Reproducibility for TextCat and Tok2Vec (#6218)

* ensure fixed seed in HashEmbed layers

* forgot about the joys of python 2
This commit is contained in:
Sofie Van Landeghem 2020-10-08 00:43:46 +02:00 committed by GitHub
parent 9fc8392b38
commit 2998131416
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 47 additions and 12 deletions

View File

@ -654,10 +654,10 @@ def build_text_classifier(nr_class, width=64, **cfg):
) )
return model return model
lower = HashEmbed(width, nr_vector, column=1) lower = HashEmbed(width, nr_vector, column=1, seed=10)
prefix = HashEmbed(width // 2, nr_vector, column=2) prefix = HashEmbed(width // 2, nr_vector, column=2, seed=11)
suffix = HashEmbed(width // 2, nr_vector, column=3) suffix = HashEmbed(width // 2, nr_vector, column=3, seed=12)
shape = HashEmbed(width // 2, nr_vector, column=4) shape = HashEmbed(width // 2, nr_vector, column=4, seed=13)
trained_vectors = FeatureExtracter( trained_vectors = FeatureExtracter(
[ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID] [ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]

View File

@ -27,16 +27,16 @@ def Tok2Vec(width, embed_size, **kwargs):
bilstm_depth = kwargs.get("bilstm_depth", 0) bilstm_depth = kwargs.get("bilstm_depth", 0)
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH] cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}): with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
norm = HashEmbed(width, embed_size, column=cols.index(NORM), name="embed_norm") norm = HashEmbed(width, embed_size, column=cols.index(NORM), name="embed_norm", seed=6)
if subword_features: if subword_features:
prefix = HashEmbed( prefix = HashEmbed(
width, embed_size // 2, column=cols.index(PREFIX), name="embed_prefix" width, embed_size // 2, column=cols.index(PREFIX), name="embed_prefix", seed=7
) )
suffix = HashEmbed( suffix = HashEmbed(
width, embed_size // 2, column=cols.index(SUFFIX), name="embed_suffix" width, embed_size // 2, column=cols.index(SUFFIX), name="embed_suffix", seed=8
) )
shape = HashEmbed( shape = HashEmbed(
width, embed_size // 2, column=cols.index(SHAPE), name="embed_shape" width, embed_size // 2, column=cols.index(SHAPE), name="embed_shape", seed=9
) )
else: else:
prefix, suffix, shape = (None, None, None) prefix, suffix, shape = (None, None, None)

View File

@ -42,16 +42,16 @@ def MultiHashEmbed(config):
width = config["width"] width = config["width"]
rows = config["rows"] rows = config["rows"]
norm = HashEmbed(width, rows, column=cols.index("NORM"), name="embed_norm") norm = HashEmbed(width, rows, column=cols.index("NORM"), name="embed_norm", seed=1)
if config["use_subwords"]: if config["use_subwords"]:
prefix = HashEmbed( prefix = HashEmbed(
width, rows // 2, column=cols.index("PREFIX"), name="embed_prefix" width, rows // 2, column=cols.index("PREFIX"), name="embed_prefix", seed=2
) )
suffix = HashEmbed( suffix = HashEmbed(
width, rows // 2, column=cols.index("SUFFIX"), name="embed_suffix" width, rows // 2, column=cols.index("SUFFIX"), name="embed_suffix", seed=3
) )
shape = HashEmbed( shape = HashEmbed(
width, rows // 2, column=cols.index("SHAPE"), name="embed_shape" width, rows // 2, column=cols.index("SHAPE"), name="embed_shape", seed=4
) )
if config.get("@pretrained_vectors"): if config.get("@pretrained_vectors"):
glove = make_layer(config["@pretrained_vectors"]) glove = make_layer(config["@pretrained_vectors"])

View File

@ -0,0 +1,35 @@
# coding: utf8
from __future__ import unicode_literals
from spacy.lang.en import English
from spacy.util import fix_random_seed
def test_issue6177():
"""Test that after fixing the random seed, the results of the pipeline are truly identical"""
# NOTE: no need to transform this code to v3 when 'master' is merged into 'develop'.
# A similar test exists already for v3: test_issue5551
# This is just a backport
results = []
for i in range(3):
fix_random_seed(0)
nlp = English()
example = (
"Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g.",
{"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}},
)
textcat = nlp.create_pipe("textcat")
nlp.add_pipe(textcat)
for label in set(example[1]["cats"]):
textcat.add_label(label)
nlp.begin_training()
# Store the result of each iteration
result = textcat.model.predict([nlp.make_doc(example[0])])
results.append(list(result[0]))
# All results should be the same because of the fixed seed
assert len(results) == 3
assert results[0] == results[1]
assert results[0] == results[2]