Improve spacy pretrain (#4393)

* Support bilstm_depth arg in spacy pretrain

* Add option to ignore zero vectors in get_cossim_loss

* Use cosine loss in Cloze multitask
This commit is contained in:
Matthew Honnibal 2019-10-07 23:34:58 +02:00 committed by GitHub
parent 9cd6ca3e4d
commit 29f9fec267
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 20 additions and 7 deletions

View File

@ -953,16 +953,24 @@ class CharacterEmbed(Model):
return output, backprop_character_embed return output, backprop_character_embed
def get_cossim_loss(yh, y): def get_cossim_loss(yh, y, ignore_zeros=False):
xp = get_array_module(yh)
# Find the zero vectors
if ignore_zeros:
zero_indices = xp.abs(y).sum(axis=1) == 0
# Add a small constant to avoid 0 vectors # Add a small constant to avoid 0 vectors
yh = yh + 1e-8 yh = yh + 1e-8
y = y + 1e-8 y = y + 1e-8
# https://math.stackexchange.com/questions/1923613/partial-derivative-of-cosine-similarity # https://math.stackexchange.com/questions/1923613/partial-derivative-of-cosine-similarity
xp = get_array_module(yh)
norm_yh = xp.linalg.norm(yh, axis=1, keepdims=True) norm_yh = xp.linalg.norm(yh, axis=1, keepdims=True)
norm_y = xp.linalg.norm(y, axis=1, keepdims=True) norm_y = xp.linalg.norm(y, axis=1, keepdims=True)
mul_norms = norm_yh * norm_y mul_norms = norm_yh * norm_y
cosine = (yh * y).sum(axis=1, keepdims=True) / mul_norms cosine = (yh * y).sum(axis=1, keepdims=True) / mul_norms
d_yh = (y / mul_norms) - (cosine * (yh / norm_yh ** 2)) d_yh = (y / mul_norms) - (cosine * (yh / norm_yh ** 2))
loss = xp.abs(cosine - 1).sum() losses = xp.abs(cosine - 1)
if ignore_zeros:
# If the target was a zero vector, don't count it in the loss.
d_yh[zero_indices] = 0
losses[zero_indices] = 0
loss = losses.sum()
return loss, -d_yh return loss, -d_yh

View File

@ -35,6 +35,7 @@ from .train import _load_pretrained_tok2vec
output_dir=("Directory to write models to on each epoch", "positional", None, str), output_dir=("Directory to write models to on each epoch", "positional", None, str),
width=("Width of CNN layers", "option", "cw", int), width=("Width of CNN layers", "option", "cw", int),
depth=("Depth of CNN layers", "option", "cd", int), depth=("Depth of CNN layers", "option", "cd", int),
bilstm_depth=("Depth of BiLSTM layers (requires PyTorch)", "option", "lstm", int),
embed_rows=("Number of embedding rows", "option", "er", int), embed_rows=("Number of embedding rows", "option", "er", int),
loss_func=( loss_func=(
"Loss function to use for the objective. Either 'L2' or 'cosine'", "Loss function to use for the objective. Either 'L2' or 'cosine'",
@ -80,6 +81,7 @@ def pretrain(
output_dir, output_dir,
width=96, width=96,
depth=4, depth=4,
bilstm_depth=2,
embed_rows=2000, embed_rows=2000,
loss_func="cosine", loss_func="cosine",
use_vectors=False, use_vectors=False,
@ -116,6 +118,10 @@ def pretrain(
util.fix_random_seed(seed) util.fix_random_seed(seed)
has_gpu = prefer_gpu() has_gpu = prefer_gpu()
if has_gpu:
import torch
torch.set_default_tensor_type("torch.cuda.FloatTensor")
msg.info("Using GPU" if has_gpu else "Not using GPU") msg.info("Using GPU" if has_gpu else "Not using GPU")
output_dir = Path(output_dir) output_dir = Path(output_dir)
@ -151,7 +157,7 @@ def pretrain(
embed_rows, embed_rows,
conv_depth=depth, conv_depth=depth,
pretrained_vectors=pretrained_vectors, pretrained_vectors=pretrained_vectors,
bilstm_depth=0, # Requires PyTorch. Experimental. bilstm_depth=bilstm_depth, # Requires PyTorch. Experimental.
cnn_maxout_pieces=3, # You can try setting this higher cnn_maxout_pieces=3, # You can try setting this higher
subword_features=True, # Set to False for Chinese etc subword_features=True, # Set to False for Chinese etc
), ),

View File

@ -29,7 +29,7 @@ from .._ml import Tok2Vec, build_tagger_model, cosine, get_cossim_loss
from .._ml import build_text_classifier, build_simple_cnn_text_classifier from .._ml import build_text_classifier, build_simple_cnn_text_classifier
from .._ml import build_bow_text_classifier, build_nel_encoder from .._ml import build_bow_text_classifier, build_nel_encoder
from .._ml import link_vectors_to_models, zero_init, flatten from .._ml import link_vectors_to_models, zero_init, flatten
from .._ml import masked_language_model, create_default_optimizer from .._ml import masked_language_model, create_default_optimizer, get_cossim_loss
from ..errors import Errors, TempErrors, user_warning, Warnings from ..errors import Errors, TempErrors, user_warning, Warnings
from .. import util from .. import util
@ -880,8 +880,7 @@ class ClozeMultitask(Pipe):
# and look them up all at once. This prevents data copying. # and look them up all at once. This prevents data copying.
ids = self.model.ops.flatten([doc.to_array(ID).ravel() for doc in docs]) ids = self.model.ops.flatten([doc.to_array(ID).ravel() for doc in docs])
target = vectors[ids] target = vectors[ids]
gradient = (prediction - target) / prediction.shape[0] loss, gradient = get_cossim_loss(prediction, target, ignore_zeros=True)
loss = (gradient**2).sum()
return float(loss), gradient return float(loss), gradient
def update(self, docs, golds, drop=0., sgd=None, losses=None): def update(self, docs, golds, drop=0., sgd=None, losses=None):