mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
Make nonproj methods top-level functions, instead of class methods
This commit is contained in:
parent
c998776c25
commit
2a5eb9f61e
|
@ -173,12 +173,11 @@ class GoldCorpus(object):
|
||||||
if shuffle:
|
if shuffle:
|
||||||
random.shuffle(self.train_locs)
|
random.shuffle(self.train_locs)
|
||||||
if projectivize:
|
if projectivize:
|
||||||
train_tuples = nonproj.PseudoProjectivity.preprocess_training_data(
|
train_tuples = nonproj.preprocess_training_data(
|
||||||
self.train_tuples)
|
self.train_tuples)
|
||||||
gold_docs = self.iter_gold_docs(nlp, train_tuples, gold_preproc)
|
|
||||||
if shuffle:
|
if shuffle:
|
||||||
gold_docs = util.itershuffle(gold_docs, bufsize=shuffle*1000)
|
random.shuffle(train_tuples)
|
||||||
gold_docs = nlp.preprocess_gold(gold_docs)
|
gold_docs = self.iter_gold_docs(nlp, train_tuples, gold_preproc)
|
||||||
yield from gold_docs
|
yield from gold_docs
|
||||||
|
|
||||||
def dev_docs(self, nlp):
|
def dev_docs(self, nlp):
|
||||||
|
@ -236,7 +235,7 @@ class GoldCorpus(object):
|
||||||
return locs
|
return locs
|
||||||
|
|
||||||
|
|
||||||
def read_json_file(loc, docs_filter=None, limit=1000):
|
def read_json_file(loc, docs_filter=None, limit=None):
|
||||||
loc = ensure_path(loc)
|
loc = ensure_path(loc)
|
||||||
if loc.is_dir():
|
if loc.is_dir():
|
||||||
for filename in loc.iterdir():
|
for filename in loc.iterdir():
|
||||||
|
@ -390,7 +389,7 @@ cdef class GoldParse:
|
||||||
raise Exception("Cycle found: %s" % cycle)
|
raise Exception("Cycle found: %s" % cycle)
|
||||||
|
|
||||||
if make_projective:
|
if make_projective:
|
||||||
proj_heads,_ = nonproj.PseudoProjectivity.projectivize(self.heads, self.labels)
|
proj_heads,_ = nonproj.projectivize(self.heads, self.labels)
|
||||||
self.heads = proj_heads
|
self.heads = proj_heads
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
|
|
|
@ -13,7 +13,7 @@ from .vocab import Vocab
|
||||||
from .tagger import Tagger
|
from .tagger import Tagger
|
||||||
from .lemmatizer import Lemmatizer
|
from .lemmatizer import Lemmatizer
|
||||||
from .syntax.parser import get_templates
|
from .syntax.parser import get_templates
|
||||||
from .syntax.nonproj import PseudoProjectivity
|
from .syntax.import nonproj
|
||||||
from .pipeline import NeuralDependencyParser, EntityRecognizer
|
from .pipeline import NeuralDependencyParser, EntityRecognizer
|
||||||
from .pipeline import TokenVectorEncoder, NeuralTagger, NeuralEntityRecognizer
|
from .pipeline import TokenVectorEncoder, NeuralTagger, NeuralEntityRecognizer
|
||||||
from .pipeline import NeuralLabeller
|
from .pipeline import NeuralLabeller
|
||||||
|
@ -97,7 +97,7 @@ class BaseDefaults(object):
|
||||||
'tags': lambda nlp, **cfg: [NeuralTagger(nlp.vocab, **cfg)],
|
'tags': lambda nlp, **cfg: [NeuralTagger(nlp.vocab, **cfg)],
|
||||||
'dependencies': lambda nlp, **cfg: [
|
'dependencies': lambda nlp, **cfg: [
|
||||||
NeuralDependencyParser(nlp.vocab, **cfg),
|
NeuralDependencyParser(nlp.vocab, **cfg),
|
||||||
PseudoProjectivity.deprojectivize],
|
nonproj.deprojectivize],
|
||||||
'entities': lambda nlp, **cfg: [NeuralEntityRecognizer(nlp.vocab, **cfg)],
|
'entities': lambda nlp, **cfg: [NeuralEntityRecognizer(nlp.vocab, **cfg)],
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -47,7 +47,7 @@ from ._parse_features cimport CONTEXT_SIZE
|
||||||
from ._parse_features cimport fill_context
|
from ._parse_features cimport fill_context
|
||||||
from .stateclass cimport StateClass
|
from .stateclass cimport StateClass
|
||||||
from ._state cimport StateC
|
from ._state cimport StateC
|
||||||
from .nonproj import PseudoProjectivity
|
from . import nonproj
|
||||||
from .transition_system import OracleError
|
from .transition_system import OracleError
|
||||||
from .transition_system cimport TransitionSystem, Transition
|
from .transition_system cimport TransitionSystem, Transition
|
||||||
from ..structs cimport TokenC
|
from ..structs cimport TokenC
|
||||||
|
@ -435,7 +435,7 @@ cdef class Parser:
|
||||||
def begin_training(self, gold_tuples, **cfg):
|
def begin_training(self, gold_tuples, **cfg):
|
||||||
if 'model' in cfg:
|
if 'model' in cfg:
|
||||||
self.model = cfg['model']
|
self.model = cfg['model']
|
||||||
gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples)
|
gold_tuples = nonproj.preprocess_training_data(gold_tuples)
|
||||||
actions = self.moves.get_actions(gold_parses=gold_tuples)
|
actions = self.moves.get_actions(gold_parses=gold_tuples)
|
||||||
for action, labels in actions.items():
|
for action, labels in actions.items():
|
||||||
for label in labels:
|
for label in labels:
|
||||||
|
|
|
@ -1,10 +1,17 @@
|
||||||
# coding: utf-8
|
# coding: utf-8
|
||||||
|
"""
|
||||||
|
Implements the projectivize/deprojectivize mechanism in Nivre & Nilsson 2005
|
||||||
|
for doing pseudo-projective parsing implementation uses the HEAD decoration
|
||||||
|
scheme.
|
||||||
|
"""
|
||||||
from __future__ import unicode_literals
|
from __future__ import unicode_literals
|
||||||
from copy import copy
|
from copy import copy
|
||||||
|
|
||||||
from ..tokens.doc cimport Doc
|
from ..tokens.doc cimport Doc
|
||||||
from ..attrs import DEP, HEAD
|
from ..attrs import DEP, HEAD
|
||||||
|
|
||||||
|
DELIMITER = '||'
|
||||||
|
|
||||||
|
|
||||||
def ancestors(tokenid, heads):
|
def ancestors(tokenid, heads):
|
||||||
# returns all words going from the word up the path to the root
|
# returns all words going from the word up the path to the root
|
||||||
|
@ -60,139 +67,126 @@ def is_nonproj_tree(heads):
|
||||||
return any( is_nonproj_arc(word,heads) for word in range(len(heads)) )
|
return any( is_nonproj_arc(word,heads) for word in range(len(heads)) )
|
||||||
|
|
||||||
|
|
||||||
class PseudoProjectivity:
|
def decompose(label):
|
||||||
# implements the projectivize/deprojectivize mechanism in Nivre & Nilsson 2005
|
return label.partition(DELIMITER)[::2]
|
||||||
# for doing pseudo-projective parsing
|
|
||||||
# implementation uses the HEAD decoration scheme
|
|
||||||
|
|
||||||
delimiter = '||'
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def decompose(cls, label):
|
|
||||||
return label.partition(cls.delimiter)[::2]
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def is_decorated(cls, label):
|
|
||||||
return label.find(cls.delimiter) != -1
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def preprocess_training_data(cls, gold_tuples, label_freq_cutoff=30):
|
|
||||||
preprocessed = []
|
|
||||||
freqs = {}
|
|
||||||
for raw_text, sents in gold_tuples:
|
|
||||||
prepro_sents = []
|
|
||||||
for (ids, words, tags, heads, labels, iob), ctnts in sents:
|
|
||||||
proj_heads,deco_labels = cls.projectivize(heads,labels)
|
|
||||||
# set the label to ROOT for each root dependent
|
|
||||||
deco_labels = [ 'ROOT' if head == i else deco_labels[i] for i,head in enumerate(proj_heads) ]
|
|
||||||
# count label frequencies
|
|
||||||
if label_freq_cutoff > 0:
|
|
||||||
for label in deco_labels:
|
|
||||||
if cls.is_decorated(label):
|
|
||||||
freqs[label] = freqs.get(label,0) + 1
|
|
||||||
prepro_sents.append(((ids,words,tags,proj_heads,deco_labels,iob), ctnts))
|
|
||||||
preprocessed.append((raw_text, prepro_sents))
|
|
||||||
|
|
||||||
if label_freq_cutoff > 0:
|
|
||||||
return cls._filter_labels(preprocessed,label_freq_cutoff,freqs)
|
|
||||||
return preprocessed
|
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
def is_decorated(label):
|
||||||
def projectivize(cls, heads, labels):
|
return label.find(DELIMITER) != -1
|
||||||
# use the algorithm by Nivre & Nilsson 2005
|
|
||||||
# assumes heads to be a proper tree, i.e. connected and cycle-free
|
|
||||||
# returns a new pair (heads,labels) which encode
|
|
||||||
# a projective and decorated tree
|
|
||||||
proj_heads = copy(heads)
|
|
||||||
smallest_np_arc = cls._get_smallest_nonproj_arc(proj_heads)
|
|
||||||
if smallest_np_arc == None: # this sentence is already projective
|
|
||||||
return proj_heads, copy(labels)
|
|
||||||
while smallest_np_arc != None:
|
|
||||||
cls._lift(smallest_np_arc, proj_heads)
|
|
||||||
smallest_np_arc = cls._get_smallest_nonproj_arc(proj_heads)
|
|
||||||
deco_labels = cls._decorate(heads, proj_heads, labels)
|
|
||||||
return proj_heads, deco_labels
|
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
def preprocess_training_data(gold_tuples, label_freq_cutoff=30):
|
||||||
def deprojectivize(cls, tokens):
|
preprocessed = []
|
||||||
# reattach arcs with decorated labels (following HEAD scheme)
|
freqs = {}
|
||||||
# for each decorated arc X||Y, search top-down, left-to-right,
|
for raw_text, sents in gold_tuples:
|
||||||
# breadth-first until hitting a Y then make this the new head
|
prepro_sents = []
|
||||||
for token in tokens:
|
for (ids, words, tags, heads, labels, iob), ctnts in sents:
|
||||||
if cls.is_decorated(token.dep_):
|
proj_heads,deco_labels = projectivize(heads,labels)
|
||||||
newlabel,headlabel = cls.decompose(token.dep_)
|
# set the label to ROOT for each root dependent
|
||||||
newhead = cls._find_new_head(token,headlabel)
|
deco_labels = [ 'ROOT' if head == i else deco_labels[i] for i,head in enumerate(proj_heads) ]
|
||||||
token.head = newhead
|
# count label frequencies
|
||||||
token.dep_ = newlabel
|
if label_freq_cutoff > 0:
|
||||||
return tokens
|
for label in deco_labels:
|
||||||
|
if is_decorated(label):
|
||||||
|
freqs[label] = freqs.get(label,0) + 1
|
||||||
|
prepro_sents.append(((ids,words,tags,proj_heads,deco_labels,iob), ctnts))
|
||||||
|
preprocessed.append((raw_text, prepro_sents))
|
||||||
|
|
||||||
@classmethod
|
if label_freq_cutoff > 0:
|
||||||
def _decorate(cls, heads, proj_heads, labels):
|
return _filter_labels(preprocessed,label_freq_cutoff,freqs)
|
||||||
# uses decoration scheme HEAD from Nivre & Nilsson 2005
|
return preprocessed
|
||||||
assert(len(heads) == len(proj_heads) == len(labels))
|
|
||||||
deco_labels = []
|
|
||||||
for tokenid,head in enumerate(heads):
|
|
||||||
if head != proj_heads[tokenid]:
|
|
||||||
deco_labels.append('%s%s%s' % (labels[tokenid],cls.delimiter,labels[head]))
|
|
||||||
else:
|
|
||||||
deco_labels.append(labels[tokenid])
|
|
||||||
return deco_labels
|
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def _get_smallest_nonproj_arc(cls, heads):
|
def projectivize(heads, labels):
|
||||||
# return the smallest non-proj arc or None
|
# use the algorithm by Nivre & Nilsson 2005
|
||||||
# where size is defined as the distance between dep and head
|
# assumes heads to be a proper tree, i.e. connected and cycle-free
|
||||||
# and ties are broken left to right
|
# returns a new pair (heads,labels) which encode
|
||||||
smallest_size = float('inf')
|
# a projective and decorated tree
|
||||||
smallest_np_arc = None
|
proj_heads = copy(heads)
|
||||||
for tokenid,head in enumerate(heads):
|
smallest_np_arc = _get_smallest_nonproj_arc(proj_heads)
|
||||||
size = abs(tokenid-head)
|
if smallest_np_arc == None: # this sentence is already projective
|
||||||
if size < smallest_size and is_nonproj_arc(tokenid,heads):
|
return proj_heads, copy(labels)
|
||||||
smallest_size = size
|
while smallest_np_arc != None:
|
||||||
smallest_np_arc = tokenid
|
_lift(smallest_np_arc, proj_heads)
|
||||||
return smallest_np_arc
|
smallest_np_arc = _get_smallest_nonproj_arc(proj_heads)
|
||||||
|
deco_labels = _decorate(heads, proj_heads, labels)
|
||||||
|
return proj_heads, deco_labels
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def _lift(cls, tokenid, heads):
|
def deprojectivize(tokens):
|
||||||
# reattaches a word to it's grandfather
|
# reattach arcs with decorated labels (following HEAD scheme)
|
||||||
head = heads[tokenid]
|
# for each decorated arc X||Y, search top-down, left-to-right,
|
||||||
ghead = heads[head]
|
# breadth-first until hitting a Y then make this the new head
|
||||||
# attach to ghead if head isn't attached to root else attach to root
|
for token in tokens:
|
||||||
heads[tokenid] = ghead if head != ghead else tokenid
|
if is_decorated(token.dep_):
|
||||||
|
newlabel,headlabel = decompose(token.dep_)
|
||||||
|
newhead = _find_new_head(token,headlabel)
|
||||||
|
token.head = newhead
|
||||||
|
token.dep_ = newlabel
|
||||||
|
return tokens
|
||||||
|
|
||||||
|
def _decorate(heads, proj_heads, labels):
|
||||||
|
# uses decoration scheme HEAD from Nivre & Nilsson 2005
|
||||||
|
assert(len(heads) == len(proj_heads) == len(labels))
|
||||||
|
deco_labels = []
|
||||||
|
for tokenid,head in enumerate(heads):
|
||||||
|
if head != proj_heads[tokenid]:
|
||||||
|
deco_labels.append('%s%s%s' % (labels[tokenid], DELIMITER, labels[head]))
|
||||||
|
else:
|
||||||
|
deco_labels.append(labels[tokenid])
|
||||||
|
return deco_labels
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
def _get_smallest_nonproj_arc(heads):
|
||||||
def _find_new_head(cls, token, headlabel):
|
# return the smallest non-proj arc or None
|
||||||
# search through the tree starting from the head of the given token
|
# where size is defined as the distance between dep and head
|
||||||
# returns the id of the first descendant with the given label
|
# and ties are broken left to right
|
||||||
# if there is none, return the current head (no change)
|
smallest_size = float('inf')
|
||||||
queue = [token.head]
|
smallest_np_arc = None
|
||||||
while queue:
|
for tokenid,head in enumerate(heads):
|
||||||
next_queue = []
|
size = abs(tokenid-head)
|
||||||
for qtoken in queue:
|
if size < smallest_size and is_nonproj_arc(tokenid,heads):
|
||||||
for child in qtoken.children:
|
smallest_size = size
|
||||||
if child.is_space: continue
|
smallest_np_arc = tokenid
|
||||||
if child == token: continue
|
return smallest_np_arc
|
||||||
if child.dep_ == headlabel:
|
|
||||||
return child
|
|
||||||
next_queue.append(child)
|
|
||||||
queue = next_queue
|
|
||||||
return token.head
|
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
def _lift(tokenid, heads):
|
||||||
def _filter_labels(cls, gold_tuples, cutoff, freqs):
|
# reattaches a word to it's grandfather
|
||||||
# throw away infrequent decorated labels
|
head = heads[tokenid]
|
||||||
# can't learn them reliably anyway and keeps label set smaller
|
ghead = heads[head]
|
||||||
filtered = []
|
# attach to ghead if head isn't attached to root else attach to root
|
||||||
for raw_text, sents in gold_tuples:
|
heads[tokenid] = ghead if head != ghead else tokenid
|
||||||
filtered_sents = []
|
|
||||||
for (ids, words, tags, heads, labels, iob), ctnts in sents:
|
|
||||||
filtered_labels = [ cls.decompose(label)[0] if freqs.get(label,cutoff) < cutoff else label for label in labels ]
|
def _find_new_head(token, headlabel):
|
||||||
filtered_sents.append(((ids,words,tags,heads,filtered_labels,iob), ctnts))
|
# search through the tree starting from the head of the given token
|
||||||
filtered.append((raw_text, filtered_sents))
|
# returns the id of the first descendant with the given label
|
||||||
return filtered
|
# if there is none, return the current head (no change)
|
||||||
|
queue = [token.head]
|
||||||
|
while queue:
|
||||||
|
next_queue = []
|
||||||
|
for qtoken in queue:
|
||||||
|
for child in qtoken.children:
|
||||||
|
if child.is_space: continue
|
||||||
|
if child == token: continue
|
||||||
|
if child.dep_ == headlabel:
|
||||||
|
return child
|
||||||
|
next_queue.append(child)
|
||||||
|
queue = next_queue
|
||||||
|
return token.head
|
||||||
|
|
||||||
|
|
||||||
|
def _filter_labels(gold_tuples, cutoff, freqs):
|
||||||
|
# throw away infrequent decorated labels
|
||||||
|
# can't learn them reliably anyway and keeps label set smaller
|
||||||
|
filtered = []
|
||||||
|
for raw_text, sents in gold_tuples:
|
||||||
|
filtered_sents = []
|
||||||
|
for (ids, words, tags, heads, labels, iob), ctnts in sents:
|
||||||
|
filtered_labels = [ decompose(label)[0] if freqs.get(label,cutoff) < cutoff else label for label in labels ]
|
||||||
|
filtered_sents.append(((ids,words,tags,heads,filtered_labels,iob), ctnts))
|
||||||
|
filtered.append((raw_text, filtered_sents))
|
||||||
|
return filtered
|
||||||
|
|
Loading…
Reference in New Issue
Block a user