mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-23 15:54:13 +03:00
Add dropout to parser
This commit is contained in:
parent
1f292bfd17
commit
2a91d641e6
|
@ -193,13 +193,11 @@ cdef class Parser:
|
||||||
elif 'features' not in cfg:
|
elif 'features' not in cfg:
|
||||||
cfg['features'] = self.feature_templates
|
cfg['features'] = self.feature_templates
|
||||||
self.model = ParserModel(self.moves.n_moves, cfg['features'],
|
self.model = ParserModel(self.moves.n_moves, cfg['features'],
|
||||||
size=2**18,
|
size=2**14,
|
||||||
learn_rate=cfg.get('learn_rate', 0.001))
|
learn_rate=cfg.get('learn_rate', 0.001))
|
||||||
#self.model.l1_penalty = cfg.get('L1', 1e-8)
|
#self.model.l1_penalty = cfg.get('L1', 0.0)
|
||||||
#self.model.learn_rate = cfg.get('learn_rate', 0.001)
|
|
||||||
|
|
||||||
self.optimizer = SGD(NumpyOps(), cfg.get('learn_rate', 0.001),
|
self.optimizer = Adam(NumpyOps(), cfg.get('learn_rate', 0.001))
|
||||||
momentum=0.9)
|
|
||||||
|
|
||||||
self.cfg = cfg
|
self.cfg = cfg
|
||||||
|
|
||||||
|
@ -337,9 +335,19 @@ cdef class Parser:
|
||||||
cdef Transition action
|
cdef Transition action
|
||||||
words = [w.text for w in tokens]
|
words = [w.text for w in tokens]
|
||||||
|
|
||||||
|
cdef int i
|
||||||
|
cdef double[::1] py_dropout
|
||||||
|
cdef double* dropout
|
||||||
while not stcls.is_final():
|
while not stcls.is_final():
|
||||||
|
|
||||||
nr_feat = self.model.set_featuresC(context, features, stcls.c)
|
nr_feat = self.model.set_featuresC(context, features, stcls.c)
|
||||||
|
py_dropout = numpy.random.uniform(0., 1., nr_feat)
|
||||||
|
dropout = &py_dropout[0]
|
||||||
|
for i in range(nr_feat):
|
||||||
|
if dropout[i] < 0.5:
|
||||||
|
features[i].value = 0
|
||||||
|
else:
|
||||||
|
features[i].value *= 2
|
||||||
self.moves.set_costs(is_valid, costs, stcls, gold)
|
self.moves.set_costs(is_valid, costs, stcls, gold)
|
||||||
self.model.set_scoresC(scores, features, nr_feat)
|
self.model.set_scoresC(scores, features, nr_feat)
|
||||||
|
|
||||||
|
@ -347,6 +355,9 @@ cdef class Parser:
|
||||||
best = arg_max_if_gold(scores, costs, nr_class)
|
best = arg_max_if_gold(scores, costs, nr_class)
|
||||||
|
|
||||||
self.model.regression_lossC(d_scores, scores, costs)
|
self.model.regression_lossC(d_scores, scores, costs)
|
||||||
|
for i in range(nr_class):
|
||||||
|
if not is_valid[i]:
|
||||||
|
d_scores[i] = 0
|
||||||
self.model.set_gradientC(d_scores, features, nr_feat)
|
self.model.set_gradientC(d_scores, features, nr_feat)
|
||||||
|
|
||||||
action = self.moves.c[guess]
|
action = self.moves.c[guess]
|
||||||
|
@ -354,7 +365,7 @@ cdef class Parser:
|
||||||
#print(scores[guess], scores[best], d_scores[guess], costs[guess],
|
#print(scores[guess], scores[best], d_scores[guess], costs[guess],
|
||||||
# self.moves.move_name(action.move, action.label), stcls.print_state(words))
|
# self.moves.move_name(action.move, action.label), stcls.print_state(words))
|
||||||
|
|
||||||
loss += scores[guess]
|
loss += abs(scores[guess] + costs[guess])
|
||||||
memset(context, 0, sizeof(context))
|
memset(context, 0, sizeof(context))
|
||||||
memset(features, 0, sizeof(features[0]) * nr_feat)
|
memset(features, 0, sizeof(features[0]) * nr_feat)
|
||||||
memset(scores, 0, sizeof(scores[0]) * nr_class)
|
memset(scores, 0, sizeof(scores[0]) * nr_class)
|
||||||
|
@ -363,8 +374,7 @@ cdef class Parser:
|
||||||
for i in range(nr_class):
|
for i in range(nr_class):
|
||||||
is_valid[i] = 1
|
is_valid[i] = 1
|
||||||
#if itn % 100 == 0:
|
#if itn % 100 == 0:
|
||||||
# self.optimizer(self.model.model[0].ravel(),
|
# self.model.finish_update(self.optimizer)
|
||||||
# self.model.model[1].ravel(), key=1)
|
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
def step_through(self, Doc doc):
|
def step_through(self, Doc doc):
|
||||||
|
|
Loading…
Reference in New Issue
Block a user