
||||
from enum import Enum
|
||||
from pydantic import BaseModel, Field, ValidationError, validator, create_model
|
||||
from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool, ConstrainedStr
|
||||
|
@ -163,15 +162,33 @@ class TokenPatternString(BaseModel):
|
|||
IS_SUPERSET: Optional[List[StrictStr]] = Field(None, alias="is_superset")
|
||||
INTERSECTS: Optional[List[StrictStr]] = Field(None, alias="intersects")
|
||||
FUZZY: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy")
|
||||
FUZZY1: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy1")
|
||||
FUZZY2: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy2")
|
||||
FUZZY3: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy3")
|
||||
FUZZY4: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy4")
|
||||
FUZZY5: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy5")
|
||||
FUZZY6: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy6")
|
||||
FUZZY7: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy7")
|
||||
FUZZY8: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy8")
|
||||
FUZZY9: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy9")
|
||||
FUZZY1: Optional[Union[StrictStr, "TokenPatternString"]] = Field(
|
||||
None, alias="fuzzy1"
|
||||
)
|
||||
FUZZY2: Optional[Union[StrictStr, "TokenPatternString"]] = Field(
|
||||
None, alias="fuzzy2"
|
||||
)
|
||||
FUZZY3: Optional[Union[StrictStr, "TokenPatternString"]] = Field(
|
||||
None, alias="fuzzy3"
|
||||
)
|
||||
FUZZY4: Optional[Union[StrictStr, "TokenPatternString"]] = Field(
|
||||
None, alias="fuzzy4"
|
||||
)
|
||||
FUZZY5: Optional[Union[StrictStr, "TokenPatternString"]] = Field(
|
||||
None, alias="fuzzy5"
|
||||
)
|
||||
FUZZY6: Optional[Union[StrictStr, "TokenPatternString"]] = Field(
|
||||
None, alias="fuzzy6"
|
||||
)
|
||||
FUZZY7: Optional[Union[StrictStr, "TokenPatternString"]] = Field(
|
||||
None, alias="fuzzy7"
|
||||
)
|
||||
FUZZY8: Optional[Union[StrictStr, "TokenPatternString"]] = Field(
|
||||
None, alias="fuzzy8"
|
||||
)
|
||||
FUZZY9: Optional[Union[StrictStr, "TokenPatternString"]] = Field(
|
||||
None, alias="fuzzy9"
|
||||
)
|
||||
|
||||
class Config:
|
||||
extra = "forbid"
|
||||
|
@ -405,6 +422,27 @@ class ConfigSchemaInit(BaseModel):
|
|||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
class ConfigSchemaDistillEmpty(BaseModel):
|
||||
class Config:
|
||||
extra = "forbid"
|
||||
|
||||
|
||||
class ConfigSchemaDistill(BaseModel):
|
||||
# fmt: off
|
||||
batcher: Batcher = Field(..., title="Batcher for the training data")
|
||||
corpus: StrictStr = Field(..., title="Path in the config to the distillation data")
|
||||
dropout: StrictFloat = Field(..., title="Dropout rate")
|
||||
max_epochs: StrictInt = Field(..., title="Maximum number of epochs to distill for")
|
||||
max_steps: StrictInt = Field(..., title="Maximum number of steps to distill for")
|
||||
optimizer: Optimizer = Field(..., title="The optimizer to use")
|
||||
student_to_teacher: Dict[str, str] = Field(..., title="Mapping from student to teacher pipe")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
extra = "forbid"
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
class ConfigSchema(BaseModel):
|
||||
training: ConfigSchemaTraining
|
||||
nlp: ConfigSchemaNlp
|
||||
|
@ -412,6 +450,7 @@ class ConfigSchema(BaseModel):
|
|||
components: Dict[str, Dict[str, Any]]
|
||||
corpora: Dict[str, Reader]
|
||||
initialize: ConfigSchemaInit
|
||||
distillation: Union[ConfigSchemaDistill, ConfigSchemaDistillEmpty] = {} # type: ignore[assignment]
|
||||
|
||||
class Config:
|
||||
extra = "allow"
|
||||
|
@ -423,6 +462,7 @@ CONFIG_SCHEMAS = {
|
|||
"training": ConfigSchemaTraining,
|
||||
"pretraining": ConfigSchemaPretrain,
|
||||
"initialize": ConfigSchemaInit,
|
||||
"distill": ConfigSchemaDistill,
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -13,6 +13,7 @@ from spacy.pipeline._parser_internals.ner import BiluoPushDown
|
|||
from spacy.training import Example, iob_to_biluo, split_bilu_label
|
||||
from spacy.tokens import Doc, Span
|
||||
from spacy.vocab import Vocab
|
||||
from thinc.api import fix_random_seed
|
||||
import logging
|
||||
|
||||
from ..util import make_tempdir
|
||||
|
@ -412,7 +413,7 @@ def test_train_empty():
|
|||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
ner = nlp.add_pipe("ner", last=True)
|
||||
ner.add_label("PERSON")
|
||||
nlp.initialize()
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
for itn in range(2):
|
||||
losses = {}
|
||||
batches = util.minibatch(train_examples, size=8)
|
||||
|
@ -539,11 +540,11 @@ def test_block_ner():
|
|||
assert [token.ent_type_ for token in doc] == expected_types
|
||||
|
||||
|
||||
@pytest.mark.parametrize("use_upper", [True, False])
|
||||
def test_overfitting_IO(use_upper):
|
||||
def test_overfitting_IO():
|
||||
fix_random_seed(1)
|
||||
# Simple test to try and quickly overfit the NER component
|
||||
nlp = English()
|
||||
ner = nlp.add_pipe("ner", config={"model": {"use_upper": use_upper}})
|
||||
ner = nlp.add_pipe("ner", config={"model": {}})
|
||||
train_examples = []
|
||||
for text, annotations in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
||||
|
@ -575,7 +576,6 @@ def test_overfitting_IO(use_upper):
|
|||
assert ents2[0].label_ == "LOC"
|
||||
# Ensure that the predictions are still the same, even after adding a new label
|
||||
ner2 = nlp2.get_pipe("ner")
|
||||
assert ner2.model.attrs["has_upper"] == use_upper
|
||||
ner2.add_label("RANDOM_NEW_LABEL")
|
||||
doc3 = nlp2(test_text)
|
||||
ents3 = doc3.ents
|
||||
|
|
|
@ -1,13 +1,17 @@
|
|||
import itertools
|
||||
import pytest
|
||||
import numpy
|
||||
from numpy.testing import assert_equal
|
||||
from thinc.api import Adam
|
||||
|
||||
from spacy import registry, util
|
||||
from spacy.attrs import DEP, NORM
|
||||
from spacy.lang.en import English
|
||||
from spacy.tokens import Doc
|
||||
from spacy.training import Example
|
||||
from spacy.tokens import Doc
|
||||
from spacy.vocab import Vocab
|
||||
from spacy import util, registry
|
||||
from thinc.api import fix_random_seed
|
||||
|
||||
from ...pipeline import DependencyParser
|
||||
from ...pipeline.dep_parser import DEFAULT_PARSER_MODEL
|
||||
|
@ -59,6 +63,8 @@ PARTIAL_DATA = [
|
|||
),
|
||||
]
|
||||
|
||||
PARSERS = ["parser"] # TODO: Test beam_parser when ready
|
||||
|
||||
eps = 0.1
|
||||
|
||||
|
||||
|
@ -171,6 +177,57 @@ def test_parser_parse_one_word_sentence(en_vocab, en_parser, words):
|
|||
assert doc[0].dep != 0
|
||||
|
||||
|
||||
def test_parser_apply_actions(en_vocab, en_parser):
|
||||
words = ["I", "ate", "pizza"]
|
||||
words2 = ["Eat", "more", "pizza", "!"]
|
||||
doc1 = Doc(en_vocab, words=words)
|
||||
doc2 = Doc(en_vocab, words=words2)
|
||||
docs = [doc1, doc2]
|
||||
|
||||
moves = en_parser.moves
|
||||
moves.add_action(0, "")
|
||||
moves.add_action(1, "")
|
||||
moves.add_action(2, "nsubj")
|
||||
moves.add_action(3, "obj")
|
||||
moves.add_action(2, "amod")
|
||||
|
||||
actions = [
|
||||
numpy.array([0, 0], dtype="i"),
|
||||
numpy.array([2, 0], dtype="i"),
|
||||
numpy.array([0, 4], dtype="i"),
|
||||
numpy.array([3, 3], dtype="i"),
|
||||
numpy.array([1, 1], dtype="i"),
|
||||
numpy.array([1, 1], dtype="i"),
|
||||
numpy.array([0], dtype="i"),
|
||||
numpy.array([1], dtype="i"),
|
||||
]
|
||||
|
||||
states = moves.init_batch(docs)
|
||||
active_states = states
|
||||
|
||||
for step_actions in actions:
|
||||
active_states = moves.apply_actions(active_states, step_actions)
|
||||
|
||||
assert len(active_states) == 0
|
||||
|
||||
for (state, doc) in zip(states, docs):
|
||||
moves.set_annotations(state, doc)
|
||||
|
||||
assert docs[0][0].head.i == 1
|
||||
assert docs[0][0].dep_ == "nsubj"
|
||||
assert docs[0][1].head.i == 1
|
||||
assert docs[0][1].dep_ == "ROOT"
|
||||
assert docs[0][2].head.i == 1
|
||||
assert docs[0][2].dep_ == "obj"
|
||||
|
||||
assert docs[1][0].head.i == 0
|
||||
assert docs[1][0].dep_ == "ROOT"
|
||||
assert docs[1][1].head.i == 2
|
||||
assert docs[1][1].dep_ == "amod"
|
||||
assert docs[1][2].head.i == 0
|
||||
assert docs[1][2].dep_ == "obj"
|
||||
|
||||
|
||||
@pytest.mark.skip(
|
||||
reason="The step_through API was removed (but should be brought back)"
|
||||
)
|
||||
|
@ -319,7 +376,7 @@ def test_parser_constructor(en_vocab):
|
|||
DependencyParser(en_vocab, model)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("pipe_name", ["parser", "beam_parser"])
|
||||
@pytest.mark.parametrize("pipe_name", PARSERS)
|
||||
def test_incomplete_data(pipe_name):
|
||||
# Test that the parser works with incomplete information
|
||||
nlp = English()
|
||||
|
@ -345,11 +402,15 @@ def test_incomplete_data(pipe_name):
|
|||
assert doc[2].head.i == 1
|
||||
|
||||
|
||||
@pytest.mark.parametrize("pipe_name", ["parser", "beam_parser"])
|
||||
def test_overfitting_IO(pipe_name):
|
||||
@pytest.mark.parametrize(
|
||||
"pipe_name,max_moves", itertools.product(PARSERS, [0, 1, 5, 100])
|
||||
)
|
||||
def test_overfitting_IO(pipe_name, max_moves):
|
||||
fix_random_seed(0)
|
||||
# Simple test to try and quickly overfit the dependency parser (normal or beam)
|
||||
nlp = English()
|
||||
parser = nlp.add_pipe(pipe_name)
|
||||
parser.cfg["update_with_oracle_cut_size"] = max_moves
|
||||
train_examples = []
|
||||
for text, annotations in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
||||
|
@ -451,10 +512,12 @@ def test_distill():
|
|||
@pytest.mark.parametrize(
|
||||
"parser_config",
|
||||
[
|
||||
# TransitionBasedParser V1
|
||||
({"@architectures": "spacy.TransitionBasedParser.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2, "use_upper": True}),
|
||||
# TransitionBasedParser V2
|
||||
# TODO: re-enable after we have a spacy-legacy release for v4. See
|
||||
# https://github.com/explosion/spacy-legacy/pull/36
|
||||
#({"@architectures": "spacy.TransitionBasedParser.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2, "use_upper": True}),
|
||||
({"@architectures": "spacy.TransitionBasedParser.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2, "use_upper": True}),
|
||||
({"@architectures": "spacy.TransitionBasedParser.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2, "use_upper": False}),
|
||||
({"@architectures": "spacy.TransitionBasedParser.v3", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2}),
|
||||
],
|
||||
)
|
||||
# fmt: on
|
||||
|
|
|
@ -103,14 +103,15 @@ def test_initialize_from_labels():
|
|||
}
|
||||
|
||||
|
||||
def test_no_data():
|
||||
@pytest.mark.parametrize("top_k", (1, 5, 30))
|
||||
def test_no_data(top_k):
|
||||
# Test that the lemmatizer provides a nice error when there's no tagging data / labels
|
||||
TEXTCAT_DATA = [
|
||||
("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}),
|
||||
("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}),
|
||||
]
|
||||
nlp = English()
|
||||
nlp.add_pipe("trainable_lemmatizer")
|
||||
nlp.add_pipe("trainable_lemmatizer", config={"top_k": top_k})
|
||||
nlp.add_pipe("textcat")
|
||||
|
||||
train_examples = []
|
||||
|
@ -121,10 +122,11 @@ def test_no_data():
|
|||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
|
||||
|
||||
def test_incomplete_data():
|
||||
@pytest.mark.parametrize("top_k", (1, 5, 30))
|
||||
def test_incomplete_data(top_k):
|
||||
# Test that the lemmatizer works with incomplete information
|
||||
nlp = English()
|
||||
lemmatizer = nlp.add_pipe("trainable_lemmatizer")
|
||||
lemmatizer = nlp.add_pipe("trainable_lemmatizer", config={"top_k": top_k})
|
||||
lemmatizer.min_tree_freq = 1
|
||||
train_examples = []
|
||||
for t in PARTIAL_DATA:
|
||||
|
@ -141,10 +143,25 @@ def test_incomplete_data():
|
|||
assert doc[1].lemma_ == "like"
|
||||
assert doc[2].lemma_ == "blue"
|
||||
|
||||
# Check that incomplete annotations are ignored.
|
||||
scores, _ = lemmatizer.model([eg.predicted for eg in train_examples], is_train=True)
|
||||
_, dX = lemmatizer.get_loss(train_examples, scores)
|
||||
xp = lemmatizer.model.ops.xp
|
||||
|
||||
def test_overfitting_IO():
|
||||
# Missing annotations.
|
||||
assert xp.count_nonzero(dX[0][0]) == 0
|
||||
assert xp.count_nonzero(dX[0][3]) == 0
|
||||
assert xp.count_nonzero(dX[1][0]) == 0
|
||||
assert xp.count_nonzero(dX[1][3]) == 0
|
||||
|
||||
# Misaligned annotations.
|
||||
assert xp.count_nonzero(dX[1][1]) == 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize("top_k", (1, 5, 30))
|
||||
def test_overfitting_IO(top_k):
|
||||
nlp = English()
|
||||
lemmatizer = nlp.add_pipe("trainable_lemmatizer")
|
||||
lemmatizer = nlp.add_pipe("trainable_lemmatizer", config={"top_k": top_k})
|
||||
lemmatizer.min_tree_freq = 1
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
|
@ -177,7 +194,7 @@ def test_overfitting_IO():
|
|||
# Check model after a {to,from}_bytes roundtrip
|
||||
nlp_bytes = nlp.to_bytes()
|
||||
nlp3 = English()
|
||||
nlp3.add_pipe("trainable_lemmatizer")
|
||||
nlp3.add_pipe("trainable_lemmatizer", config={"top_k": top_k})
|
||||
nlp3.from_bytes(nlp_bytes)
|
||||
doc3 = nlp3(test_text)
|
||||
assert doc3[0].lemma_ == "she"
|
||||
|
|
|
@ -24,7 +24,9 @@ def test_issue4348():
|
|||
optimizer = nlp.initialize()
|
||||
for i in range(5):
|
||||
losses = {}
|
||||
batches = util.minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
|
||||
batches = util.minibatch(
|
||||
TRAIN_DATA, size=compounding(4.0, 32.0, 1.001).to_generator()
|
||||
)
|
||||
for batch in batches:
|
||||
nlp.update(batch, sgd=optimizer, losses=losses)
|
||||
|
||||
|
|
|
@ -91,7 +91,9 @@ def test_issue3611():
|
|||
optimizer = nlp.initialize()
|
||||
for i in range(3):
|
||||
losses = {}
|
||||
batches = util.minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
|
||||
batches = util.minibatch(
|
||||
train_data, size=compounding(4.0, 32.0, 1.001).to_generator()
|
||||
)
|
||||
|
||||
for batch in batches:
|
||||
nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses)
|
||||
|
@ -128,7 +130,9 @@ def test_issue4030():
|
|||
optimizer = nlp.initialize()
|
||||
for i in range(3):
|
||||
losses = {}
|
||||
batches = util.minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
|
||||
batches = util.minibatch(
|
||||
train_data, size=compounding(4.0, 32.0, 1.001).to_generator()
|
||||
)
|
||||
|
||||
for batch in batches:
|
||||
nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses)
|
||||
|
|
|
@ -382,7 +382,7 @@ cfg_string_multi = """
|
|||
factory = "ner"
|
||||
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
@architectures = "spacy.TransitionBasedParser.v3"
|
||||
|
||||
[components.ner.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
|
|
|
@ -6,10 +6,11 @@ import spacy
|
|||
from spacy.lang.de import German
|
||||
from spacy.lang.en import English
|
||||
from spacy.language import DEFAULT_CONFIG, DEFAULT_CONFIG_PRETRAIN_PATH
|
||||
from spacy.language import DEFAULT_CONFIG_DISTILL_PATH
|
||||
from spacy.language import Language
|
||||
from spacy.ml.models import MaxoutWindowEncoder, MultiHashEmbed
|
||||
from spacy.ml.models import build_tb_parser_model, build_Tok2Vec_model
|
||||
from spacy.schemas import ConfigSchema, ConfigSchemaPretrain
|
||||
from spacy.schemas import ConfigSchema, ConfigSchemaDistill, ConfigSchemaPretrain
|
||||
from spacy.util import load_config, load_config_from_str
|
||||
from spacy.util import load_model_from_config, registry
|
||||
|
||||
|
@ -66,6 +67,60 @@ factory = "tagger"
|
|||
width = ${components.tok2vec.model.width}
|
||||
"""
|
||||
|
||||
distill_config_string = """
|
||||
[paths]
|
||||
train = null
|
||||
dev = null
|
||||
|
||||
[corpora]
|
||||
|
||||
[corpora.train]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.train}
|
||||
|
||||
[corpora.dev]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.dev}
|
||||
|
||||
[training]
|
||||
|
||||
[training.batcher]
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
size = 666
|
||||
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec", "tagger"]
|
||||
|
||||
[components]
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.HashEmbedCNN.v1"
|
||||
pretrained_vectors = null
|
||||
width = 342
|
||||
depth = 4
|
||||
window_size = 1
|
||||
embed_size = 2000
|
||||
maxout_pieces = 3
|
||||
subword_features = true
|
||||
|
||||
[components.tagger]
|
||||
factory = "tagger"
|
||||
|
||||
[components.tagger.model]
|
||||
@architectures = "spacy.Tagger.v2"
|
||||
|
||||
[components.tagger.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.width}
|
||||
|
||||
[distill]
|
||||
"""
|
||||
|
||||
|
||||
pretrain_config_string = """
|
||||
[paths]
|
||||
train = null
|
||||
|
@ -122,33 +177,11 @@ width = ${components.tok2vec.model.width}
|
|||
|
||||
parser_config_string_upper = """
|
||||
[model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
@architectures = "spacy.TransitionBasedParser.v3"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 66
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.HashEmbedCNN.v1"
|
||||
pretrained_vectors = null
|
||||
width = 333
|
||||
depth = 4
|
||||
embed_size = 5555
|
||||
window_size = 1
|
||||
maxout_pieces = 7
|
||||
subword_features = false
|
||||
"""
|
||||
|
||||
|
||||
parser_config_string_no_upper = """
|
||||
[model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 66
|
||||
maxout_pieces = 2
|
||||
use_upper = false
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.HashEmbedCNN.v1"
|
||||
|
@ -179,7 +212,6 @@ def my_parser():
|
|||
extra_state_tokens=True,
|
||||
hidden_width=65,
|
||||
maxout_pieces=5,
|
||||
use_upper=True,
|
||||
)
|
||||
return parser
|
||||
|
||||
|
@ -224,6 +256,14 @@ def test_create_nlp_from_config():
|
|||
load_model_from_config(Config(bad_cfg), auto_fill=True)
|
||||
|
||||
|
||||
def test_nlp_from_distillation_config():
|
||||
"""Test that the default distillation config validates properly"""
|
||||
config = Config().from_str(distill_config_string)
|
||||
distill_config = load_config(DEFAULT_CONFIG_DISTILL_PATH)
|
||||
filled = config.merge(distill_config)
|
||||
registry.resolve(filled["distillation"], schema=ConfigSchemaDistill)
|
||||
|
||||
|
||||
def test_create_nlp_from_pretraining_config():
|
||||
"""Test that the default pretraining config validates properly"""
|
||||
config = Config().from_str(pretrain_config_string)
|
||||
|
@ -285,15 +325,16 @@ def test_serialize_custom_nlp():
|
|||
nlp.to_disk(d)
|
||||
nlp2 = spacy.load(d)
|
||||
model = nlp2.get_pipe("parser").model
|
||||
model.get_ref("tok2vec")
|
||||
# check that we have the correct settings, not the default ones
|
||||
assert model.get_ref("upper").get_dim("nI") == 65
|
||||
assert model.get_ref("lower").get_dim("nI") == 65
|
||||
assert model.get_ref("tok2vec") is not None
|
||||
assert model.has_param("hidden_W")
|
||||
assert model.has_param("hidden_b")
|
||||
output = model.get_ref("output")
|
||||
assert output is not None
|
||||
assert output.has_param("W")
|
||||
assert output.has_param("b")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"parser_config_string", [parser_config_string_upper, parser_config_string_no_upper]
|
||||
)
|
||||
@pytest.mark.parametrize("parser_config_string", [parser_config_string_upper])
|
||||
def test_serialize_parser(parser_config_string):
|
||||
"""Create a non-default parser config to check nlp serializes it correctly"""
|
||||
nlp = English()
|
||||
|
@ -306,11 +347,13 @@ def test_serialize_parser(parser_config_string):
|
|||
nlp.to_disk(d)
|
||||
nlp2 = spacy.load(d)
|
||||
model = nlp2.get_pipe("parser").model
|
||||
model.get_ref("tok2vec")
|
||||
# check that we have the correct settings, not the default ones
|
||||
if model.attrs["has_upper"]:
|
||||
assert model.get_ref("upper").get_dim("nI") == 66
|
||||
assert model.get_ref("lower").get_dim("nI") == 66
|
||||
assert model.get_ref("tok2vec") is not None
|
||||
assert model.has_param("hidden_W")
|
||||
assert model.has_param("hidden_b")
|
||||
output = model.get_ref("output")
|
||||
assert output is not None
|
||||
assert output.has_param("b")
|
||||
assert output.has_param("W")
|
||||
|
||||
|
||||
def test_config_nlp_roundtrip():
|
||||
|
@ -457,9 +500,7 @@ def test_config_auto_fill_extra_fields():
|
|||
load_model_from_config(nlp.config)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"parser_config_string", [parser_config_string_upper, parser_config_string_no_upper]
|
||||
)
|
||||
@pytest.mark.parametrize("parser_config_string", [parser_config_string_upper])
|
||||
def test_config_validate_literal(parser_config_string):
|
||||
nlp = English()
|
||||
config = Config().from_str(parser_config_string)
|
||||
|
|
|
@ -618,7 +618,6 @@ def test_string_to_list_intify(value):
|
|||
assert string_to_list(value, intify=True) == [1, 2, 3]
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Temporarily skip for dev version")
|
||||
def test_download_compatibility():
|
||||
spec = SpecifierSet("==" + about.__version__)
|
||||
spec.prereleases = False
|
||||
|
@ -629,7 +628,6 @@ def test_download_compatibility():
|
|||
assert get_minor_version(about.__version__) == get_minor_version(version)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Temporarily skip for dev version")
|
||||
def test_validate_compatibility_table():
|
||||
spec = SpecifierSet("==" + about.__version__)
|
||||
spec.prereleases = False
|
||||
|
@ -1076,7 +1074,7 @@ def test_cli_find_threshold(capsys):
|
|||
)
|
||||
with make_tempdir() as nlp_dir:
|
||||
nlp.to_disk(nlp_dir)
|
||||
res = find_threshold(
|
||||
best_threshold, best_score, res = find_threshold(
|
||||
model=nlp_dir,
|
||||
data_path=docs_dir / "docs.spacy",
|
||||
pipe_name="tc_multi",
|
||||
|
@ -1084,10 +1082,10 @@ def test_cli_find_threshold(capsys):
|
|||
scores_key="cats_macro_f",
|
||||
silent=True,
|
||||
)
|
||||
assert res[0] != thresholds[0]
|
||||
assert thresholds[0] < res[0] < thresholds[9]
|
||||
assert res[1] == 1.0
|
||||
assert res[2][1.0] == 0.0
|
||||
assert best_threshold != thresholds[0]
|
||||
assert thresholds[0] < best_threshold < thresholds[9]
|
||||
assert best_score == max(res.values())
|
||||
assert res[1.0] == 0.0
|
||||
|
||||
# Test with spancat.
|
||||
nlp, _ = init_nlp((("spancat", {}),))
|
||||
|
@ -1209,3 +1207,69 @@ def test_walk_directory():
|
|||
assert (len(walk_directory(d, suffix="iob"))) == 2
|
||||
assert (len(walk_directory(d, suffix="conll"))) == 3
|
||||
assert (len(walk_directory(d, suffix="pdf"))) == 0
|
||||
|
||||
|
||||
def test_debug_data_trainable_lemmatizer_basic():
|
||||
examples = [
|
||||
("She likes green eggs", {"lemmas": ["she", "like", "green", "egg"]}),
|
||||
("Eat blue ham", {"lemmas": ["eat", "blue", "ham"]}),
|
||||
]
|
||||
nlp = Language()
|
||||
train_examples = []
|
||||
for t in examples:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
|
||||
data = _compile_gold(train_examples, ["trainable_lemmatizer"], nlp, True)
|
||||
# ref test_edit_tree_lemmatizer::test_initialize_from_labels
|
||||
# this results in 4 trees
|
||||
assert len(data["lemmatizer_trees"]) == 4
|
||||
|
||||
|
||||
def test_debug_data_trainable_lemmatizer_partial():
|
||||
partial_examples = [
|
||||
# partial annotation
|
||||
("She likes green eggs", {"lemmas": ["", "like", "green", ""]}),
|
||||
# misaligned partial annotation
|
||||
(
|
||||
"He hates green eggs",
|
||||
{
|
||||
"words": ["He", "hat", "es", "green", "eggs"],
|
||||
"lemmas": ["", "hat", "e", "green", ""],
|
||||
},
|
||||
),
|
||||
]
|
||||
nlp = Language()
|
||||
train_examples = []
|
||||
for t in partial_examples:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
|
||||
data = _compile_gold(train_examples, ["trainable_lemmatizer"], nlp, True)
|
||||
assert data["partial_lemma_annotations"] == 2
|
||||
|
||||
|
||||
def test_debug_data_trainable_lemmatizer_low_cardinality():
|
||||
low_cardinality_examples = [
|
||||
("She likes green eggs", {"lemmas": ["no", "no", "no", "no"]}),
|
||||
("Eat blue ham", {"lemmas": ["no", "no", "no"]}),
|
||||
]
|
||||
nlp = Language()
|
||||
train_examples = []
|
||||
for t in low_cardinality_examples:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
|
||||
data = _compile_gold(train_examples, ["trainable_lemmatizer"], nlp, True)
|
||||
assert data["n_low_cardinality_lemmas"] == 2
|
||||
|
||||
|
||||
def test_debug_data_trainable_lemmatizer_not_annotated():
|
||||
unannotated_examples = [
|
||||
("She likes green eggs", {}),
|
||||
("Eat blue ham", {}),
|
||||
]
|
||||
nlp = Language()
|
||||
train_examples = []
|
||||
for t in unannotated_examples:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
|
||||
data = _compile_gold(train_examples, ["trainable_lemmatizer"], nlp, True)
|
||||
assert data["no_lemma_annotations"] == 2
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import os
|
||||
from pathlib import Path
|
||||
from typer.testing import CliRunner
|
||||
from spacy.tokens import DocBin, Doc
|
||||
|
||||
from spacy.cli._util import app
|
||||
from .util import make_tempdir
|
||||
|
@ -31,3 +32,60 @@ def test_convert_auto_conflict():
|
|||
assert "All input files must be same type" in result.stdout
|
||||
out_files = os.listdir(d_out)
|
||||
assert len(out_files) == 0
|
||||
|
||||
|
||||
def test_benchmark_accuracy_alias():
|
||||
# Verify that the `evaluate` alias works correctly.
|
||||
result_benchmark = CliRunner().invoke(app, ["benchmark", "accuracy", "--help"])
|
||||
result_evaluate = CliRunner().invoke(app, ["evaluate", "--help"])
|
||||
assert result_benchmark.stdout == result_evaluate.stdout.replace(
|
||||
"spacy evaluate", "spacy benchmark accuracy"
|
||||
)
|
||||
|
||||
|
||||
def test_debug_data_trainable_lemmatizer_cli(en_vocab):
|
||||
train_docs = [
|
||||
Doc(en_vocab, words=["I", "like", "cats"], lemmas=["I", "like", "cat"]),
|
||||
Doc(
|
||||
en_vocab,
|
||||
words=["Dogs", "are", "great", "too"],
|
||||
lemmas=["dog", "be", "great", "too"],
|
||||
),
|
||||
]
|
||||
dev_docs = [
|
||||
Doc(en_vocab, words=["Cats", "are", "cute"], lemmas=["cat", "be", "cute"]),
|
||||
Doc(en_vocab, words=["Pets", "are", "great"], lemmas=["pet", "be", "great"]),
|
||||
]
|
||||
with make_tempdir() as d_in:
|
||||
train_bin = DocBin(docs=train_docs)
|
||||
train_bin.to_disk(d_in / "train.spacy")
|
||||
dev_bin = DocBin(docs=dev_docs)
|
||||
dev_bin.to_disk(d_in / "dev.spacy")
|
||||
# `debug data` requires an input pipeline config
|
||||
CliRunner().invoke(
|
||||
app,
|
||||
[
|
||||
"init",
|
||||
"config",
|
||||
f"{d_in}/config.cfg",
|
||||
"--lang",
|
||||
"en",
|
||||
"--pipeline",
|
||||
"trainable_lemmatizer",
|
||||
],
|
||||
)
|
||||
result_debug_data = CliRunner().invoke(
|
||||
app,
|
||||
[
|
||||
"debug",
|
||||
"data",
|
||||
f"{d_in}/config.cfg",
|
||||
"--paths.train",
|
||||
f"{d_in}/train.spacy",
|
||||
"--paths.dev",
|
||||
f"{d_in}/dev.spacy",
|
||||
],
|
||||
)
|
||||
# Instead of checking specific wording of the output, which may change,
|
||||
# we'll check that this section of the debug output is present.
|
||||
assert "= Trainable Lemmatizer =" in result_debug_data.stdout
|
||||
|
|
|
@ -26,6 +26,12 @@ except ImportError:
|
|||
pass
|
||||
|
||||
|
||||
TAGGER_TRAIN_DATA = [
|
||||
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
|
||||
("Eat blue ham", {"tags": ["V", "J", "N"]}),
|
||||
]
|
||||
|
||||
|
||||
def evil_component(doc):
|
||||
if "2" in doc.text:
|
||||
raise ValueError("no dice")
|
||||
|
@ -799,3 +805,66 @@ def test_component_return():
|
|||
nlp.add_pipe("test_component_bad_pipe")
|
||||
with pytest.raises(ValueError, match="instead of a Doc"):
|
||||
nlp("text")
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("teacher_tagger_name", ["tagger", "teacher_tagger"])
|
||||
def test_distill(teacher_tagger_name):
|
||||
teacher = English()
|
||||
teacher_tagger = teacher.add_pipe("tagger", name=teacher_tagger_name)
|
||||
train_examples = []
|
||||
for t in TAGGER_TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(teacher.make_doc(t[0]), t[1]))
|
||||
|
||||
optimizer = teacher.initialize(get_examples=lambda: train_examples)
|
||||
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
teacher.update(train_examples, sgd=optimizer, losses=losses)
|
||||
assert losses[teacher_tagger_name] < 0.00001
|
||||
|
||||
student = English()
|
||||
student_tagger = student.add_pipe("tagger")
|
||||
student_tagger.min_tree_freq = 1
|
||||
student_tagger.initialize(
|
||||
get_examples=lambda: train_examples, labels=teacher_tagger.label_data
|
||||
)
|
||||
|
||||
distill_examples = [
|
||||
Example.from_dict(teacher.make_doc(t[0]), {}) for t in TAGGER_TRAIN_DATA
|
||||
]
|
||||
|
||||
student_to_teacher = (
|
||||
None
|
||||
if teacher_tagger.name == student_tagger.name
|
||||
else {student_tagger.name: teacher_tagger.name}
|
||||
)
|
||||
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
student.distill(
|
||||
teacher,
|
||||
distill_examples,
|
||||
sgd=optimizer,
|
||||
losses=losses,
|
||||
student_to_teacher=student_to_teacher,
|
||||
)
|
||||
assert losses["tagger"] < 0.00001
|
||||
|
||||
test_text = "I like blue eggs"
|
||||
doc = student(test_text)
|
||||
assert doc[0].tag_ == "N"
|
||||
assert doc[1].tag_ == "V"
|
||||
assert doc[2].tag_ == "J"
|
||||
assert doc[3].tag_ == "N"
|
||||
|
||||
# Do an extra update to check if annotates works, though we can't really
|
||||
# validate the resuls, since the annotations are ephemeral.
|
||||
student.distill(
|
||||
teacher,
|
||||
distill_examples,
|
||||
sgd=optimizer,
|
||||
losses=losses,
|
||||
student_to_teacher=student_to_teacher,
|
||||
annotates=["tagger"],
|
||||
)
|
||||
|
|
|
@ -5,10 +5,8 @@ from pathlib import Path
|
|||
from spacy.about import __version__ as spacy_version
|
||||
from spacy import util
|
||||
from spacy import prefer_gpu, require_gpu, require_cpu
|
||||
from spacy.ml._precomputable_affine import PrecomputableAffine
|
||||
from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding
|
||||
from spacy.util import dot_to_object, SimpleFrozenList, import_file
|
||||
from spacy.util import to_ternary_int, find_available_port
|
||||
from spacy.util import dot_to_object, SimpleFrozenList, import_file, to_ternary_int
|
||||
from spacy.util import find_available_port
|
||||
from thinc.api import Config, Optimizer, ConfigValidationError
|
||||
from thinc.api import get_current_ops, set_current_ops, NumpyOps, CupyOps, MPSOps
|
||||
from thinc.compat import has_cupy_gpu, has_torch_mps_gpu
|
||||
|
@ -81,34 +79,6 @@ def test_util_get_package_path(package):
|
|||
assert isinstance(path, Path)
|
||||
|
||||
|
||||
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
|
||||
model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP).initialize()
|
||||
assert model.get_param("W").shape == (nF, nO, nP, nI)
|
||||
tensor = model.ops.alloc((10, nI))
|
||||
Y, get_dX = model.begin_update(tensor)
|
||||
assert Y.shape == (tensor.shape[0] + 1, nF, nO, nP)
|
||||
dY = model.ops.alloc((15, nO, nP))
|
||||
ids = model.ops.alloc((15, nF))
|
||||
ids[1, 2] = -1
|
||||
dY[1] = 1
|
||||
assert not model.has_grad("pad")
|
||||
d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
|
||||
assert d_pad[0, 2, 0, 0] == 1.0
|
||||
ids.fill(0.0)
|
||||
dY.fill(0.0)
|
||||
dY[0] = 0
|
||||
ids[1, 2] = 0
|
||||
ids[1, 1] = -1
|
||||
ids[1, 0] = -1
|
||||
dY[1] = 1
|
||||
ids[2, 0] = -1
|
||||
dY[2] = 5
|
||||
d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
|
||||
assert d_pad[0, 0, 0, 0] == 6
|
||||
assert d_pad[0, 1, 0, 0] == 1
|
||||
assert d_pad[0, 2, 0, 0] == 0
|
||||
|
||||
|
||||
def test_prefer_gpu():
|
||||
current_ops = get_current_ops()
|
||||
if has_cupy_gpu:
|
||||
|
|
78
spacy/tests/training/test_corpus.py
Normal file
78
spacy/tests/training/test_corpus.py
Normal file
|
@ -0,0 +1,78 @@
|
|||
from typing import IO, Generator, Iterable, List, TextIO, Tuple
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
import pytest
|
||||
import tempfile
|
||||
|
||||
from spacy.lang.en import English
|
||||
from spacy.training import Example, PlainTextCorpus
|
||||
from spacy.util import make_tempdir
|
||||
|
||||
# Intentional newlines to check that they are skipped.
|
||||
PLAIN_TEXT_DOC = """
|
||||
|
||||
This is a doc. It contains two sentences.
|
||||
This is another doc.
|
||||
|
||||
A third doc.
|
||||
|
||||
"""
|
||||
|
||||
PLAIN_TEXT_DOC_TOKENIZED = [
|
||||
[
|
||||
"This",
|
||||
"is",
|
||||
"a",
|
||||
"doc",
|
||||
".",
|
||||
"It",
|
||||
"contains",
|
||||
"two",
|
||||
"sentences",
|
||||
".",
|
||||
],
|
||||
["This", "is", "another", "doc", "."],
|
||||
["A", "third", "doc", "."],
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("min_length", [0, 5])
|
||||
@pytest.mark.parametrize("max_length", [0, 5])
|
||||
def test_plain_text_reader(min_length, max_length):
|
||||
nlp = English()
|
||||
with _string_to_tmp_file(PLAIN_TEXT_DOC) as file_path:
|
||||
corpus = PlainTextCorpus(
|
||||
file_path, min_length=min_length, max_length=max_length
|
||||
)
|
||||
|
||||
check = [
|
||||
doc
|
||||
for doc in PLAIN_TEXT_DOC_TOKENIZED
|
||||
if len(doc) >= min_length and (max_length == 0 or len(doc) <= max_length)
|
||||
]
|
||||
reference, predicted = _examples_to_tokens(corpus(nlp))
|
||||
|
||||
assert reference == check
|
||||
assert predicted == check
|
||||
|
||||
|
||||
@contextmanager
|
||||
def _string_to_tmp_file(s: str) -> Generator[Path, None, None]:
|
||||
with make_tempdir() as d:
|
||||
file_path = Path(d) / "string.txt"
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
f.write(s)
|
||||
yield file_path
|
||||
|
||||
|
||||
def _examples_to_tokens(
|
||||
examples: Iterable[Example],
|
||||
) -> Tuple[List[List[str]], List[List[str]]]:
|
||||
reference = []
|
||||
predicted = []
|
||||
|
||||
for eg in examples:
|
||||
reference.append([t.text for t in eg.reference])
|
||||
predicted.append([t.text for t in eg.predicted])
|
||||
|
||||
return reference, predicted
|
|
@ -918,7 +918,9 @@ def _train_tuples(train_data):
|
|||
optimizer = nlp.initialize()
|
||||
for i in range(5):
|
||||
losses = {}
|
||||
batches = minibatch(train_examples, size=compounding(4.0, 32.0, 1.001))
|
||||
batches = minibatch(
|
||||
train_examples, size=compounding(4.0, 32.0, 1.001).to_generator()
|
||||
)
|
||||
for batch in batches:
|
||||
nlp.update(batch, sgd=optimizer, losses=losses)
|
||||
|
||||
|
|
|
@ -37,7 +37,7 @@ cdef class Tokenizer:
|
|||
bint with_special_cases) except -1
|
||||
cdef int _tokenize(self, Doc tokens, str span, hash_t key,
|
||||
int* has_special, bint with_special_cases) except -1
|
||||
cdef str _split_affixes(self, Pool mem, str string,
|
||||
cdef str _split_affixes(self, str string,
|
||||
vector[LexemeC*] *prefixes,
|
||||
vector[LexemeC*] *suffixes, int* has_special,
|
||||
bint with_special_cases)
|
||||
|
|
|
@ -389,14 +389,14 @@ cdef class Tokenizer:
|
|||
cdef vector[LexemeC*] suffixes
|
||||
cdef int orig_size
|
||||
orig_size = tokens.length
|
||||
span = self._split_affixes(tokens.mem, span, &prefixes, &suffixes,
|
||||
span = self._split_affixes(span, &prefixes, &suffixes,
|
||||
has_special, with_special_cases)
|
||||
self._attach_tokens(tokens, span, &prefixes, &suffixes, has_special,
|
||||
with_special_cases)
|
||||
self._save_cached(&tokens.c[orig_size], orig_key, has_special,
|
||||
tokens.length - orig_size)
|
||||
|
||||
cdef str _split_affixes(self, Pool mem, str string,
|
||||
cdef str _split_affixes(self, str string,
|
||||
vector[const LexemeC*] *prefixes,
|
||||
vector[const LexemeC*] *suffixes,
|
||||
int* has_special,
|
||||
|
@ -419,7 +419,7 @@ cdef class Tokenizer:
|
|||
minus_pre = string[pre_len:]
|
||||
if minus_pre and with_special_cases and self._specials.get(hash_string(minus_pre)) != NULL:
|
||||
string = minus_pre
|
||||
prefixes.push_back(self.vocab.get(mem, prefix))
|
||||
prefixes.push_back(self.vocab.get(prefix))
|
||||
break
|
||||
suf_len = self.find_suffix(string[pre_len:])
|
||||
if suf_len != 0:
|
||||
|
@ -427,18 +427,18 @@ cdef class Tokenizer:
|
|||
minus_suf = string[:-suf_len]
|
||||
if minus_suf and with_special_cases and self._specials.get(hash_string(minus_suf)) != NULL:
|
||||
string = minus_suf
|
||||
suffixes.push_back(self.vocab.get(mem, suffix))
|
||||
suffixes.push_back(self.vocab.get(suffix))
|
||||
break
|
||||
if pre_len and suf_len and (pre_len + suf_len) <= len(string):
|
||||
string = string[pre_len:-suf_len]
|
||||
prefixes.push_back(self.vocab.get(mem, prefix))
|
||||
suffixes.push_back(self.vocab.get(mem, suffix))
|
||||
prefixes.push_back(self.vocab.get(prefix))
|
||||
suffixes.push_back(self.vocab.get(suffix))
|
||||
elif pre_len:
|
||||
string = minus_pre
|
||||
prefixes.push_back(self.vocab.get(mem, prefix))
|
||||
prefixes.push_back(self.vocab.get(prefix))
|
||||
elif suf_len:
|
||||
string = minus_suf
|
||||
suffixes.push_back(self.vocab.get(mem, suffix))
|
||||
suffixes.push_back(self.vocab.get(suffix))
|
||||
return string
|
||||
|
||||
cdef int _attach_tokens(self, Doc tokens, str string,
|
||||
|
@ -465,11 +465,11 @@ cdef class Tokenizer:
|
|||
# We're always saying 'no' to spaces here -- the caller will
|
||||
# fix up the outermost one, with reference to the original.
|
||||
# See Issue #859
|
||||
tokens.push_back(self.vocab.get(tokens.mem, string), False)
|
||||
tokens.push_back(self.vocab.get(string), False)
|
||||
else:
|
||||
matches = self.find_infix(string)
|
||||
if not matches:
|
||||
tokens.push_back(self.vocab.get(tokens.mem, string), False)
|
||||
tokens.push_back(self.vocab.get(string), False)
|
||||
else:
|
||||
# Let's say we have dyn-o-mite-dave - the regex finds the
|
||||
# start and end positions of the hyphens
|
||||
|
@ -484,7 +484,7 @@ cdef class Tokenizer:
|
|||
|
||||
if infix_start != start:
|
||||
span = string[start:infix_start]
|
||||
tokens.push_back(self.vocab.get(tokens.mem, span), False)
|
||||
tokens.push_back(self.vocab.get(span), False)
|
||||
|
||||
if infix_start != infix_end:
|
||||
# If infix_start != infix_end, it means the infix
|
||||
|
@ -492,11 +492,11 @@ cdef class Tokenizer:
|
|||
# for tokenization in some languages (see
|
||||
# https://github.com/explosion/spaCy/issues/768)
|
||||
infix_span = string[infix_start:infix_end]
|
||||
tokens.push_back(self.vocab.get(tokens.mem, infix_span), False)
|
||||
tokens.push_back(self.vocab.get(infix_span), False)
|
||||
start = infix_end
|
||||
span = string[start:]
|
||||
if span:
|
||||
tokens.push_back(self.vocab.get(tokens.mem, span), False)
|
||||
tokens.push_back(self.vocab.get(span), False)
|
||||
cdef vector[const LexemeC*].reverse_iterator it = suffixes.rbegin()
|
||||
while it != suffixes.rend():
|
||||
lexeme = deref(it)
|
||||
|
|
|
@ -266,12 +266,12 @@ cdef class Doc:
|
|||
cdef const LexemeC* lexeme
|
||||
for word, has_space in zip(words, spaces):
|
||||
if isinstance(word, str):
|
||||
lexeme = self.vocab.get(self.mem, word)
|
||||
lexeme = self.vocab.get(word)
|
||||
elif isinstance(word, bytes):
|
||||
raise ValueError(Errors.E028.format(value=word))
|
||||
else:
|
||||
try:
|
||||
lexeme = self.vocab.get_by_orth(self.mem, word)
|
||||
lexeme = self.vocab.get_by_orth(word)
|
||||
except TypeError:
|
||||
raise TypeError(Errors.E1022.format(wtype=type(word)))
|
||||
self.push_back(lexeme, has_space)
|
||||
|
@ -1430,7 +1430,7 @@ cdef class Doc:
|
|||
end = start + attrs[i, 0]
|
||||
has_space = attrs[i, 1]
|
||||
orth_ = text[start:end]
|
||||
lex = self.vocab.get(self.mem, orth_)
|
||||
lex = self.vocab.get(orth_)
|
||||
self.push_back(lex, has_space)
|
||||
start = end + has_space
|
||||
self.from_array(msg["array_head"][2:], attrs[:, 2:])
|
||||
|
@ -1536,7 +1536,7 @@ cdef class Doc:
|
|||
assert words == reconstructed_words
|
||||
|
||||
for word, has_space in zip(words, spaces):
|
||||
lex = self.vocab.get(self.mem, word)
|
||||
lex = self.vocab.get(word)
|
||||
self.push_back(lex, has_space)
|
||||
|
||||
# Set remaining token-level attributes via Doc.from_array().
|
||||
|
|
|
@ -223,7 +223,7 @@ def _merge(Doc doc, merges):
|
|||
if doc.vocab.vectors_length > 0:
|
||||
doc.vocab.set_vector(new_orth, span.vector)
|
||||
token = tokens[token_index]
|
||||
lex = doc.vocab.get(doc.mem, new_orth)
|
||||
lex = doc.vocab.get(new_orth)
|
||||
token.lex = lex
|
||||
# We set trailing space here too
|
||||
token.spacy = doc.c[spans[token_index].end-1].spacy
|
||||
|
@ -359,7 +359,7 @@ def _split(Doc doc, int token_index, orths, heads, attrs):
|
|||
cdef int idx_offset = 0
|
||||
for i, orth in enumerate(orths):
|
||||
token = &doc.c[token_index + i]
|
||||
lex = doc.vocab.get(doc.mem, orth)
|
||||
lex = doc.vocab.get(orth)
|
||||
token.lex = lex
|
||||
# If lemma is currently set, set default lemma to orth
|
||||
if token.lemma != 0:
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from .corpus import Corpus, JsonlCorpus # noqa: F401
|
||||
from .corpus import Corpus, JsonlCorpus, PlainTextCorpus # noqa: F401
|
||||
from .example import Example, validate_examples, validate_get_examples # noqa: F401
|
||||
from .example import validate_distillation_examples # noqa: F401
|
||||
from .alignment import Alignment # noqa: F401
|
||||
|
|
|
@ -2,12 +2,13 @@ from typing import Union, Iterable, Sequence, TypeVar, List, Callable, Iterator
|
|||
from typing import Optional, Any
|
||||
from functools import partial
|
||||
import itertools
|
||||
from thinc.schedules import Schedule, constant as constant_schedule
|
||||
from thinc.schedules import Schedule
|
||||
|
||||
from ..util import registry, minibatch
|
||||
|
||||
|
||||
Sizing = Union[Sequence[int], int, Schedule[int]]
|
||||
SizingSchedule = Union[Iterable[int], int, Schedule]
|
||||
Sizing = Union[Iterable[int], int]
|
||||
ItemT = TypeVar("ItemT")
|
||||
BatcherT = Callable[[Iterable[ItemT]], Iterable[List[ItemT]]]
|
||||
|
||||
|
@ -15,7 +16,7 @@ BatcherT = Callable[[Iterable[ItemT]], Iterable[List[ItemT]]]
|
|||
@registry.batchers("spacy.batch_by_padded.v1")
|
||||
def configure_minibatch_by_padded_size(
|
||||
*,
|
||||
size: Sizing,
|
||||
size: SizingSchedule,
|
||||
buffer: int,
|
||||
discard_oversize: bool,
|
||||
get_length: Optional[Callable[[ItemT], int]] = None
|
||||
|
@ -25,8 +26,8 @@ def configure_minibatch_by_padded_size(
|
|||
The padded size is defined as the maximum length of sequences within the
|
||||
batch multiplied by the number of sequences in the batch.
|
||||
|
||||
size (int or Sequence[int]): The largest padded size to batch sequences into.
|
||||
Can be a single integer, or a sequence, allowing for variable batch sizes.
|
||||
size (int, Iterable[int] or Schedule): The largest padded size to batch sequences
|
||||
into. Can be a single integer, or a sequence, allowing for variable batch sizes.
|
||||
buffer (int): The number of sequences to accumulate before sorting by length.
|
||||
A larger buffer will result in more even sizing, but if the buffer is
|
||||
very large, the iteration order will be less random, which can result
|
||||
|
@ -40,7 +41,7 @@ def configure_minibatch_by_padded_size(
|
|||
optionals = {"get_length": get_length} if get_length is not None else {}
|
||||
return partial(
|
||||
minibatch_by_padded_size,
|
||||
size=size,
|
||||
size=_schedule_to_sizing(size),
|
||||
buffer=buffer,
|
||||
discard_oversize=discard_oversize,
|
||||
**optionals
|
||||
|
@ -50,14 +51,14 @@ def configure_minibatch_by_padded_size(
|
|||
@registry.batchers("spacy.batch_by_words.v1")
|
||||
def configure_minibatch_by_words(
|
||||
*,
|
||||
size: Sizing,
|
||||
size: SizingSchedule,
|
||||
tolerance: float,
|
||||
discard_oversize: bool,
|
||||
get_length: Optional[Callable[[ItemT], int]] = None
|
||||
) -> BatcherT:
|
||||
"""Create a batcher that uses the "minibatch by words" strategy.
|
||||
|
||||
size (int or Sequence[int]): The target number of words per batch.
|
||||
size (int, Iterable[int] or Schedule): The target number of words per batch.
|
||||
Can be a single integer, or a sequence, allowing for variable batch sizes.
|
||||
tolerance (float): What percentage of the size to allow batches to exceed.
|
||||
discard_oversize (bool): Whether to discard sequences that by themselves
|
||||
|
@ -68,7 +69,7 @@ def configure_minibatch_by_words(
|
|||
optionals = {"get_length": get_length} if get_length is not None else {}
|
||||
return partial(
|
||||
minibatch_by_words,
|
||||
size=size,
|
||||
size=_schedule_to_sizing(size),
|
||||
tolerance=tolerance,
|
||||
discard_oversize=discard_oversize,
|
||||
**optionals
|
||||
|
@ -77,15 +78,15 @@ def configure_minibatch_by_words(
|
|||
|
||||
@registry.batchers("spacy.batch_by_sequence.v1")
|
||||
def configure_minibatch(
|
||||
size: Sizing, get_length: Optional[Callable[[ItemT], int]] = None
|
||||
size: SizingSchedule, get_length: Optional[Callable[[ItemT], int]] = None
|
||||
) -> BatcherT:
|
||||
"""Create a batcher that creates batches of the specified size.
|
||||
|
||||
size (int or Sequence[int]): The target number of items per batch.
|
||||
size (int, Iterable[int] or Schedule): The target number of items per batch.
|
||||
Can be a single integer, or a sequence, allowing for variable batch sizes.
|
||||
"""
|
||||
optionals = {"get_length": get_length} if get_length is not None else {}
|
||||
return partial(minibatch, size=size, **optionals)
|
||||
return partial(minibatch, size=_schedule_to_sizing(size), **optionals)
|
||||
|
||||
|
||||
def minibatch_by_padded_size(
|
||||
|
@ -101,7 +102,7 @@ def minibatch_by_padded_size(
|
|||
The padded size is defined as the maximum length of sequences within the
|
||||
batch multiplied by the number of sequences in the batch.
|
||||
|
||||
size (int or Sequence[int]): The largest padded size to batch sequences into.
|
||||
size (int or Iterable[int]): The largest padded size to batch sequences into.
|
||||
buffer (int): The number of sequences to accumulate before sorting by length.
|
||||
A larger buffer will result in more even sizing, but if the buffer is
|
||||
very large, the iteration order will be less random, which can result
|
||||
|
@ -112,13 +113,12 @@ def minibatch_by_padded_size(
|
|||
The `len` function is used by default.
|
||||
"""
|
||||
if isinstance(size, int):
|
||||
size_ = constant_schedule(size)
|
||||
size_: Iterator[int] = itertools.repeat(size)
|
||||
else:
|
||||
assert isinstance(size, Schedule)
|
||||
size_ = size
|
||||
for step, outer_batch in enumerate(minibatch(seqs, size=buffer)):
|
||||
size_ = iter(size)
|
||||
for outer_batch in minibatch(seqs, size=buffer):
|
||||
outer_batch = list(outer_batch)
|
||||
target_size = size_(step)
|
||||
target_size = next(size_)
|
||||
for indices in _batch_by_length(outer_batch, target_size, get_length):
|
||||
subbatch = [outer_batch[i] for i in indices]
|
||||
padded_size = max(len(seq) for seq in subbatch) * len(subbatch)
|
||||
|
@ -140,7 +140,7 @@ def minibatch_by_words(
|
|||
themselves, or be discarded if discard_oversize=True.
|
||||
|
||||
seqs (Iterable[Sequence]): The sequences to minibatch.
|
||||
size (int or Sequence[int]): The target number of words per batch.
|
||||
size (int or Iterable[int]): The target number of words per batch.
|
||||
Can be a single integer, or a sequence, allowing for variable batch sizes.
|
||||
tolerance (float): What percentage of the size to allow batches to exceed.
|
||||
discard_oversize (bool): Whether to discard sequences that by themselves
|
||||
|
@ -149,12 +149,10 @@ def minibatch_by_words(
|
|||
item. The `len` function is used by default.
|
||||
"""
|
||||
if isinstance(size, int):
|
||||
size_ = constant_schedule(size)
|
||||
size_: Iterator[int] = itertools.repeat(size)
|
||||
else:
|
||||
assert isinstance(size, Schedule)
|
||||
size_ = size
|
||||
step = 0
|
||||
target_size = size_(step)
|
||||
size_ = iter(size)
|
||||
target_size = next(size_)
|
||||
tol_size = target_size * tolerance
|
||||
batch = []
|
||||
overflow = []
|
||||
|
@ -179,8 +177,7 @@ def minibatch_by_words(
|
|||
else:
|
||||
if batch:
|
||||
yield batch
|
||||
step += 1
|
||||
target_size = size_(step)
|
||||
target_size = next(size_)
|
||||
tol_size = target_size * tolerance
|
||||
batch = overflow
|
||||
batch_size = overflow_size
|
||||
|
@ -198,8 +195,7 @@ def minibatch_by_words(
|
|||
else:
|
||||
if batch:
|
||||
yield batch
|
||||
step += 1
|
||||
target_size = size_(step)
|
||||
target_size = next(size_)
|
||||
tol_size = target_size * tolerance
|
||||
batch = [seq]
|
||||
batch_size = n_words
|
||||
|
@ -236,3 +232,9 @@ def _batch_by_length(
|
|||
batches = [list(sorted(batch)) for batch in batches]
|
||||
batches.reverse()
|
||||
return batches
|
||||
|
||||
|
||||
def _schedule_to_sizing(size: SizingSchedule) -> Sizing:
|
||||
if isinstance(size, Schedule):
|
||||
return size.to_generator()
|
||||
return size
|
||||
|
|
|
@ -58,6 +58,28 @@ def read_labels(path: Path, *, require: bool = False):
|
|||
return srsly.read_json(path)
|
||||
|
||||
|
||||
@util.registry.readers("spacy.PlainTextCorpus.v1")
|
||||
def create_plain_text_reader(
|
||||
path: Optional[Path],
|
||||
min_length: int = 0,
|
||||
max_length: int = 0,
|
||||
) -> Callable[["Language"], Iterable[Doc]]:
|
||||
"""Iterate Example objects from a file or directory of plain text
|
||||
UTF-8 files with one line per doc.
|
||||
|
||||
path (Path): The directory or filename to read from.
|
||||
min_length (int): Minimum document length (in tokens). Shorter documents
|
||||
will be skipped. Defaults to 0, which indicates no limit.
|
||||
max_length (int): Maximum document length (in tokens). Longer documents will
|
||||
be skipped. Defaults to 0, which indicates no limit.
|
||||
|
||||
DOCS: https://spacy.io/api/corpus#plaintextcorpus
|
||||
"""
|
||||
if path is None:
|
||||
raise ValueError(Errors.E913)
|
||||
return PlainTextCorpus(path, min_length=min_length, max_length=max_length)
|
||||
|
||||
|
||||
def walk_corpus(path: Union[str, Path], file_type) -> List[Path]:
|
||||
path = util.ensure_path(path)
|
||||
if not path.is_dir() and path.parts[-1].endswith(file_type):
|
||||
|
@ -257,3 +279,52 @@ class JsonlCorpus:
|
|||
# We don't *need* an example here, but it seems nice to
|
||||
# make it match the Corpus signature.
|
||||
yield Example(doc, Doc(nlp.vocab, words=words, spaces=spaces))
|
||||
|
||||
|
||||
class PlainTextCorpus:
|
||||
"""Iterate Example objects from a file or directory of plain text
|
||||
UTF-8 files with one line per doc.
|
||||
|
||||
path (Path): The directory or filename to read from.
|
||||
min_length (int): Minimum document length (in tokens). Shorter documents
|
||||
will be skipped. Defaults to 0, which indicates no limit.
|
||||
max_length (int): Maximum document length (in tokens). Longer documents will
|
||||
be skipped. Defaults to 0, which indicates no limit.
|
||||
|
||||
DOCS: https://spacy.io/api/corpus#plaintextcorpus
|
||||
"""
|
||||
|
||||
file_type = "txt"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
path: Optional[Union[str, Path]],
|
||||
*,
|
||||
min_length: int = 0,
|
||||
max_length: int = 0,
|
||||
) -> None:
|
||||
self.path = util.ensure_path(path)
|
||||
self.min_length = min_length
|
||||
self.max_length = max_length
|
||||
|
||||
def __call__(self, nlp: "Language") -> Iterator[Example]:
|
||||
"""Yield examples from the data.
|
||||
|
||||
nlp (Language): The current nlp object.
|
||||
YIELDS (Example): The example objects.
|
||||
|
||||
DOCS: https://spacy.io/api/corpus#plaintextcorpus-call
|
||||
"""
|
||||
for loc in walk_corpus(self.path, ".txt"):
|
||||
with open(loc, encoding="utf-8") as f:
|
||||
for text in f:
|
||||
text = text.rstrip("\r\n")
|
||||
if len(text):
|
||||
doc = nlp.make_doc(text)
|
||||
if self.min_length >= 1 and len(doc) < self.min_length:
|
||||
continue
|
||||
elif self.max_length >= 1 and len(doc) > self.max_length:
|
||||
continue
|
||||
# We don't *need* an example here, but it seems nice to
|
||||
# make it match the Corpus signature.
|
||||
yield Example(doc, doc.copy())
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
from collections.abc import Iterable as IterableInstance
|
||||
import warnings
|
||||
import numpy
|
||||
from murmurhash.mrmr cimport hash64
|
||||
|
||||
|
|
22
spacy/ty.py
22
spacy/ty.py
|
@ -1,6 +1,5 @@
|
|||
from typing import TYPE_CHECKING
|
||||
from typing import TYPE_CHECKING, Protocol, runtime_checkable
|
||||
from typing import Optional, Any, Iterable, Dict, Callable, Sequence, List
|
||||
from .compat import Protocol, runtime_checkable
|
||||
|
||||
from thinc.api import Optimizer, Model
|
||||
|
||||
|
@ -27,6 +26,25 @@ class TrainableComponent(Protocol):
|
|||
...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class DistillableComponent(Protocol):
|
||||
is_distillable: bool
|
||||
|
||||
def distill(
|
||||
self,
|
||||
teacher_pipe: Optional[TrainableComponent],
|
||||
examples: Iterable["Example"],
|
||||
*,
|
||||
drop: float = 0.0,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
losses: Optional[Dict[str, float]] = None
|
||||
) -> Dict[str, float]:
|
||||
...
|
||||
|
||||
def finish_update(self, sgd: Optimizer) -> None:
|
||||
...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class InitializableComponent(Protocol):
|
||||
def initialize(
|
||||
|
|
|
@ -4,6 +4,7 @@ from typing import Iterator, Pattern, Generator, TYPE_CHECKING
|
|||
from types import ModuleType
|
||||
import os
|
||||
import importlib
|
||||
import importlib.metadata
|
||||
import importlib.util
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
@ -40,7 +41,7 @@ except ImportError:
|
|||
|
||||
|
||||
from .symbols import ORTH
|
||||
from .compat import cupy, CudaStream, is_windows, importlib_metadata
|
||||
from .compat import cupy, CudaStream, is_windows
|
||||
from .errors import Errors, Warnings
|
||||
from . import about
|
||||
|
||||
|
@ -706,8 +707,8 @@ def get_package_version(name: str) -> Optional[str]:
|
|||
RETURNS (str / None): The version or None if package not installed.
|
||||
"""
|
||||
try:
|
||||
return importlib_metadata.version(name) # type: ignore[attr-defined]
|
||||
except importlib_metadata.PackageNotFoundError: # type: ignore[attr-defined]
|
||||
return importlib.metadata.version(name) # type: ignore[attr-defined]
|
||||
except importlib.metadata.PackageNotFoundError: # type: ignore[attr-defined]
|
||||
return None
|
||||
|
||||
|
||||
|
@ -895,7 +896,7 @@ def is_package(name: str) -> bool:
|
|||
RETURNS (bool): True if installed package, False if not.
|
||||
"""
|
||||
try:
|
||||
importlib_metadata.distribution(name) # type: ignore[attr-defined]
|
||||
importlib.metadata.distribution(name) # type: ignore[attr-defined]
|
||||
return True
|
||||
except: # noqa: E722
|
||||
return False
|
||||
|
@ -1583,12 +1584,12 @@ def minibatch(items, size):
|
|||
so that batch-size can vary on each step.
|
||||
"""
|
||||
if isinstance(size, int):
|
||||
size_ = constant_schedule(size)
|
||||
size_ = itertools.repeat(size)
|
||||
else:
|
||||
size_ = size
|
||||
size_ = iter(size)
|
||||
items = iter(items)
|
||||
for step in itertools.count():
|
||||
batch_size = size_(step)
|
||||
while True:
|
||||
batch_size = next(size_)
|
||||
batch = list(itertools.islice(items, int(batch_size)))
|
||||
if len(batch) == 0:
|
||||
break
|
||||
|
@ -1718,7 +1719,7 @@ def packages_distributions() -> Dict[str, List[str]]:
|
|||
it's not available in the builtin importlib.metadata.
|
||||
"""
|
||||
pkg_to_dist = defaultdict(list)
|
||||
for dist in importlib_metadata.distributions():
|
||||
for dist in importlib.metadata.distributions():
|
||||
for pkg in (dist.read_text("top_level.txt") or "").split():
|
||||
pkg_to_dist[pkg].append(dist.metadata["Name"])
|
||||
return dict(pkg_to_dist)
|
||||
|
|
|
@ -35,12 +35,11 @@ cdef class Vocab:
|
|||
cdef public object lex_attr_getters
|
||||
cdef public object cfg
|
||||
|
||||
cdef const LexemeC* get(self, Pool mem, str string) except NULL
|
||||
cdef const LexemeC* get_by_orth(self, Pool mem, attr_t orth) except NULL
|
||||
cdef const LexemeC* get(self, str string) except NULL
|
||||
cdef const LexemeC* get_by_orth(self, attr_t orth) except NULL
|
||||
cdef const TokenC* make_fused_token(self, substrings) except NULL
|
||||
|
||||
cdef const LexemeC* _new_lexeme(self, Pool mem, str string) except NULL
|
||||
cdef const LexemeC* _new_lexeme(self, str string) except NULL
|
||||
cdef int _add_lex_to_vocab(self, hash_t key, const LexemeC* lex) except -1
|
||||
cdef const LexemeC* _new_lexeme(self, Pool mem, str string) except NULL
|
||||
|
||||
cdef PreshMap _by_orth
|
||||
|
|
|
@ -139,7 +139,7 @@ cdef class Vocab:
|
|||
self.lex_attr_getters[flag_id] = flag_getter
|
||||
return flag_id
|
||||
|
||||
cdef const LexemeC* get(self, Pool mem, str string) except NULL:
|
||||
cdef const LexemeC* get(self, str string) except NULL:
|
||||
"""Get a pointer to a `LexemeC` from the lexicon, creating a new
|
||||
`Lexeme` if necessary using memory acquired from the given pool. If the
|
||||
pool is the lexicon's own memory, the lexeme is saved in the lexicon.
|
||||
|
@ -157,9 +157,9 @@ cdef class Vocab:
|
|||
orth=key, orth_id=string))
|
||||
return lex
|
||||
else:
|
||||
return self._new_lexeme(mem, string)
|
||||
return self._new_lexeme(string)
|
||||
|
||||
cdef const LexemeC* get_by_orth(self, Pool mem, attr_t orth) except NULL:
|
||||
cdef const LexemeC* get_by_orth(self, attr_t orth) except NULL:
|
||||
"""Get a pointer to a `LexemeC` from the lexicon, creating a new
|
||||
`Lexeme` if necessary using memory acquired from the given pool. If the
|
||||
pool is the lexicon's own memory, the lexeme is saved in the lexicon.
|
||||
|
@ -171,21 +171,10 @@ cdef class Vocab:
|
|||
if lex != NULL:
|
||||
return lex
|
||||
else:
|
||||
return self._new_lexeme(mem, self.strings[orth])
|
||||
return self._new_lexeme(self.strings[orth])
|
||||
|
||||
cdef const LexemeC* _new_lexeme(self, Pool mem, str string) except NULL:
|
||||
# I think this heuristic is bad, and the Vocab should always
|
||||
# own the lexemes. It avoids weird bugs this way, as it's how the thing
|
||||
# was originally supposed to work. The best solution to the growing
|
||||
# memory use is to periodically reset the vocab, which is an action
|
||||
# that should be up to the user to do (so we don't need to keep track
|
||||
# of the doc ownership).
|
||||
# TODO: Change the C API so that the mem isn't passed in here.
|
||||
mem = self.mem
|
||||
#if len(string) < 3 or self.length < 10000:
|
||||
# mem = self.mem
|
||||
cdef bint is_oov = mem is not self.mem
|
||||
lex = <LexemeC*>mem.alloc(1, sizeof(LexemeC))
|
||||
cdef const LexemeC* _new_lexeme(self, str string) except NULL:
|
||||
lex = <LexemeC*>self.mem.alloc(1, sizeof(LexemeC))
|
||||
lex.orth = self.strings.add(string)
|
||||
lex.length = len(string)
|
||||
if self.vectors is not None:
|
||||
|
@ -199,8 +188,7 @@ cdef class Vocab:
|
|||
value = self.strings.add(value)
|
||||
if value is not None:
|
||||
Lexeme.set_struct_attr(lex, attr, value)
|
||||
if not is_oov:
|
||||
self._add_lex_to_vocab(lex.orth, lex)
|
||||
self._add_lex_to_vocab(lex.orth, lex)
|
||||
if lex == NULL:
|
||||
raise ValueError(Errors.E085.format(string=string))
|
||||
return lex
|
||||
|
@ -271,7 +259,7 @@ cdef class Vocab:
|
|||
props = intify_attrs(props, strings_map=self.strings)
|
||||
token = &tokens[i]
|
||||
# Set the special tokens up to have arbitrary attributes
|
||||
lex = <LexemeC*>self.get_by_orth(self.mem, props[ORTH])
|
||||
lex = <LexemeC*>self.get_by_orth(props[ORTH])
|
||||
token.lex = lex
|
||||
for attr_id, value in props.items():
|
||||
Token.set_struct_attr(token, attr_id, value)
|
||||
|
|
9
website/.dockerignore
Normal file
9
website/.dockerignore
Normal file
|
@ -0,0 +1,9 @@
|
|||
.cache/
|
||||
.next/
|
||||
public/
|
||||
node_modules
|
||||
.npm
|
||||
logs
|
||||
*.log
|
||||
npm-debug.log*
|
||||
quickstart-training-generator.js
|
4
website/.gitignore
vendored
4
website/.gitignore
vendored
|
@ -1,5 +1,7 @@
|
|||
# See https://help.github.com/articles/ignoring-files/ for more about ignoring files.
|
||||
|
||||
quickstart-training-generator.js
|
||||
|
||||
# dependencies
|
||||
/node_modules
|
||||
/.pnp
|
||||
|
@ -41,4 +43,4 @@ next-env.d.ts
|
|||
public/robots.txt
|
||||
public/sitemap*
|
||||
public/sw.js*
|
||||
public/workbox*
|
||||
public/workbox*
|
||||
|
|
|
@ -1,16 +1,14 @@
|
|||
FROM node:11.15.0
|
||||
FROM node:18
|
||||
|
||||
WORKDIR /spacy-io
|
||||
|
||||
RUN npm install -g gatsby-cli@2.7.4
|
||||
|
||||
COPY package.json .
|
||||
COPY package-lock.json .
|
||||
|
||||
RUN npm install
|
||||
USER node
|
||||
|
||||
# This is so the installed node_modules will be up one directory
|
||||
# from where a user mounts files, so that they don't accidentally mount
|
||||
# their own node_modules from a different build
|
||||
# https://nodejs.org/api/modules.html#modules_loading_from_node_modules_folders
|
||||
WORKDIR /spacy-io/website/
|
||||
WORKDIR /home/node
|
||||
COPY --chown=node package.json .
|
||||
COPY --chown=node package-lock.json .
|
||||
RUN npm install
|
||||
|
||||
WORKDIR /home/node/website/
|
||||
|
|
|
@ -41,33 +41,27 @@ If you'd like to do this, **be sure you do _not_ include your local
|
|||
`node_modules` folder**, since there are some dependencies that need to be built
|
||||
for the image system. Rename it before using.
|
||||
|
||||
```bash
|
||||
docker run -it \
|
||||
-v $(pwd):/spacy-io/website \
|
||||
-p 8000:8000 \
|
||||
ghcr.io/explosion/spacy-io \
|
||||
gatsby develop -H 0.0.0.0
|
||||
```
|
||||
|
||||
This will allow you to access the built website at http://0.0.0.0:8000/ in your
|
||||
browser, and still edit code in your editor while having the site reflect those
|
||||
changes.
|
||||
|
||||
**Note**: If you're working on a Mac with an M1 processor, you might see
|
||||
segfault errors from `qemu` if you use the default image. To fix this use the
|
||||
`arm64` tagged image in the `docker run` command
|
||||
(ghcr.io/explosion/spacy-io:arm64).
|
||||
|
||||
### Building the Docker image
|
||||
|
||||
If you'd like to build the image locally, you can do so like this:
|
||||
First build the Docker image. This only needs to be done on the first run
|
||||
or when changes are made to `Dockerfile` or the website dependencies:
|
||||
|
||||
```bash
|
||||
docker build -t spacy-io .
|
||||
```
|
||||
|
||||
This will take some time, so if you want to use the prebuilt image you'll save a
|
||||
bit of time.
|
||||
You can then build and run the website with:
|
||||
|
||||
```bash
|
||||
docker run -it \
|
||||
--rm \
|
||||
-v $(pwd):/home/node/website \
|
||||
-p 3000:3000 \
|
||||
spacy-io \
|
||||
npm run dev -- -H 0.0.0.0
|
||||
```
|
||||
|
||||
This will allow you to access the built website at http://0.0.0.0:3000/ in your
|
||||
browser, and still edit code in your editor while having the site reflect those
|
||||
changes.
|
||||
|
||||
## Project structure
|
||||
|
||||
|
|
|
@ -553,18 +553,17 @@ for a Tok2Vec layer.
|
|||
|
||||
## Parser & NER architectures {id="parser"}
|
||||
|
||||
### spacy.TransitionBasedParser.v2 {id="TransitionBasedParser",source="spacy/ml/models/parser.py"}
|
||||
### spacy.TransitionBasedParser.v3 {id="TransitionBasedParser",source="spacy/ml/models/parser.py"}
|
||||
|
||||
> #### Example Config
|
||||
>
|
||||
> ```ini
|
||||
> [model]
|
||||
> @architectures = "spacy.TransitionBasedParser.v2"
|
||||
> @architectures = "spacy.TransitionBasedParser.v3"
|
||||
> state_type = "ner"
|
||||
> extra_state_tokens = false
|
||||
> hidden_width = 64
|
||||
> maxout_pieces = 2
|
||||
> use_upper = true
|
||||
>
|
||||
> [model.tok2vec]
|
||||
> @architectures = "spacy.HashEmbedCNN.v2"
|
||||
|
@ -594,23 +593,22 @@ consists of either two or three subnetworks:
|
|||
state representation. If not present, the output from the lower model is used
|
||||
as action scores directly.
|
||||
|
||||
| Name | Description |
|
||||
| -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `tok2vec` | Subnetwork to map tokens into vector representations. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `state_type` | Which task to extract features for. Possible values are "ner" and "parser". ~~str~~ |
|
||||
| `extra_state_tokens` | Whether to use an expanded feature set when extracting the state tokens. Slightly slower, but sometimes improves accuracy slightly. Defaults to `False`. ~~bool~~ |
|
||||
| `hidden_width` | The width of the hidden layer. ~~int~~ |
|
||||
| `maxout_pieces` | How many pieces to use in the state prediction layer. Recommended values are `1`, `2` or `3`. If `1`, the maxout non-linearity is replaced with a [`Relu`](https://thinc.ai/docs/api-layers#relu) non-linearity if `use_upper` is `True`, and no non-linearity if `False`. ~~int~~ |
|
||||
| `use_upper` | Whether to use an additional hidden layer after the state vector in order to predict the action scores. It is recommended to set this to `False` for large pretrained models such as transformers, and `True` for smaller networks. The upper layer is computed on CPU, which becomes a bottleneck on larger GPU-based models, where it's also less necessary. ~~bool~~ |
|
||||
| `nO` | The number of actions the model will predict between. Usually inferred from data at the beginning of training, or loaded from disk. ~~int~~ |
|
||||
| **CREATES** | The model using the architecture. ~~Model[List[Docs], List[List[Floats2d]]]~~ |
|
||||
| Name | Description |
|
||||
| -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `tok2vec` | Subnetwork to map tokens into vector representations. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `state_type` | Which task to extract features for. Possible values are "ner" and "parser". ~~str~~ |
|
||||
| `extra_state_tokens` | Whether to use an expanded feature set when extracting the state tokens. Slightly slower, but sometimes improves accuracy slightly. Defaults to `False`. ~~bool~~ |
|
||||
| `hidden_width` | The width of the hidden layer. ~~int~~ |
|
||||
| `maxout_pieces` | How many pieces to use in the state prediction layer. Recommended values are `1`, `2` or `3`. ~~int~~ |
|
||||
| `nO` | The number of actions the model will predict between. Usually inferred from data at the beginning of training, or loaded from disk. ~~int~~ |
|
||||
| **CREATES** | The model using the architecture. ~~Model[List[Docs], List[List[Floats2d]]]~~ |
|
||||
|
||||
<Accordion title="spacy.TransitionBasedParser.v1 definition" spaced>
|
||||
|
||||
[TransitionBasedParser.v1](/api/legacy#TransitionBasedParser_v1) had the exact
|
||||
same signature, but the `use_upper` argument was `True` by default.
|
||||
|
||||
</Accordion>
|
||||
</Accordion>
|
||||
|
||||
## Tagging architectures {id="tagger",source="spacy/ml/models/tagger.py"}
|
||||
|
||||
|
|
|
@ -12,6 +12,7 @@ menu:
|
|||
- ['train', 'train']
|
||||
- ['pretrain', 'pretrain']
|
||||
- ['evaluate', 'evaluate']
|
||||
- ['benchmark', 'benchmark']
|
||||
- ['apply', 'apply']
|
||||
- ['find-threshold', 'find-threshold']
|
||||
- ['assemble', 'assemble']
|
||||
|
@ -269,10 +270,10 @@ $ python -m spacy convert [input_file] [output_dir] [--converter] [--file-type]
|
|||
| `--file-type`, `-t` | Type of file to create. Either `spacy` (default) for binary [`DocBin`](/api/docbin) data or `json` for v2.x JSON format. ~~str (option)~~ |
|
||||
| `--n-sents`, `-n` | Number of sentences per document. Supported for: `conll`, `conllu`, `iob`, `ner` ~~int (option)~~ |
|
||||
| `--seg-sents`, `-s` | Segment sentences. Supported for: `conll`, `ner` ~~bool (flag)~~ |
|
||||
| `--base`, `-b`, `--model` | Trained spaCy pipeline for sentence segmentation to use as base (for `--seg-sents`). ~~Optional[str](option)~~ |
|
||||
| `--base`, `-b`, `--model` | Trained spaCy pipeline for sentence segmentation to use as base (for `--seg-sents`). ~~Optional[str] (option)~~ |
|
||||
| `--morphology`, `-m` | Enable appending morphology to tags. Supported for: `conllu` ~~bool (flag)~~ |
|
||||
| `--merge-subtokens`, `-T` | Merge CoNLL-U subtokens ~~bool (flag)~~ |
|
||||
| `--ner-map`, `-nm` | NER tag mapping (as JSON-encoded dict of entity types). Supported for: `conllu` ~~Optional[Path](option)~~ |
|
||||
| `--ner-map`, `-nm` | NER tag mapping (as JSON-encoded dict of entity types). Supported for: `conllu` ~~Optional[Path] (option)~~ |
|
||||
| `--lang`, `-l` | Language code (if tokenizer required). ~~Optional[str] \(option)~~ |
|
||||
| `--concatenate`, `-C` | Concatenate output to a single file ~~bool (flag)~~ |
|
||||
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
|
||||
|
@ -361,7 +362,7 @@ Module spacy.language
|
|||
File /path/to/spacy/language.py (line 64)
|
||||
ℹ [components.ner.model]
|
||||
Registry @architectures
|
||||
Name spacy.TransitionBasedParser.v1
|
||||
Name spacy.TransitionBasedParser.v3
|
||||
Module spacy.ml.models.parser
|
||||
File /path/to/spacy/ml/models/parser.py (line 11)
|
||||
ℹ [components.ner.model.tok2vec]
|
||||
|
@ -371,7 +372,7 @@ Module spacy.ml.models.tok2vec
|
|||
File /path/to/spacy/ml/models/tok2vec.py (line 16)
|
||||
ℹ [components.parser.model]
|
||||
Registry @architectures
|
||||
Name spacy.TransitionBasedParser.v1
|
||||
Name spacy.TransitionBasedParser.v3
|
||||
Module spacy.ml.models.parser
|
||||
File /path/to/spacy/ml/models/parser.py (line 11)
|
||||
ℹ [components.parser.model.tok2vec]
|
||||
|
@ -696,7 +697,7 @@ scorer = {"@scorers":"spacy.ner_scorer.v1"}
|
|||
update_with_oracle_cut_size = 100
|
||||
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
@architectures = "spacy.TransitionBasedParser.v3"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
- hidden_width = 64
|
||||
|
@ -719,7 +720,7 @@ scorer = {"@scorers":"spacy.parser_scorer.v1"}
|
|||
update_with_oracle_cut_size = 100
|
||||
|
||||
[components.parser.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
@architectures = "spacy.TransitionBasedParser.v3"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 128
|
||||
|
@ -1135,8 +1136,19 @@ $ python -m spacy pretrain [config_path] [output_dir] [--code] [--resume-path] [
|
|||
|
||||
## evaluate {id="evaluate",version="2",tag="command"}
|
||||
|
||||
Evaluate a trained pipeline. Expects a loadable spaCy pipeline (package name or
|
||||
path) and evaluation data in the
|
||||
The `evaluate` subcommand is superseded by
|
||||
[`spacy benchmark accuracy`](#benchmark-accuracy). `evaluate` is provided as an
|
||||
alias to `benchmark accuracy` for compatibility.
|
||||
|
||||
## benchmark {id="benchmark", version="3.5"}
|
||||
|
||||
The `spacy benchmark` CLI includes commands for benchmarking the accuracy and
|
||||
speed of your spaCy pipelines.
|
||||
|
||||
### accuracy {id="benchmark-accuracy", version="3.5", tag="command"}
|
||||
|
||||
Evaluate the accuracy of a trained pipeline. Expects a loadable spaCy pipeline
|
||||
(package name or path) and evaluation data in the
|
||||
[binary `.spacy` format](/api/data-formats#binary-training). The
|
||||
`--gold-preproc` option sets up the evaluation examples with gold-standard
|
||||
sentences and tokens for the predictions. Gold preprocessing helps the
|
||||
|
@ -1147,7 +1159,7 @@ skew. To render a sample of dependency parses in a HTML file using the
|
|||
`--displacy-path` argument.
|
||||
|
||||
```bash
|
||||
$ python -m spacy evaluate [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit]
|
||||
$ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit]
|
||||
```
|
||||
|
||||
| Name | Description |
|
||||
|
@ -1163,6 +1175,29 @@ $ python -m spacy evaluate [model] [data_path] [--output] [--code] [--gold-prepr
|
|||
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
|
||||
| **CREATES** | Training results and optional metrics and visualizations. |
|
||||
|
||||
### speed {id="benchmark-speed", version="3.5", tag="command"}
|
||||
|
||||
Benchmark the speed of a trained pipeline with a 95% confidence interval.
|
||||
Expects a loadable spaCy pipeline (package name or path) and benchmark data in
|
||||
the [binary `.spacy` format](/api/data-formats#binary-training). The pipeline is
|
||||
warmed up before any measurements are taken.
|
||||
|
||||
```cli
|
||||
$ python -m spacy benchmark speed [model] [data_path] [--batch_size] [--no-shuffle] [--gpu-id] [--batches] [--warmup]
|
||||
```
|
||||
|
||||
| Name | Description |
|
||||
| -------------------- | -------------------------------------------------------------------------------------------------------- |
|
||||
| `model` | Pipeline to benchmark the speed of. Can be a package or a path to a data directory. ~~str (positional)~~ |
|
||||
| `data_path` | Location of benchmark data in spaCy's [binary format](/api/data-formats#training). ~~Path (positional)~~ |
|
||||
| `--batch-size`, `-b` | Set the batch size. If not set, the pipeline's batch size is used. ~~Optional[int] \(option)~~ |
|
||||
| `--no-shuffle` | Do not shuffle documents in the benchmark data. ~~bool (flag)~~ |
|
||||
| `--gpu-id`, `-g` | GPU to use, if any. Defaults to `-1` for CPU. ~~int (option)~~ |
|
||||
| `--batches` | Number of batches to benchmark on. Defaults to `50`. ~~Optional[int] \(option)~~ |
|
||||
| `--warmup`, `-w` | Iterations over the benchmark data for warmup. Defaults to `3` ~~Optional[int] \(option)~~ |
|
||||
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
|
||||
| **PRINTS** | Pipeline speed in words per second with a 95% confidence interval. |
|
||||
|
||||
## apply {id="apply", version="3.5", tag="command"}
|
||||
|
||||
Applies a trained pipeline to data and stores the resulting annotated documents
|
||||
|
@ -1176,24 +1211,23 @@ input formats are:
|
|||
|
||||
When a directory is provided it is traversed recursively to collect all files.
|
||||
|
||||
```cli
|
||||
```bash
|
||||
$ python -m spacy apply [model] [data-path] [output-file] [--code] [--text-key] [--force-overwrite] [--gpu-id] [--batch-size] [--n-process]
|
||||
```
|
||||
|
||||
| Name | Description |
|
||||
| ----------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `model` | Pipeline to apply to the data. Can be a package or a path to a data directory. ~~str (positional)~~ |
|
||||
| `data_path` | Location of data to be evaluated in spaCy's [binary format](/api/data-formats#training), jsonl, or plain text. ~~Path (positional)~~ |
|
||||
| `output-file`, `-o` | Output `DocBin` path. ~~str (positional)~~ |
|
||||
| `--code`, `-c` <Tag variant="new">3</Tag> | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
|
||||
| `--text-key`, `-tk` | The key for `.jsonl` files to use to grab the texts from. Defaults to `text`. ~~Optional[str] \(option)~~ |
|
||||
| `--force-overwrite`, `-F` | If the provided `output-file` already exists, then force `apply` to overwrite it. If this is `False` (default) then quits with a warning instead. ~~bool (flag)~~ |
|
||||
| `--gpu-id`, `-g` | GPU to use, if any. Defaults to `-1` for CPU. ~~int (option)~~ |
|
||||
| `--batch-size`, `-b` | Batch size to use for prediction. Defaults to `1`. ~~int (option)~~ |
|
||||
| `--n-process`, `-n` | Number of processes to use for prediction. Defaults to `1`. ~~int (option)~~ |
|
||||
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
|
||||
| **CREATES** | A `DocBin` with the annotations from the `model` for all the files found in `data-path`. |
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `model` | Pipeline to apply to the data. Can be a package or a path to a data directory. ~~str (positional)~~ |
|
||||
| `data_path` | Location of data to be evaluated in spaCy's [binary format](/api/data-formats#training), jsonl, or plain text. ~~Path (positional)~~ |
|
||||
| `output-file`, `-o` | Output `DocBin` path. ~~str (positional)~~ |
|
||||
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
|
||||
| `--text-key`, `-tk` | The key for `.jsonl` files to use to grab the texts from. Defaults to `text`. ~~Optional[str] \(option)~~ |
|
||||
| `--force-overwrite`, `-F` | If the provided `output-file` already exists, then force `apply` to overwrite it. If this is `False` (default) then quits with a warning instead. ~~bool (flag)~~ |
|
||||
| `--gpu-id`, `-g` | GPU to use, if any. Defaults to `-1` for CPU. ~~int (option)~~ |
|
||||
| `--batch-size`, `-b` | Batch size to use for prediction. Defaults to `1`. ~~int (option)~~ |
|
||||
| `--n-process`, `-n` | Number of processes to use for prediction. Defaults to `1`. ~~int (option)~~ |
|
||||
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
|
||||
| **CREATES** | A `DocBin` with the annotations from the `model` for all the files found in `data-path`. |
|
||||
|
||||
## find-threshold {id="find-threshold",version="3.5",tag="command"}
|
||||
|
||||
|
|
|
@ -175,3 +175,68 @@ Yield examples from the data.
|
|||
| ---------- | -------------------------------------- |
|
||||
| `nlp` | The current `nlp` object. ~~Language~~ |
|
||||
| **YIELDS** | The examples. ~~Example~~ |
|
||||
|
||||
## PlainTextCorpus {id="plaintextcorpus",tag="class",version="3.5.1"}
|
||||
|
||||
Iterate over documents from a plain text file. Can be used to read the raw text
|
||||
corpus for language model
|
||||
[pretraining](/usage/embeddings-transformers#pretraining). The expected file
|
||||
format is:
|
||||
|
||||
- UTF-8 encoding
|
||||
- One document per line
|
||||
- Blank lines are ignored.
|
||||
|
||||
```text {title="Example"}
|
||||
Can I ask where you work now and what you do, and if you enjoy it?
|
||||
They may just pull out of the Seattle market completely, at least until they have autonomous vehicles.
|
||||
My cynical view on this is that it will never be free to the public. Reason: what would be the draw of joining the military? Right now their selling point is free Healthcare and Education. Ironically both are run horribly and most, that I've talked to, come out wishing they never went in.
|
||||
```
|
||||
|
||||
### PlainTextCorpus.\_\_init\_\_ {id="plaintextcorpus-init",tag="method"}
|
||||
|
||||
Initialize the reader.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.training import PlainTextCorpus
|
||||
>
|
||||
> corpus = PlainTextCorpus("./data/docs.txt")
|
||||
> ```
|
||||
>
|
||||
> ```ini
|
||||
> ### Example config
|
||||
> [corpora.pretrain]
|
||||
> @readers = "spacy.PlainTextCorpus.v1"
|
||||
> path = "corpus/raw_text.txt"
|
||||
> min_length = 0
|
||||
> max_length = 0
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `path` | The directory or filename to read from. Expects newline-delimited documents in UTF8 format. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `min_length` | Minimum document length (in tokens). Shorter documents will be skipped. Defaults to `0`, which indicates no limit. ~~int~~ |
|
||||
| `max_length` | Maximum document length (in tokens). Longer documents will be skipped. Defaults to `0`, which indicates no limit. ~~int~~ |
|
||||
|
||||
### PlainTextCorpus.\_\_call\_\_ {id="plaintextcorpus-call",tag="method"}
|
||||
|
||||
Yield examples from the data.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.training import PlainTextCorpus
|
||||
> import spacy
|
||||
>
|
||||
> corpus = PlainTextCorpus("./docs.txt")
|
||||
> nlp = spacy.blank("en")
|
||||
> data = corpus(nlp)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ---------- | -------------------------------------- |
|
||||
| `nlp` | The current `nlp` object. ~~Language~~ |
|
||||
| **YIELDS** | The examples. ~~Example~~ |
|
||||
|
|
|
@ -163,14 +163,13 @@ vocabulary.
|
|||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> lexeme = vocab.get(vocab.mem, "hello")
|
||||
> lexeme = vocab.get("hello")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------------------------------------------------------------------------------------- |
|
||||
| `mem` | A memory pool. Allocated memory will be freed once the `Vocab` object is garbage collected. ~~cymem.Pool~~ |
|
||||
| `string` | The string of the word to look up. ~~str~~ |
|
||||
| **RETURNS** | The lexeme in the vocabulary. ~~const LexemeC\*~~ |
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------------- |
|
||||
| `string` | The string of the word to look up. ~~str~~ |
|
||||
| **RETURNS** | The lexeme in the vocabulary. ~~const LexemeC\*~~ |
|
||||
|
||||
### Vocab.get_by_orth {id="vocab_get_by_orth",tag="method"}
|
||||
|
||||
|
@ -183,11 +182,10 @@ vocabulary.
|
|||
> lexeme = vocab.get_by_orth(doc[0].lex.norm)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------------------------------------------------------------------------------------- |
|
||||
| `mem` | A memory pool. Allocated memory will be freed once the `Vocab` object is garbage collected. ~~cymem.Pool~~ |
|
||||
| `orth` | ID of the verbatim text content. ~~attr_t (uint64_t)~~ |
|
||||
| **RETURNS** | The lexeme in the vocabulary. ~~const LexemeC\*~~ |
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------------------ |
|
||||
| `orth` | ID of the verbatim text content. ~~attr_t (uint64_t)~~ |
|
||||
| **RETURNS** | The lexeme in the vocabulary. ~~const LexemeC\*~~ |
|
||||
|
||||
## StringStore {id="stringstore",tag="cdef class",source="spacy/strings.pxd"}
|
||||
|
||||
|
|
|
@ -154,15 +154,15 @@ This feature is experimental.
|
|||
> losses = student.distill(teacher_pipe, examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## DependencyParser.pipe {id="pipe",tag="method"}
|
||||
|
||||
|
|
|
@ -138,15 +138,15 @@ This feature is experimental.
|
|||
> losses = student.distill(teacher_pipe, examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## EditTreeLemmatizer.pipe {id="pipe",tag="method"}
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@ world". It requires a `KnowledgeBase`, as well as a function to generate
|
|||
plausible candidates from that `KnowledgeBase` given a certain textual mention,
|
||||
and a machine learning model to pick the right candidate, given the local
|
||||
context of the mention. `EntityLinker` defaults to using the
|
||||
[`InMemoryLookupKB`](/api/kb_in_memory) implementation.
|
||||
[`InMemoryLookupKB`](/api/inmemorylookupkb) implementation.
|
||||
|
||||
## Assigned Attributes {id="assigned-attributes"}
|
||||
|
||||
|
|
|
@ -150,15 +150,15 @@ This feature is experimental.
|
|||
> losses = student.distill(teacher_pipe, examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## EntityRecognizer.pipe {id="pipe",tag="method"}
|
||||
|
||||
|
|
|
@ -43,7 +43,7 @@ The length of the fixed-size entity vectors in the knowledge base.
|
|||
|
||||
Add an entity to the knowledge base, specifying its corpus frequency and entity
|
||||
vector, which should be of length
|
||||
[`entity_vector_length`](/api/kb_in_memory#entity_vector_length).
|
||||
[`entity_vector_length`](/api/inmemorylookupkb#entity_vector_length).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
|
@ -79,8 +79,9 @@ frequency and entity vector for each entity.
|
|||
|
||||
Add an alias or mention to the knowledge base, specifying its potential KB
|
||||
identifiers and their prior probabilities. The entity identifiers should refer
|
||||
to entities previously added with [`add_entity`](/api/kb_in_memory#add_entity)
|
||||
or [`set_entities`](/api/kb_in_memory#set_entities). The sum of the prior
|
||||
to entities previously added with
|
||||
[`add_entity`](/api/inmemorylookupkb#add_entity) or
|
||||
[`set_entities`](/api/inmemorylookupkb#set_entities). The sum of the prior
|
||||
probabilities should not exceed 1. Note that an empty string can not be used as
|
||||
alias.
|
||||
|
||||
|
@ -156,7 +157,7 @@ Get a list of all aliases in the knowledge base.
|
|||
|
||||
Given a certain textual mention as input, retrieve a list of candidate entities
|
||||
of type [`Candidate`](/api/kb#candidate). Wraps
|
||||
[`get_alias_candidates()`](/api/kb_in_memory#get_alias_candidates).
|
||||
[`get_alias_candidates()`](/api/inmemorylookupkb#get_alias_candidates).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
|
@ -174,7 +175,7 @@ of type [`Candidate`](/api/kb#candidate). Wraps
|
|||
|
||||
## InMemoryLookupKB.get_candidates_batch {id="get_candidates_batch",tag="method"}
|
||||
|
||||
Same as [`get_candidates()`](/api/kb_in_memory#get_candidates), but for an
|
||||
Same as [`get_candidates()`](/api/inmemorylookupkb#get_candidates), but for an
|
||||
arbitrary number of mentions. The [`EntityLinker`](/api/entitylinker) component
|
||||
will call `get_candidates_batch()` instead of `get_candidates()`, if the config
|
||||
parameter `candidates_batch_size` is greater or equal than 1.
|
||||
|
@ -231,7 +232,7 @@ Given a certain entity ID, retrieve its pretrained entity vector.
|
|||
|
||||
## InMemoryLookupKB.get_vectors {id="get_vectors",tag="method"}
|
||||
|
||||
Same as [`get_vector()`](/api/kb_in_memory#get_vector), but for an arbitrary
|
||||
Same as [`get_vector()`](/api/inmemorylookupkb#get_vector), but for an arbitrary
|
||||
number of entity IDs.
|
||||
|
||||
The default implementation of `get_vectors()` executes `get_vector()` in a loop.
|
|
@ -21,8 +21,8 @@ functions called by the [`EntityLinker`](/api/entitylinker) component.
|
|||
<Infobox variant="warning">
|
||||
|
||||
This class was not abstract up to spaCy version 3.5. The `KnowledgeBase`
|
||||
implementation up to that point is available as `InMemoryLookupKB` from 3.5
|
||||
onwards.
|
||||
implementation up to that point is available as
|
||||
[`InMemoryLookupKB`](/api/inmemorylookupkb) from 3.5 onwards.
|
||||
|
||||
</Infobox>
|
||||
|
||||
|
@ -110,14 +110,15 @@ to you.
|
|||
</Infobox>
|
||||
|
||||
From spaCy 3.5 on `KnowledgeBase` is an abstract class (with
|
||||
[`InMemoryLookupKB`](/api/kb_in_memory) being a drop-in replacement) to allow
|
||||
more flexibility in customizing knowledge bases. Some of its methods were moved
|
||||
to [`InMemoryLookupKB`](/api/kb_in_memory) during this refactoring, one of those
|
||||
being `get_alias_candidates()`. This method is now available as
|
||||
[`InMemoryLookupKB.get_alias_candidates()`](/api/kb_in_memory#get_alias_candidates).
|
||||
Note: [`InMemoryLookupKB.get_candidates()`](/api/kb_in_memory#get_candidates)
|
||||
[`InMemoryLookupKB`](/api/inmemorylookupkb) being a drop-in replacement) to
|
||||
allow more flexibility in customizing knowledge bases. Some of its methods were
|
||||
moved to [`InMemoryLookupKB`](/api/inmemorylookupkb) during this refactoring,
|
||||
one of those being `get_alias_candidates()`. This method is now available as
|
||||
[`InMemoryLookupKB.get_alias_candidates()`](/api/inmemorylookupkb#get_alias_candidates).
|
||||
Note:
|
||||
[`InMemoryLookupKB.get_candidates()`](/api/inmemorylookupkb#get_candidates)
|
||||
defaults to
|
||||
[`InMemoryLookupKB.get_alias_candidates()`](/api/kb_in_memory#get_alias_candidates).
|
||||
[`InMemoryLookupKB.get_alias_candidates()`](/api/inmemorylookupkb#get_alias_candidates).
|
||||
|
||||
## KnowledgeBase.get_vector {id="get_vector",tag="method"}
|
||||
|
||||
|
|
|
@ -333,6 +333,34 @@ and custom registered functions if needed. See the
|
|||
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## Language.distill {id="distill",tag="method,experimental",version="4"}
|
||||
|
||||
Distill the models in a student pipeline from a teacher pipeline.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
>
|
||||
> teacher = spacy.load("en_core_web_lg")
|
||||
> student = English()
|
||||
> student.add_pipe("tagger")
|
||||
> student.distill(teacher, examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher` | The teacher pipeline to distill from. ~~Language~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Dictionary to update with the loss, keyed by pipeline component. ~~Optional[Dict[str, float]]~~ |
|
||||
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
|
||||
| `exclude` | Names of components that shouldn't be updated. Defaults to `[]`. ~~Iterable[str]~~ |
|
||||
| `annotates` | Names of components that should set annotations on the prediced examples after updating. Defaults to `[]`. ~~Iterable[str]~~ |
|
||||
| `student_to_teacher` | Map student component names to teacher component names, only necessary when the names differ. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## Language.rehearse {id="rehearse",tag="method,experimental",version="3"}
|
||||
|
||||
Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
|
||||
|
|
|
@ -225,7 +225,7 @@ the others, but may not be as accurate, especially if texts are short.
|
|||
### spacy.TransitionBasedParser.v1 {id="TransitionBasedParser_v1"}
|
||||
|
||||
Identical to
|
||||
[`spacy.TransitionBasedParser.v2`](/api/architectures#TransitionBasedParser)
|
||||
[`spacy.TransitionBasedParser.v3`](/api/architectures#TransitionBasedParser)
|
||||
except the `use_upper` was set to `True` by default.
|
||||
|
||||
## Layers {id="layers"}
|
||||
|
|
|
@ -144,15 +144,15 @@ This feature is experimental.
|
|||
> losses = student.distill(teacher_pipe, examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## Morphologizer.pipe {id="pipe",tag="method"}
|
||||
|
||||
|
|
|
@ -257,15 +257,15 @@ This feature is experimental.
|
|||
> losses = student.distill(teacher_pipe, examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## TrainablePipe.rehearse {id="rehearse",tag="method,experimental",version="3"}
|
||||
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user