mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-19 05:54:11 +03:00
Merge branch 'master' into spacy.io
This commit is contained in:
commit
2a38fd00bd
|
@ -715,7 +715,7 @@ assert "gimme" not in [w.text for w in nlp('("...gimme...?")')]
|
|||
The special case rules have precedence over the punctuation splitting:
|
||||
|
||||
```python
|
||||
nlp.tokenizer.add_special_case("...gimme...?", [{ORTH: "...gimme...?"}])
|
||||
nlp.tokenizer.add_special_case("...gimme...?", [{"ORTH": "...gimme...?"}])
|
||||
assert len(nlp("...gimme...?")) == 1
|
||||
```
|
||||
|
||||
|
@ -725,40 +725,52 @@ spaCy introduces a novel tokenization algorithm, that gives a better balance
|
|||
between performance, ease of definition, and ease of alignment into the original
|
||||
string.
|
||||
|
||||
After consuming a prefix or infix, we consult the special cases again. We want
|
||||
After consuming a prefix or suffix, we consult the special cases again. We want
|
||||
the special cases to handle things like "don't" in English, and we want the same
|
||||
rule to work for "(don't)!". We do this by splitting off the open bracket, then
|
||||
the exclamation, then the close bracket, and finally matching the special-case.
|
||||
the exclamation, then the close bracket, and finally matching the special case.
|
||||
Here's an implementation of the algorithm in Python, optimized for readability
|
||||
rather than performance:
|
||||
|
||||
```python
|
||||
def tokenizer_pseudo_code(text, special_cases,
|
||||
find_prefix, find_suffix, find_infixes):
|
||||
def tokenizer_pseudo_code(self, special_cases, prefix_search, suffix_search,
|
||||
infix_finditer, token_match):
|
||||
tokens = []
|
||||
for substring in text.split(' '):
|
||||
for substring in text.split():
|
||||
suffixes = []
|
||||
while substring:
|
||||
while prefix_search(substring) or suffix_search(substring):
|
||||
if substring in special_cases:
|
||||
tokens.extend(special_cases[substring])
|
||||
substring = ''
|
||||
elif find_prefix(substring) is not None:
|
||||
split = find_prefix(substring)
|
||||
break
|
||||
if prefix_search(substring):
|
||||
split = prefix_search(substring).end()
|
||||
tokens.append(substring[:split])
|
||||
substring = substring[split:]
|
||||
elif find_suffix(substring) is not None:
|
||||
split = find_suffix(substring)
|
||||
suffixes.append(substring[-split:])
|
||||
substring = substring[:-split]
|
||||
elif find_infixes(substring):
|
||||
infixes = find_infixes(substring)
|
||||
if substring in special_cases:
|
||||
continue
|
||||
if suffix_search(substring):
|
||||
split = suffix_search(substring).start()
|
||||
suffixes.append(substring[split:])
|
||||
substring = substring[:split]
|
||||
if substring in special_cases:
|
||||
tokens.extend(special_cases[substring])
|
||||
substring = ''
|
||||
elif token_match(substring):
|
||||
tokens.append(substring)
|
||||
substring = ''
|
||||
elif list(infix_finditer(substring)):
|
||||
infixes = infix_finditer(substring)
|
||||
offset = 0
|
||||
for match in infixes:
|
||||
tokens.append(substring[offset : match.start()])
|
||||
tokens.append(substring[match.start() : match.end()])
|
||||
offset = match.end()
|
||||
substring = substring[offset:]
|
||||
else:
|
||||
if substring[offset:]:
|
||||
tokens.append(substring[offset:])
|
||||
substring = ''
|
||||
elif substring:
|
||||
tokens.append(substring)
|
||||
substring = ''
|
||||
tokens.extend(reversed(suffixes))
|
||||
|
@ -767,16 +779,18 @@ def tokenizer_pseudo_code(text, special_cases,
|
|||
|
||||
The algorithm can be summarized as follows:
|
||||
|
||||
1. Iterate over space-separated substrings
|
||||
1. Iterate over whitespace-separated substrings.
|
||||
2. Check whether we have an explicitly defined rule for this substring. If we
|
||||
do, use it.
|
||||
3. Otherwise, try to consume a prefix.
|
||||
4. If we consumed a prefix, go back to the beginning of the loop, so that
|
||||
special-cases always get priority.
|
||||
5. If we didn't consume a prefix, try to consume a suffix.
|
||||
6. If we can't consume a prefix or suffix, look for "infixes" — stuff like
|
||||
hyphens etc.
|
||||
7. Once we can't consume any more of the string, handle it as a single token.
|
||||
3. Otherwise, try to consume one prefix. If we consumed a prefix, go back to
|
||||
#2, so that special cases always get priority.
|
||||
4. If we didn't consume a prefix, try to consume a suffix and then go back to
|
||||
#2.
|
||||
5. If we can't consume a prefix or a suffix, look for a special case.
|
||||
6. Next, look for a token match.
|
||||
7. Look for "infixes" — stuff like hyphens etc. and split the substring into
|
||||
tokens on all infixes.
|
||||
8. Once we can't consume any more of the string, handle it as a single token.
|
||||
|
||||
### Customizing spaCy's Tokenizer class {#native-tokenizers}
|
||||
|
||||
|
@ -791,9 +805,10 @@ domain. There are five things you would need to define:
|
|||
commas, periods, close quotes, etc.
|
||||
4. A function `infixes_finditer`, to handle non-whitespace separators, such as
|
||||
hyphens etc.
|
||||
5. An optional boolean function `token_match` matching strings that should never
|
||||
be split, overriding the previous rules. Useful for things like URLs or
|
||||
numbers.
|
||||
5. An optional boolean function `token_match` matching strings that should
|
||||
never be split, overriding the infix rules. Useful for things like URLs or
|
||||
numbers. Note that prefixes and suffixes will be split off before
|
||||
`token_match` is applied.
|
||||
|
||||
You shouldn't usually need to create a `Tokenizer` subclass. Standard usage is
|
||||
to use `re.compile()` to build a regular expression object, and pass its
|
||||
|
@ -805,21 +820,23 @@ import re
|
|||
import spacy
|
||||
from spacy.tokenizer import Tokenizer
|
||||
|
||||
special_cases = {":)": [{"ORTH": ":)"}]}
|
||||
prefix_re = re.compile(r'''^[\[\("']''')
|
||||
suffix_re = re.compile(r'''[\]\)"']$''')
|
||||
infix_re = re.compile(r'''[-~]''')
|
||||
simple_url_re = re.compile(r'''^https?://''')
|
||||
|
||||
def custom_tokenizer(nlp):
|
||||
return Tokenizer(nlp.vocab, prefix_search=prefix_re.search,
|
||||
return Tokenizer(nlp.vocab, rules=special_cases,
|
||||
prefix_search=prefix_re.search,
|
||||
suffix_search=suffix_re.search,
|
||||
infix_finditer=infix_re.finditer,
|
||||
token_match=simple_url_re.match)
|
||||
|
||||
nlp = spacy.load("en_core_web_sm")
|
||||
nlp.tokenizer = custom_tokenizer(nlp)
|
||||
doc = nlp("hello-world.")
|
||||
print([t.text for t in doc])
|
||||
doc = nlp("hello-world. :)")
|
||||
print([t.text for t in doc]) # ['hello', '-', 'world.', ':)']
|
||||
```
|
||||
|
||||
If you need to subclass the tokenizer instead, the relevant methods to
|
||||
|
@ -838,15 +855,16 @@ only be applied at the **end of a token**, so your expression should end with a
|
|||
|
||||
</Infobox>
|
||||
|
||||
#### Adding to existing rule sets {#native-tokenizer-additions}
|
||||
#### Modifying existing rule sets {#native-tokenizer-additions}
|
||||
|
||||
In many situations, you don't necessarily need entirely custom rules. Sometimes
|
||||
you just want to add another character to the prefixes, suffixes or infixes. The
|
||||
default prefix, suffix and infix rules are available via the `nlp` object's
|
||||
`Defaults` and the [`Tokenizer.suffix_search`](/api/tokenizer#attributes)
|
||||
attribute is writable, so you can overwrite it with a compiled regular
|
||||
expression object using of the modified default rules. spaCy ships with utility
|
||||
functions to help you compile the regular expressions – for example,
|
||||
you just want to add another character to the prefixes, suffixes or infixes.
|
||||
The default prefix, suffix and infix rules are available via the `nlp` object's
|
||||
`Defaults` and the `Tokenizer` attributes such as
|
||||
[`Tokenizer.suffix_search`](/api/tokenizer#attributes) are writable, so you can
|
||||
overwrite them with compiled regular expression objects using modified default
|
||||
rules. spaCy ships with utility functions to help you compile the regular
|
||||
expressions – for example,
|
||||
[`compile_suffix_regex`](/api/top-level#util.compile_suffix_regex):
|
||||
|
||||
```python
|
||||
|
@ -855,8 +873,15 @@ suffix_regex = spacy.util.compile_suffix_regex(suffixes)
|
|||
nlp.tokenizer.suffix_search = suffix_regex.search
|
||||
```
|
||||
|
||||
For an overview of the default regular expressions, see
|
||||
[`lang/punctuation.py`](https://github.com/explosion/spaCy/blob/master/spacy/lang/punctuation.py).
|
||||
Similarly, you can remove a character from the default suffixes:
|
||||
|
||||
```python
|
||||
suffixes = list(nlp.Defaults.suffixes)
|
||||
suffixes.remove("\\\\[")
|
||||
suffix_regex = spacy.util.compile_suffix_regex(suffixes)
|
||||
nlp.tokenizer.suffix_search = suffix_regex.search
|
||||
```
|
||||
|
||||
The `Tokenizer.suffix_search` attribute should be a function which takes a
|
||||
unicode string and returns a **regex match object** or `None`. Usually we use
|
||||
the `.search` attribute of a compiled regex object, but you can use some other
|
||||
|
@ -866,12 +891,62 @@ function that behaves the same way.
|
|||
|
||||
If you're using a statistical model, writing to the `nlp.Defaults` or
|
||||
`English.Defaults` directly won't work, since the regular expressions are read
|
||||
from the model and will be compiled when you load it. You'll only see the effect
|
||||
if you call [`spacy.blank`](/api/top-level#spacy.blank) or
|
||||
`Defaults.create_tokenizer()`.
|
||||
from the model and will be compiled when you load it. If you modify
|
||||
`nlp.Defaults`, you'll only see the effect if you call
|
||||
[`spacy.blank`](/api/top-level#spacy.blank) or `Defaults.create_tokenizer()`.
|
||||
If you want to modify the tokenizer loaded from a statistical model, you should
|
||||
modify `nlp.tokenizer` directly.
|
||||
|
||||
</Infobox>
|
||||
|
||||
The prefix, infix and suffix rule sets include not only individual characters
|
||||
but also detailed regular expressions that take the surrounding context into
|
||||
account. For example, there is a regular expression that treats a hyphen
|
||||
between letters as an infix. If you do not want the tokenizer to split on
|
||||
hyphens between letters, you can modify the existing infix definition from
|
||||
[`lang/punctuation.py`](https://github.com/explosion/spaCy/blob/master/spacy/lang/punctuation.py):
|
||||
|
||||
|
||||
```python
|
||||
### {executable="true"}
|
||||
import spacy
|
||||
from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER
|
||||
from spacy.lang.char_classes import CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS
|
||||
from spacy.util import compile_infix_regex
|
||||
|
||||
# default tokenizer
|
||||
nlp = spacy.load("en_core_web_sm")
|
||||
doc = nlp("mother-in-law")
|
||||
print([t.text for t in doc]) # ['mother', '-', 'in', '-', 'law']
|
||||
|
||||
# modify tokenizer infix patterns
|
||||
infixes = (
|
||||
LIST_ELLIPSES
|
||||
+ LIST_ICONS
|
||||
+ [
|
||||
r"(?<=[0-9])[+\\-\\*^](?=[0-9-])",
|
||||
r"(?<=[{al}{q}])\\.(?=[{au}{q}])".format(
|
||||
al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES
|
||||
),
|
||||
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
|
||||
# EDIT: commented out regex that splits on hyphens between letters:
|
||||
#r"(?<=[{a}])(?:{h})(?=[{a}])".format(a=ALPHA, h=HYPHENS),
|
||||
r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA),
|
||||
]
|
||||
)
|
||||
|
||||
infix_re = compile_infix_regex(infixes)
|
||||
nlp.tokenizer.infix_finditer = infix_re.finditer
|
||||
doc = nlp("mother-in-law")
|
||||
print([t.text for t in doc]) # ['mother-in-law']
|
||||
```
|
||||
|
||||
For an overview of the default regular expressions, see
|
||||
[`lang/punctuation.py`](https://github.com/explosion/spaCy/blob/master/spacy/lang/punctuation.py)
|
||||
and language-specific definitions such as
|
||||
[`lang/de/punctuation.py`](https://github.com/explosion/spaCy/blob/master/spacy/lang/de/punctuation.py)
|
||||
for German.
|
||||
|
||||
### Hooking an arbitrary tokenizer into the pipeline {#custom-tokenizer}
|
||||
|
||||
The tokenizer is the first component of the processing pipeline and the only one
|
||||
|
|
Loading…
Reference in New Issue
Block a user