mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Raise an error for textcat with <2 labels (#8584)
* Raise an error for textcat with <2 labels Raise an error if initializing a `textcat` component without at least two labels. * Add similar note to docs * Update positive_label description in API docs
This commit is contained in:
parent
3b1d5350d0
commit
29906884c5
|
@ -521,6 +521,11 @@ class Errors:
|
|||
E202 = ("Unsupported alignment mode '{mode}'. Supported modes: {modes}.")
|
||||
|
||||
# New errors added in v3.x
|
||||
E867 = ("The 'textcat' component requires at least two labels because it "
|
||||
"uses mutually exclusive classes where exactly one label is True "
|
||||
"for each doc. For binary classification tasks, you can use two "
|
||||
"labels with 'textcat' (LABEL / NOT_LABEL) or alternatively, you "
|
||||
"can use the 'textcat_multilabel' component with one label.")
|
||||
E868 = ("Found a conflicting gold annotation in a reference document, "
|
||||
"with the following char-based span occurring both in the gold ents "
|
||||
"as well as in the negative spans: {span}.")
|
||||
|
|
|
@ -336,6 +336,8 @@ class TextCategorizer(TrainablePipe):
|
|||
else:
|
||||
for label in labels:
|
||||
self.add_label(label)
|
||||
if len(self.labels) < 2:
|
||||
raise ValueError(Errors.E867)
|
||||
if positive_label is not None:
|
||||
if positive_label not in self.labels:
|
||||
err = Errors.E920.format(pos_label=positive_label, labels=self.labels)
|
||||
|
|
|
@ -108,6 +108,12 @@ def test_label_types(name):
|
|||
textcat.add_label("answer")
|
||||
with pytest.raises(ValueError):
|
||||
textcat.add_label(9)
|
||||
# textcat requires at least two labels
|
||||
if name == "textcat":
|
||||
with pytest.raises(ValueError):
|
||||
nlp.initialize()
|
||||
else:
|
||||
nlp.initialize()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"])
|
||||
|
|
|
@ -10,11 +10,12 @@ api_trainable: true
|
|||
---
|
||||
|
||||
The text categorizer predicts **categories over a whole document**. and comes in
|
||||
two flavours: `textcat` and `textcat_multilabel`. When you need to predict
|
||||
two flavors: `textcat` and `textcat_multilabel`. When you need to predict
|
||||
exactly one true label per document, use the `textcat` which has mutually
|
||||
exclusive labels. If you want to perform multi-label classification and predict
|
||||
zero, one or more labels per document, use the `textcat_multilabel` component
|
||||
instead.
|
||||
zero, one or more true labels per document, use the `textcat_multilabel`
|
||||
component instead. For a binary classification task, you can use `textcat` with
|
||||
**two** labels or `textcat_multilabel` with **one** label.
|
||||
|
||||
Both components are documented on this page.
|
||||
|
||||
|
@ -189,7 +190,7 @@ This method was previously called `begin_training`.
|
|||
| _keyword-only_ | |
|
||||
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
||||
| `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ |
|
||||
| `positive_label` | The positive label for a binary task with exclusive classes, `None` otherwise and by default. This parameter is not available when using the `textcat_multilabel` component. ~~Optional[str]~~ |
|
||||
| `positive_label` | The positive label for a binary task with exclusive classes, `None` otherwise and by default. This parameter is only used during scoring. It is not available when using the `textcat_multilabel` component. ~~Optional[str]~~ |
|
||||
|
||||
## TextCategorizer.predict {#predict tag="method"}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user