mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 10:46:29 +03:00
Fix textcat model for GPU
This commit is contained in:
parent
16fa4d6b90
commit
28c26e212d
49
spacy/_ml.py
49
spacy/_ml.py
|
@ -84,16 +84,52 @@ def _zero_init(model):
|
|||
@layerize
|
||||
def _preprocess_doc(docs, drop=0.0):
|
||||
keys = [doc.to_array(LOWER) for doc in docs]
|
||||
ops = Model.ops
|
||||
# The dtype here matches what thinc is expecting -- which differs per
|
||||
# platform (by int definition). This should be fixed once the problem
|
||||
# is fixed on Thinc's side.
|
||||
lengths = ops.asarray([arr.shape[0] for arr in keys], dtype=numpy.int_)
|
||||
keys = ops.xp.concatenate(keys)
|
||||
vals = ops.allocate(keys.shape) + 1.0
|
||||
lengths = numpy.array([arr.shape[0] for arr in keys], dtype=numpy.int_)
|
||||
keys = numpy.concatenate(keys)
|
||||
vals = numpy.zeros(keys.shape, dtype='f')
|
||||
return (keys, vals, lengths), None
|
||||
|
||||
|
||||
def with_cpu(ops, model):
|
||||
model.to_cpu()
|
||||
def with_cpu_forward(inputs, drop=0.):
|
||||
cpu_outputs, backprop = model.begin_update(_to_cpu(inputs), drop=drop)
|
||||
gpu_outputs = _to_device(ops, cpu_outputs)
|
||||
|
||||
def with_cpu_backprop(d_outputs, sgd=None):
|
||||
cpu_d_outputs = _to_cpu(d_outputs)
|
||||
return backprop(cpu_d_outputs, sgd=sgd)
|
||||
|
||||
return gpu_outputs, with_cpu_backprop
|
||||
|
||||
return wrap(with_cpu_forward, model)
|
||||
|
||||
|
||||
def _to_cpu(X):
|
||||
if isinstance(X, numpy.ndarray):
|
||||
return X
|
||||
elif isinstance(X, tuple):
|
||||
return tuple([_to_cpu(x) for x in X])
|
||||
elif isinstance(X, list):
|
||||
return [_to_cpu(x) for x in X]
|
||||
elif hasattr(X, 'get'):
|
||||
return X.get()
|
||||
else:
|
||||
return X
|
||||
|
||||
|
||||
def _to_device(ops, X):
|
||||
if isinstance(X, tuple):
|
||||
return tuple([_to_device(ops, x) for x in X])
|
||||
elif isinstance(X, list):
|
||||
return [_to_device(ops, x) for x in X]
|
||||
else:
|
||||
return ops.asarray(X)
|
||||
|
||||
|
||||
@layerize
|
||||
def _preprocess_doc_bigrams(docs, drop=0.0):
|
||||
unigrams = [doc.to_array(LOWER) for doc in docs]
|
||||
|
@ -563,7 +599,10 @@ def build_text_classifier(nr_class, width=64, **cfg):
|
|||
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
||||
)
|
||||
|
||||
linear_model = _preprocess_doc >> LinearModel(nr_class)
|
||||
linear_model = (
|
||||
_preprocess_doc
|
||||
>> with_cpu(Model.ops, LinearModel(nr_class))
|
||||
)
|
||||
if cfg.get('exclusive_classes'):
|
||||
output_layer = Softmax(nr_class, nr_class * 2)
|
||||
else:
|
||||
|
|
Loading…
Reference in New Issue
Block a user