mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 10:46:29 +03:00
Merge branch 'develop' into feature/project-cli
This commit is contained in:
commit
2ad7a02400
106
.github/contributors/Arvindcheenu.md
vendored
Normal file
106
.github/contributors/Arvindcheenu.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# spaCy contributor agreement
|
||||||
|
|
||||||
|
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||||
|
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||||
|
The SCA applies to any contribution that you make to any product or project
|
||||||
|
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||||
|
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||||
|
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||||
|
**"you"** shall mean the person or entity identified below.
|
||||||
|
|
||||||
|
If you agree to be bound by these terms, fill in the information requested
|
||||||
|
below and include the filled-in version with your first pull request, under the
|
||||||
|
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||||
|
should be your GitHub username, with the extension `.md`. For example, the user
|
||||||
|
example_user would create the file `.github/contributors/example_user.md`.
|
||||||
|
|
||||||
|
Read this agreement carefully before signing. These terms and conditions
|
||||||
|
constitute a binding legal agreement.
|
||||||
|
|
||||||
|
## Contributor Agreement
|
||||||
|
|
||||||
|
1. The term "contribution" or "contributed materials" means any source code,
|
||||||
|
object code, patch, tool, sample, graphic, specification, manual,
|
||||||
|
documentation, or any other material posted or submitted by you to the project.
|
||||||
|
|
||||||
|
2. With respect to any worldwide copyrights, or copyright applications and
|
||||||
|
registrations, in your contribution:
|
||||||
|
|
||||||
|
* you hereby assign to us joint ownership, and to the extent that such
|
||||||
|
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||||
|
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||||
|
royalty-free, unrestricted license to exercise all rights under those
|
||||||
|
copyrights. This includes, at our option, the right to sublicense these same
|
||||||
|
rights to third parties through multiple levels of sublicensees or other
|
||||||
|
licensing arrangements;
|
||||||
|
|
||||||
|
* you agree that each of us can do all things in relation to your
|
||||||
|
contribution as if each of us were the sole owners, and if one of us makes
|
||||||
|
a derivative work of your contribution, the one who makes the derivative
|
||||||
|
work (or has it made will be the sole owner of that derivative work;
|
||||||
|
|
||||||
|
* you agree that you will not assert any moral rights in your contribution
|
||||||
|
against us, our licensees or transferees;
|
||||||
|
|
||||||
|
* you agree that we may register a copyright in your contribution and
|
||||||
|
exercise all ownership rights associated with it; and
|
||||||
|
|
||||||
|
* you agree that neither of us has any duty to consult with, obtain the
|
||||||
|
consent of, pay or render an accounting to the other for any use or
|
||||||
|
distribution of your contribution.
|
||||||
|
|
||||||
|
3. With respect to any patents you own, or that you can license without payment
|
||||||
|
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||||
|
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||||
|
|
||||||
|
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||||
|
your contribution in whole or in part, alone or in combination with or
|
||||||
|
included in any product, work or materials arising out of the project to
|
||||||
|
which your contribution was submitted, and
|
||||||
|
|
||||||
|
* at our option, to sublicense these same rights to third parties through
|
||||||
|
multiple levels of sublicensees or other licensing arrangements.
|
||||||
|
|
||||||
|
4. Except as set out above, you keep all right, title, and interest in your
|
||||||
|
contribution. The rights that you grant to us under these terms are effective
|
||||||
|
on the date you first submitted a contribution to us, even if your submission
|
||||||
|
took place before the date you sign these terms.
|
||||||
|
|
||||||
|
5. You covenant, represent, warrant and agree that:
|
||||||
|
|
||||||
|
* Each contribution that you submit is and shall be an original work of
|
||||||
|
authorship and you can legally grant the rights set out in this SCA;
|
||||||
|
|
||||||
|
* to the best of your knowledge, each contribution will not violate any
|
||||||
|
third party's copyrights, trademarks, patents, or other intellectual
|
||||||
|
property rights; and
|
||||||
|
|
||||||
|
* each contribution shall be in compliance with U.S. export control laws and
|
||||||
|
other applicable export and import laws. You agree to notify us if you
|
||||||
|
become aware of any circumstance which would make any of the foregoing
|
||||||
|
representations inaccurate in any respect. We may publicly disclose your
|
||||||
|
participation in the project, including the fact that you have signed the SCA.
|
||||||
|
|
||||||
|
6. This SCA is governed by the laws of the State of California and applicable
|
||||||
|
U.S. Federal law. Any choice of law rules will not apply.
|
||||||
|
|
||||||
|
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||||
|
mark both statements:
|
||||||
|
|
||||||
|
* [x] I am signing on behalf of myself as an individual and no other person
|
||||||
|
or entity, including my employer, has or will have rights with respect to my
|
||||||
|
contributions.
|
||||||
|
|
||||||
|
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||||
|
actual authority to contractually bind that entity.
|
||||||
|
|
||||||
|
## Contributor Details
|
||||||
|
|
||||||
|
| Field | Entry |
|
||||||
|
|------------------------------- | -------------------- |
|
||||||
|
| Name | Arvind Srinivasan |
|
||||||
|
| Company name (if applicable) | |
|
||||||
|
| Title or role (if applicable) | |
|
||||||
|
| Date | 2020-06-13 |
|
||||||
|
| GitHub username | arvindcheenu |
|
||||||
|
| Website (optional) | |
|
106
.github/contributors/JannisTriesToCode.md
vendored
Normal file
106
.github/contributors/JannisTriesToCode.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# spaCy contributor agreement
|
||||||
|
|
||||||
|
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||||
|
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||||
|
The SCA applies to any contribution that you make to any product or project
|
||||||
|
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||||
|
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||||
|
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||||
|
**"you"** shall mean the person or entity identified below.
|
||||||
|
|
||||||
|
If you agree to be bound by these terms, fill in the information requested
|
||||||
|
below and include the filled-in version with your first pull request, under the
|
||||||
|
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||||
|
should be your GitHub username, with the extension `.md`. For example, the user
|
||||||
|
example_user would create the file `.github/contributors/example_user.md`.
|
||||||
|
|
||||||
|
Read this agreement carefully before signing. These terms and conditions
|
||||||
|
constitute a binding legal agreement.
|
||||||
|
|
||||||
|
## Contributor Agreement
|
||||||
|
|
||||||
|
1. The term "contribution" or "contributed materials" means any source code,
|
||||||
|
object code, patch, tool, sample, graphic, specification, manual,
|
||||||
|
documentation, or any other material posted or submitted by you to the project.
|
||||||
|
|
||||||
|
2. With respect to any worldwide copyrights, or copyright applications and
|
||||||
|
registrations, in your contribution:
|
||||||
|
|
||||||
|
* you hereby assign to us joint ownership, and to the extent that such
|
||||||
|
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||||
|
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||||
|
royalty-free, unrestricted license to exercise all rights under those
|
||||||
|
copyrights. This includes, at our option, the right to sublicense these same
|
||||||
|
rights to third parties through multiple levels of sublicensees or other
|
||||||
|
licensing arrangements;
|
||||||
|
|
||||||
|
* you agree that each of us can do all things in relation to your
|
||||||
|
contribution as if each of us were the sole owners, and if one of us makes
|
||||||
|
a derivative work of your contribution, the one who makes the derivative
|
||||||
|
work (or has it made will be the sole owner of that derivative work;
|
||||||
|
|
||||||
|
* you agree that you will not assert any moral rights in your contribution
|
||||||
|
against us, our licensees or transferees;
|
||||||
|
|
||||||
|
* you agree that we may register a copyright in your contribution and
|
||||||
|
exercise all ownership rights associated with it; and
|
||||||
|
|
||||||
|
* you agree that neither of us has any duty to consult with, obtain the
|
||||||
|
consent of, pay or render an accounting to the other for any use or
|
||||||
|
distribution of your contribution.
|
||||||
|
|
||||||
|
3. With respect to any patents you own, or that you can license without payment
|
||||||
|
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||||
|
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||||
|
|
||||||
|
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||||
|
your contribution in whole or in part, alone or in combination with or
|
||||||
|
included in any product, work or materials arising out of the project to
|
||||||
|
which your contribution was submitted, and
|
||||||
|
|
||||||
|
* at our option, to sublicense these same rights to third parties through
|
||||||
|
multiple levels of sublicensees or other licensing arrangements.
|
||||||
|
|
||||||
|
4. Except as set out above, you keep all right, title, and interest in your
|
||||||
|
contribution. The rights that you grant to us under these terms are effective
|
||||||
|
on the date you first submitted a contribution to us, even if your submission
|
||||||
|
took place before the date you sign these terms.
|
||||||
|
|
||||||
|
5. You covenant, represent, warrant and agree that:
|
||||||
|
|
||||||
|
* Each contribution that you submit is and shall be an original work of
|
||||||
|
authorship and you can legally grant the rights set out in this SCA;
|
||||||
|
|
||||||
|
* to the best of your knowledge, each contribution will not violate any
|
||||||
|
third party's copyrights, trademarks, patents, or other intellectual
|
||||||
|
property rights; and
|
||||||
|
|
||||||
|
* each contribution shall be in compliance with U.S. export control laws and
|
||||||
|
other applicable export and import laws. You agree to notify us if you
|
||||||
|
become aware of any circumstance which would make any of the foregoing
|
||||||
|
representations inaccurate in any respect. We may publicly disclose your
|
||||||
|
participation in the project, including the fact that you have signed the SCA.
|
||||||
|
|
||||||
|
6. This SCA is governed by the laws of the State of California and applicable
|
||||||
|
U.S. Federal law. Any choice of law rules will not apply.
|
||||||
|
|
||||||
|
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||||
|
mark both statements:
|
||||||
|
|
||||||
|
* [x] I am signing on behalf of myself as an individual and no other person
|
||||||
|
or entity, including my employer, has or will have rights with respect to my
|
||||||
|
contributions.
|
||||||
|
|
||||||
|
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||||
|
actual authority to contractually bind that entity.
|
||||||
|
|
||||||
|
## Contributor Details
|
||||||
|
|
||||||
|
| Field | Entry |
|
||||||
|
|------------------------------- | ----------------------------- |
|
||||||
|
| Name | Jannis Rauschke |
|
||||||
|
| Company name (if applicable) | |
|
||||||
|
| Title or role (if applicable) | |
|
||||||
|
| Date | 22.05.2020 |
|
||||||
|
| GitHub username | JannisTriesToCode |
|
||||||
|
| Website (optional) | https://twitter.com/JRauschke |
|
4
.github/contributors/MartinoMensio.md
vendored
4
.github/contributors/MartinoMensio.md
vendored
|
@ -99,8 +99,8 @@ mark both statements:
|
||||||
| Field | Entry |
|
| Field | Entry |
|
||||||
|------------------------------- | -------------------- |
|
|------------------------------- | -------------------- |
|
||||||
| Name | Martino Mensio |
|
| Name | Martino Mensio |
|
||||||
| Company name (if applicable) | Polytechnic University of Turin |
|
| Company name (if applicable) | The Open University |
|
||||||
| Title or role (if applicable) | Student |
|
| Title or role (if applicable) | PhD Student |
|
||||||
| Date | 17 November 2017 |
|
| Date | 17 November 2017 |
|
||||||
| GitHub username | MartinoMensio |
|
| GitHub username | MartinoMensio |
|
||||||
| Website (optional) | https://martinomensio.github.io/ |
|
| Website (optional) | https://martinomensio.github.io/ |
|
||||||
|
|
106
.github/contributors/R1j1t.md
vendored
Normal file
106
.github/contributors/R1j1t.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# spaCy contributor agreement
|
||||||
|
|
||||||
|
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||||
|
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||||
|
The SCA applies to any contribution that you make to any product or project
|
||||||
|
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||||
|
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||||
|
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||||
|
**"you"** shall mean the person or entity identified below.
|
||||||
|
|
||||||
|
If you agree to be bound by these terms, fill in the information requested
|
||||||
|
below and include the filled-in version with your first pull request, under the
|
||||||
|
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||||
|
should be your GitHub username, with the extension `.md`. For example, the user
|
||||||
|
example_user would create the file `.github/contributors/example_user.md`.
|
||||||
|
|
||||||
|
Read this agreement carefully before signing. These terms and conditions
|
||||||
|
constitute a binding legal agreement.
|
||||||
|
|
||||||
|
## Contributor Agreement
|
||||||
|
|
||||||
|
1. The term "contribution" or "contributed materials" means any source code,
|
||||||
|
object code, patch, tool, sample, graphic, specification, manual,
|
||||||
|
documentation, or any other material posted or submitted by you to the project.
|
||||||
|
|
||||||
|
2. With respect to any worldwide copyrights, or copyright applications and
|
||||||
|
registrations, in your contribution:
|
||||||
|
|
||||||
|
* you hereby assign to us joint ownership, and to the extent that such
|
||||||
|
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||||
|
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||||
|
royalty-free, unrestricted license to exercise all rights under those
|
||||||
|
copyrights. This includes, at our option, the right to sublicense these same
|
||||||
|
rights to third parties through multiple levels of sublicensees or other
|
||||||
|
licensing arrangements;
|
||||||
|
|
||||||
|
* you agree that each of us can do all things in relation to your
|
||||||
|
contribution as if each of us were the sole owners, and if one of us makes
|
||||||
|
a derivative work of your contribution, the one who makes the derivative
|
||||||
|
work (or has it made will be the sole owner of that derivative work;
|
||||||
|
|
||||||
|
* you agree that you will not assert any moral rights in your contribution
|
||||||
|
against us, our licensees or transferees;
|
||||||
|
|
||||||
|
* you agree that we may register a copyright in your contribution and
|
||||||
|
exercise all ownership rights associated with it; and
|
||||||
|
|
||||||
|
* you agree that neither of us has any duty to consult with, obtain the
|
||||||
|
consent of, pay or render an accounting to the other for any use or
|
||||||
|
distribution of your contribution.
|
||||||
|
|
||||||
|
3. With respect to any patents you own, or that you can license without payment
|
||||||
|
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||||
|
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||||
|
|
||||||
|
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||||
|
your contribution in whole or in part, alone or in combination with or
|
||||||
|
included in any product, work or materials arising out of the project to
|
||||||
|
which your contribution was submitted, and
|
||||||
|
|
||||||
|
* at our option, to sublicense these same rights to third parties through
|
||||||
|
multiple levels of sublicensees or other licensing arrangements.
|
||||||
|
|
||||||
|
4. Except as set out above, you keep all right, title, and interest in your
|
||||||
|
contribution. The rights that you grant to us under these terms are effective
|
||||||
|
on the date you first submitted a contribution to us, even if your submission
|
||||||
|
took place before the date you sign these terms.
|
||||||
|
|
||||||
|
5. You covenant, represent, warrant and agree that:
|
||||||
|
|
||||||
|
* Each contribution that you submit is and shall be an original work of
|
||||||
|
authorship and you can legally grant the rights set out in this SCA;
|
||||||
|
|
||||||
|
* to the best of your knowledge, each contribution will not violate any
|
||||||
|
third party's copyrights, trademarks, patents, or other intellectual
|
||||||
|
property rights; and
|
||||||
|
|
||||||
|
* each contribution shall be in compliance with U.S. export control laws and
|
||||||
|
other applicable export and import laws. You agree to notify us if you
|
||||||
|
become aware of any circumstance which would make any of the foregoing
|
||||||
|
representations inaccurate in any respect. We may publicly disclose your
|
||||||
|
participation in the project, including the fact that you have signed the SCA.
|
||||||
|
|
||||||
|
6. This SCA is governed by the laws of the State of California and applicable
|
||||||
|
U.S. Federal law. Any choice of law rules will not apply.
|
||||||
|
|
||||||
|
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||||
|
mark both statements:
|
||||||
|
|
||||||
|
* [x] I am signing on behalf of myself as an individual and no other person
|
||||||
|
or entity, including my employer, has or will have rights with respect to my
|
||||||
|
contributions.
|
||||||
|
|
||||||
|
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||||
|
actual authority to contractually bind that entity.
|
||||||
|
|
||||||
|
## Contributor Details
|
||||||
|
|
||||||
|
| Field | Entry |
|
||||||
|
|------------------------------- | -------------------- |
|
||||||
|
| Name | Rajat |
|
||||||
|
| Company name (if applicable) | |
|
||||||
|
| Title or role (if applicable) | |
|
||||||
|
| Date | 24 May 2020 |
|
||||||
|
| GitHub username | R1j1t |
|
||||||
|
| Website (optional) | |
|
106
.github/contributors/hiroshi-matsuda-rit.md
vendored
Normal file
106
.github/contributors/hiroshi-matsuda-rit.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# spaCy contributor agreement
|
||||||
|
|
||||||
|
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||||
|
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||||
|
The SCA applies to any contribution that you make to any product or project
|
||||||
|
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||||
|
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||||
|
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||||
|
**"you"** shall mean the person or entity identified below.
|
||||||
|
|
||||||
|
If you agree to be bound by these terms, fill in the information requested
|
||||||
|
below and include the filled-in version with your first pull request, under the
|
||||||
|
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||||
|
should be your GitHub username, with the extension `.md`. For example, the user
|
||||||
|
example_user would create the file `.github/contributors/example_user.md`.
|
||||||
|
|
||||||
|
Read this agreement carefully before signing. These terms and conditions
|
||||||
|
constitute a binding legal agreement.
|
||||||
|
|
||||||
|
## Contributor Agreement
|
||||||
|
|
||||||
|
1. The term "contribution" or "contributed materials" means any source code,
|
||||||
|
object code, patch, tool, sample, graphic, specification, manual,
|
||||||
|
documentation, or any other material posted or submitted by you to the project.
|
||||||
|
|
||||||
|
2. With respect to any worldwide copyrights, or copyright applications and
|
||||||
|
registrations, in your contribution:
|
||||||
|
|
||||||
|
* you hereby assign to us joint ownership, and to the extent that such
|
||||||
|
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||||
|
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||||
|
royalty-free, unrestricted license to exercise all rights under those
|
||||||
|
copyrights. This includes, at our option, the right to sublicense these same
|
||||||
|
rights to third parties through multiple levels of sublicensees or other
|
||||||
|
licensing arrangements;
|
||||||
|
|
||||||
|
* you agree that each of us can do all things in relation to your
|
||||||
|
contribution as if each of us were the sole owners, and if one of us makes
|
||||||
|
a derivative work of your contribution, the one who makes the derivative
|
||||||
|
work (or has it made will be the sole owner of that derivative work;
|
||||||
|
|
||||||
|
* you agree that you will not assert any moral rights in your contribution
|
||||||
|
against us, our licensees or transferees;
|
||||||
|
|
||||||
|
* you agree that we may register a copyright in your contribution and
|
||||||
|
exercise all ownership rights associated with it; and
|
||||||
|
|
||||||
|
* you agree that neither of us has any duty to consult with, obtain the
|
||||||
|
consent of, pay or render an accounting to the other for any use or
|
||||||
|
distribution of your contribution.
|
||||||
|
|
||||||
|
3. With respect to any patents you own, or that you can license without payment
|
||||||
|
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||||
|
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||||
|
|
||||||
|
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||||
|
your contribution in whole or in part, alone or in combination with or
|
||||||
|
included in any product, work or materials arising out of the project to
|
||||||
|
which your contribution was submitted, and
|
||||||
|
|
||||||
|
* at our option, to sublicense these same rights to third parties through
|
||||||
|
multiple levels of sublicensees or other licensing arrangements.
|
||||||
|
|
||||||
|
4. Except as set out above, you keep all right, title, and interest in your
|
||||||
|
contribution. The rights that you grant to us under these terms are effective
|
||||||
|
on the date you first submitted a contribution to us, even if your submission
|
||||||
|
took place before the date you sign these terms.
|
||||||
|
|
||||||
|
5. You covenant, represent, warrant and agree that:
|
||||||
|
|
||||||
|
* Each contribution that you submit is and shall be an original work of
|
||||||
|
authorship and you can legally grant the rights set out in this SCA;
|
||||||
|
|
||||||
|
* to the best of your knowledge, each contribution will not violate any
|
||||||
|
third party's copyrights, trademarks, patents, or other intellectual
|
||||||
|
property rights; and
|
||||||
|
|
||||||
|
* each contribution shall be in compliance with U.S. export control laws and
|
||||||
|
other applicable export and import laws. You agree to notify us if you
|
||||||
|
become aware of any circumstance which would make any of the foregoing
|
||||||
|
representations inaccurate in any respect. We may publicly disclose your
|
||||||
|
participation in the project, including the fact that you have signed the SCA.
|
||||||
|
|
||||||
|
6. This SCA is governed by the laws of the State of California and applicable
|
||||||
|
U.S. Federal law. Any choice of law rules will not apply.
|
||||||
|
|
||||||
|
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||||
|
mark both statements:
|
||||||
|
|
||||||
|
* [x] I am signing on behalf of myself as an individual and no other person
|
||||||
|
or entity, including my employer, has or will have rights with respect to my
|
||||||
|
contributions.
|
||||||
|
|
||||||
|
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||||
|
actual authority to contractually bind that entity.
|
||||||
|
|
||||||
|
## Contributor Details
|
||||||
|
|
||||||
|
| Field | Entry |
|
||||||
|
|------------------------------- | -------------------- |
|
||||||
|
| Name | Hiroshi Matsuda |
|
||||||
|
| Company name (if applicable) | Megagon Labs, Tokyo |
|
||||||
|
| Title or role (if applicable) | Research Scientist |
|
||||||
|
| Date | June 6, 2020 |
|
||||||
|
| GitHub username | hiroshi-matsuda-rit |
|
||||||
|
| Website (optional) | |
|
106
.github/contributors/jonesmartins.md
vendored
Normal file
106
.github/contributors/jonesmartins.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# spaCy contributor agreement
|
||||||
|
|
||||||
|
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||||
|
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||||
|
The SCA applies to any contribution that you make to any product or project
|
||||||
|
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||||
|
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||||
|
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||||
|
**"you"** shall mean the person or entity identified below.
|
||||||
|
|
||||||
|
If you agree to be bound by these terms, fill in the information requested
|
||||||
|
below and include the filled-in version with your first pull request, under the
|
||||||
|
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||||
|
should be your GitHub username, with the extension `.md`. For example, the user
|
||||||
|
example_user would create the file `.github/contributors/example_user.md`.
|
||||||
|
|
||||||
|
Read this agreement carefully before signing. These terms and conditions
|
||||||
|
constitute a binding legal agreement.
|
||||||
|
|
||||||
|
## Contributor Agreement
|
||||||
|
|
||||||
|
1. The term "contribution" or "contributed materials" means any source code,
|
||||||
|
object code, patch, tool, sample, graphic, specification, manual,
|
||||||
|
documentation, or any other material posted or submitted by you to the project.
|
||||||
|
|
||||||
|
2. With respect to any worldwide copyrights, or copyright applications and
|
||||||
|
registrations, in your contribution:
|
||||||
|
|
||||||
|
* you hereby assign to us joint ownership, and to the extent that such
|
||||||
|
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||||
|
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||||
|
royalty-free, unrestricted license to exercise all rights under those
|
||||||
|
copyrights. This includes, at our option, the right to sublicense these same
|
||||||
|
rights to third parties through multiple levels of sublicensees or other
|
||||||
|
licensing arrangements;
|
||||||
|
|
||||||
|
* you agree that each of us can do all things in relation to your
|
||||||
|
contribution as if each of us were the sole owners, and if one of us makes
|
||||||
|
a derivative work of your contribution, the one who makes the derivative
|
||||||
|
work (or has it made will be the sole owner of that derivative work;
|
||||||
|
|
||||||
|
* you agree that you will not assert any moral rights in your contribution
|
||||||
|
against us, our licensees or transferees;
|
||||||
|
|
||||||
|
* you agree that we may register a copyright in your contribution and
|
||||||
|
exercise all ownership rights associated with it; and
|
||||||
|
|
||||||
|
* you agree that neither of us has any duty to consult with, obtain the
|
||||||
|
consent of, pay or render an accounting to the other for any use or
|
||||||
|
distribution of your contribution.
|
||||||
|
|
||||||
|
3. With respect to any patents you own, or that you can license without payment
|
||||||
|
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||||
|
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||||
|
|
||||||
|
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||||
|
your contribution in whole or in part, alone or in combination with or
|
||||||
|
included in any product, work or materials arising out of the project to
|
||||||
|
which your contribution was submitted, and
|
||||||
|
|
||||||
|
* at our option, to sublicense these same rights to third parties through
|
||||||
|
multiple levels of sublicensees or other licensing arrangements.
|
||||||
|
|
||||||
|
4. Except as set out above, you keep all right, title, and interest in your
|
||||||
|
contribution. The rights that you grant to us under these terms are effective
|
||||||
|
on the date you first submitted a contribution to us, even if your submission
|
||||||
|
took place before the date you sign these terms.
|
||||||
|
|
||||||
|
5. You covenant, represent, warrant and agree that:
|
||||||
|
|
||||||
|
* Each contribution that you submit is and shall be an original work of
|
||||||
|
authorship and you can legally grant the rights set out in this SCA;
|
||||||
|
|
||||||
|
* to the best of your knowledge, each contribution will not violate any
|
||||||
|
third party's copyrights, trademarks, patents, or other intellectual
|
||||||
|
property rights; and
|
||||||
|
|
||||||
|
* each contribution shall be in compliance with U.S. export control laws and
|
||||||
|
other applicable export and import laws. You agree to notify us if you
|
||||||
|
become aware of any circumstance which would make any of the foregoing
|
||||||
|
representations inaccurate in any respect. We may publicly disclose your
|
||||||
|
participation in the project, including the fact that you have signed the SCA.
|
||||||
|
|
||||||
|
6. This SCA is governed by the laws of the State of California and applicable
|
||||||
|
U.S. Federal law. Any choice of law rules will not apply.
|
||||||
|
|
||||||
|
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||||
|
mark both statements:
|
||||||
|
|
||||||
|
* [x] I am signing on behalf of myself as an individual and no other person
|
||||||
|
or entity, including my employer, has or will have rights with respect to my
|
||||||
|
contributions.
|
||||||
|
|
||||||
|
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||||
|
actual authority to contractually bind that entity.
|
||||||
|
|
||||||
|
## Contributor Details
|
||||||
|
|
||||||
|
| Field | Entry |
|
||||||
|
|------------------------------- | -------------------- |
|
||||||
|
| Name | Jones Martins |
|
||||||
|
| Company name (if applicable) | |
|
||||||
|
| Title or role (if applicable) | |
|
||||||
|
| Date | 2020-06-10 |
|
||||||
|
| GitHub username | jonesmartins |
|
||||||
|
| Website (optional) | |
|
106
.github/contributors/leomrocha.md
vendored
Normal file
106
.github/contributors/leomrocha.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# spaCy contributor agreement
|
||||||
|
|
||||||
|
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||||
|
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||||
|
The SCA applies to any contribution that you make to any product or project
|
||||||
|
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||||
|
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||||
|
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||||
|
**"you"** shall mean the person or entity identified below.
|
||||||
|
|
||||||
|
If you agree to be bound by these terms, fill in the information requested
|
||||||
|
below and include the filled-in version with your first pull request, under the
|
||||||
|
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||||
|
should be your GitHub username, with the extension `.md`. For example, the user
|
||||||
|
example_user would create the file `.github/contributors/example_user.md`.
|
||||||
|
|
||||||
|
Read this agreement carefully before signing. These terms and conditions
|
||||||
|
constitute a binding legal agreement.
|
||||||
|
|
||||||
|
## Contributor Agreement
|
||||||
|
|
||||||
|
1. The term "contribution" or "contributed materials" means any source code,
|
||||||
|
object code, patch, tool, sample, graphic, specification, manual,
|
||||||
|
documentation, or any other material posted or submitted by you to the project.
|
||||||
|
|
||||||
|
2. With respect to any worldwide copyrights, or copyright applications and
|
||||||
|
registrations, in your contribution:
|
||||||
|
|
||||||
|
* you hereby assign to us joint ownership, and to the extent that such
|
||||||
|
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||||
|
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||||
|
royalty-free, unrestricted license to exercise all rights under those
|
||||||
|
copyrights. This includes, at our option, the right to sublicense these same
|
||||||
|
rights to third parties through multiple levels of sublicensees or other
|
||||||
|
licensing arrangements;
|
||||||
|
|
||||||
|
* you agree that each of us can do all things in relation to your
|
||||||
|
contribution as if each of us were the sole owners, and if one of us makes
|
||||||
|
a derivative work of your contribution, the one who makes the derivative
|
||||||
|
work (or has it made will be the sole owner of that derivative work;
|
||||||
|
|
||||||
|
* you agree that you will not assert any moral rights in your contribution
|
||||||
|
against us, our licensees or transferees;
|
||||||
|
|
||||||
|
* you agree that we may register a copyright in your contribution and
|
||||||
|
exercise all ownership rights associated with it; and
|
||||||
|
|
||||||
|
* you agree that neither of us has any duty to consult with, obtain the
|
||||||
|
consent of, pay or render an accounting to the other for any use or
|
||||||
|
distribution of your contribution.
|
||||||
|
|
||||||
|
3. With respect to any patents you own, or that you can license without payment
|
||||||
|
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||||
|
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||||
|
|
||||||
|
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||||
|
your contribution in whole or in part, alone or in combination with or
|
||||||
|
included in any product, work or materials arising out of the project to
|
||||||
|
which your contribution was submitted, and
|
||||||
|
|
||||||
|
* at our option, to sublicense these same rights to third parties through
|
||||||
|
multiple levels of sublicensees or other licensing arrangements.
|
||||||
|
|
||||||
|
4. Except as set out above, you keep all right, title, and interest in your
|
||||||
|
contribution. The rights that you grant to us under these terms are effective
|
||||||
|
on the date you first submitted a contribution to us, even if your submission
|
||||||
|
took place before the date you sign these terms.
|
||||||
|
|
||||||
|
5. You covenant, represent, warrant and agree that:
|
||||||
|
|
||||||
|
* Each contribution that you submit is and shall be an original work of
|
||||||
|
authorship and you can legally grant the rights set out in this SCA;
|
||||||
|
|
||||||
|
* to the best of your knowledge, each contribution will not violate any
|
||||||
|
third party's copyrights, trademarks, patents, or other intellectual
|
||||||
|
property rights; and
|
||||||
|
|
||||||
|
* each contribution shall be in compliance with U.S. export control laws and
|
||||||
|
other applicable export and import laws. You agree to notify us if you
|
||||||
|
become aware of any circumstance which would make any of the foregoing
|
||||||
|
representations inaccurate in any respect. We may publicly disclose your
|
||||||
|
participation in the project, including the fact that you have signed the SCA.
|
||||||
|
|
||||||
|
6. This SCA is governed by the laws of the State of California and applicable
|
||||||
|
U.S. Federal law. Any choice of law rules will not apply.
|
||||||
|
|
||||||
|
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||||
|
mark both statements:
|
||||||
|
|
||||||
|
* [x] I am signing on behalf of myself as an individual and no other person
|
||||||
|
or entity, including my employer, has or will have rights with respect to my
|
||||||
|
contributions.
|
||||||
|
|
||||||
|
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||||
|
actual authority to contractually bind that entity.
|
||||||
|
|
||||||
|
## Contributor Details
|
||||||
|
|
||||||
|
| Field | Entry |
|
||||||
|
|------------------------------- | -------------------- |
|
||||||
|
| Name | Leonardo M. Rocha |
|
||||||
|
| Company name (if applicable) | |
|
||||||
|
| Title or role (if applicable) | Eng. |
|
||||||
|
| Date | 31/05/2020 |
|
||||||
|
| GitHub username | leomrocha |
|
||||||
|
| Website (optional) | |
|
106
.github/contributors/lfiedler.md
vendored
Normal file
106
.github/contributors/lfiedler.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# spaCy contributor agreement
|
||||||
|
|
||||||
|
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||||
|
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||||
|
The SCA applies to any contribution that you make to any product or project
|
||||||
|
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||||
|
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||||
|
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||||
|
**"you"** shall mean the person or entity identified below.
|
||||||
|
|
||||||
|
If you agree to be bound by these terms, fill in the information requested
|
||||||
|
below and include the filled-in version with your first pull request, under the
|
||||||
|
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||||
|
should be your GitHub username, with the extension `.md`. For example, the user
|
||||||
|
example_user would create the file `.github/contributors/example_user.md`.
|
||||||
|
|
||||||
|
Read this agreement carefully before signing. These terms and conditions
|
||||||
|
constitute a binding legal agreement.
|
||||||
|
|
||||||
|
## Contributor Agreement
|
||||||
|
|
||||||
|
1. The term "contribution" or "contributed materials" means any source code,
|
||||||
|
object code, patch, tool, sample, graphic, specification, manual,
|
||||||
|
documentation, or any other material posted or submitted by you to the project.
|
||||||
|
|
||||||
|
2. With respect to any worldwide copyrights, or copyright applications and
|
||||||
|
registrations, in your contribution:
|
||||||
|
|
||||||
|
* you hereby assign to us joint ownership, and to the extent that such
|
||||||
|
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||||
|
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||||
|
royalty-free, unrestricted license to exercise all rights under those
|
||||||
|
copyrights. This includes, at our option, the right to sublicense these same
|
||||||
|
rights to third parties through multiple levels of sublicensees or other
|
||||||
|
licensing arrangements;
|
||||||
|
|
||||||
|
* you agree that each of us can do all things in relation to your
|
||||||
|
contribution as if each of us were the sole owners, and if one of us makes
|
||||||
|
a derivative work of your contribution, the one who makes the derivative
|
||||||
|
work (or has it made will be the sole owner of that derivative work;
|
||||||
|
|
||||||
|
* you agree that you will not assert any moral rights in your contribution
|
||||||
|
against us, our licensees or transferees;
|
||||||
|
|
||||||
|
* you agree that we may register a copyright in your contribution and
|
||||||
|
exercise all ownership rights associated with it; and
|
||||||
|
|
||||||
|
* you agree that neither of us has any duty to consult with, obtain the
|
||||||
|
consent of, pay or render an accounting to the other for any use or
|
||||||
|
distribution of your contribution.
|
||||||
|
|
||||||
|
3. With respect to any patents you own, or that you can license without payment
|
||||||
|
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||||
|
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||||
|
|
||||||
|
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||||
|
your contribution in whole or in part, alone or in combination with or
|
||||||
|
included in any product, work or materials arising out of the project to
|
||||||
|
which your contribution was submitted, and
|
||||||
|
|
||||||
|
* at our option, to sublicense these same rights to third parties through
|
||||||
|
multiple levels of sublicensees or other licensing arrangements.
|
||||||
|
|
||||||
|
4. Except as set out above, you keep all right, title, and interest in your
|
||||||
|
contribution. The rights that you grant to us under these terms are effective
|
||||||
|
on the date you first submitted a contribution to us, even if your submission
|
||||||
|
took place before the date you sign these terms.
|
||||||
|
|
||||||
|
5. You covenant, represent, warrant and agree that:
|
||||||
|
|
||||||
|
* Each contribution that you submit is and shall be an original work of
|
||||||
|
authorship and you can legally grant the rights set out in this SCA;
|
||||||
|
|
||||||
|
* to the best of your knowledge, each contribution will not violate any
|
||||||
|
third party's copyrights, trademarks, patents, or other intellectual
|
||||||
|
property rights; and
|
||||||
|
|
||||||
|
* each contribution shall be in compliance with U.S. export control laws and
|
||||||
|
other applicable export and import laws. You agree to notify us if you
|
||||||
|
become aware of any circumstance which would make any of the foregoing
|
||||||
|
representations inaccurate in any respect. We may publicly disclose your
|
||||||
|
participation in the project, including the fact that you have signed the SCA.
|
||||||
|
|
||||||
|
6. This SCA is governed by the laws of the State of California and applicable
|
||||||
|
U.S. Federal law. Any choice of law rules will not apply.
|
||||||
|
|
||||||
|
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||||
|
mark both statements:
|
||||||
|
|
||||||
|
* [x] I am signing on behalf of myself as an individual and no other person
|
||||||
|
or entity, including my employer, has or will have rights with respect to my
|
||||||
|
contributions.
|
||||||
|
|
||||||
|
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||||
|
actual authority to contractually bind that entity.
|
||||||
|
|
||||||
|
## Contributor Details
|
||||||
|
|
||||||
|
| Field | Entry |
|
||||||
|
|------------------------------- | -------------------- |
|
||||||
|
| Name | Leander Fiedler |
|
||||||
|
| Company name (if applicable) | |
|
||||||
|
| Title or role (if applicable) | |
|
||||||
|
| Date | 06 April 2020 |
|
||||||
|
| GitHub username | lfiedler |
|
||||||
|
| Website (optional) | |
|
106
.github/contributors/mahnerak.md
vendored
Normal file
106
.github/contributors/mahnerak.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# spaCy contributor agreement
|
||||||
|
|
||||||
|
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||||
|
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||||
|
The SCA applies to any contribution that you make to any product or project
|
||||||
|
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||||
|
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||||
|
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||||
|
**"you"** shall mean the person or entity identified below.
|
||||||
|
|
||||||
|
If you agree to be bound by these terms, fill in the information requested
|
||||||
|
below and include the filled-in version with your first pull request, under the
|
||||||
|
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||||
|
should be your GitHub username, with the extension `.md`. For example, the user
|
||||||
|
example_user would create the file `.github/contributors/example_user.md`.
|
||||||
|
|
||||||
|
Read this agreement carefully before signing. These terms and conditions
|
||||||
|
constitute a binding legal agreement.
|
||||||
|
|
||||||
|
## Contributor Agreement
|
||||||
|
|
||||||
|
1. The term "contribution" or "contributed materials" means any source code,
|
||||||
|
object code, patch, tool, sample, graphic, specification, manual,
|
||||||
|
documentation, or any other material posted or submitted by you to the project.
|
||||||
|
|
||||||
|
2. With respect to any worldwide copyrights, or copyright applications and
|
||||||
|
registrations, in your contribution:
|
||||||
|
|
||||||
|
* you hereby assign to us joint ownership, and to the extent that such
|
||||||
|
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||||
|
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||||
|
royalty-free, unrestricted license to exercise all rights under those
|
||||||
|
copyrights. This includes, at our option, the right to sublicense these same
|
||||||
|
rights to third parties through multiple levels of sublicensees or other
|
||||||
|
licensing arrangements;
|
||||||
|
|
||||||
|
* you agree that each of us can do all things in relation to your
|
||||||
|
contribution as if each of us were the sole owners, and if one of us makes
|
||||||
|
a derivative work of your contribution, the one who makes the derivative
|
||||||
|
work (or has it made will be the sole owner of that derivative work;
|
||||||
|
|
||||||
|
* you agree that you will not assert any moral rights in your contribution
|
||||||
|
against us, our licensees or transferees;
|
||||||
|
|
||||||
|
* you agree that we may register a copyright in your contribution and
|
||||||
|
exercise all ownership rights associated with it; and
|
||||||
|
|
||||||
|
* you agree that neither of us has any duty to consult with, obtain the
|
||||||
|
consent of, pay or render an accounting to the other for any use or
|
||||||
|
distribution of your contribution.
|
||||||
|
|
||||||
|
3. With respect to any patents you own, or that you can license without payment
|
||||||
|
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||||
|
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||||
|
|
||||||
|
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||||
|
your contribution in whole or in part, alone or in combination with or
|
||||||
|
included in any product, work or materials arising out of the project to
|
||||||
|
which your contribution was submitted, and
|
||||||
|
|
||||||
|
* at our option, to sublicense these same rights to third parties through
|
||||||
|
multiple levels of sublicensees or other licensing arrangements.
|
||||||
|
|
||||||
|
4. Except as set out above, you keep all right, title, and interest in your
|
||||||
|
contribution. The rights that you grant to us under these terms are effective
|
||||||
|
on the date you first submitted a contribution to us, even if your submission
|
||||||
|
took place before the date you sign these terms.
|
||||||
|
|
||||||
|
5. You covenant, represent, warrant and agree that:
|
||||||
|
|
||||||
|
* Each contribution that you submit is and shall be an original work of
|
||||||
|
authorship and you can legally grant the rights set out in this SCA;
|
||||||
|
|
||||||
|
* to the best of your knowledge, each contribution will not violate any
|
||||||
|
third party's copyrights, trademarks, patents, or other intellectual
|
||||||
|
property rights; and
|
||||||
|
|
||||||
|
* each contribution shall be in compliance with U.S. export control laws and
|
||||||
|
other applicable export and import laws. You agree to notify us if you
|
||||||
|
become aware of any circumstance which would make any of the foregoing
|
||||||
|
representations inaccurate in any respect. We may publicly disclose your
|
||||||
|
participation in the project, including the fact that you have signed the SCA.
|
||||||
|
|
||||||
|
6. This SCA is governed by the laws of the State of California and applicable
|
||||||
|
U.S. Federal law. Any choice of law rules will not apply.
|
||||||
|
|
||||||
|
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||||
|
mark both statements:
|
||||||
|
|
||||||
|
* [x] I am signing on behalf of myself as an individual and no other person
|
||||||
|
or entity, including my employer, has or will have rights with respect to my
|
||||||
|
contributions.
|
||||||
|
|
||||||
|
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||||
|
actual authority to contractually bind that entity.
|
||||||
|
|
||||||
|
## Contributor Details
|
||||||
|
|
||||||
|
| Field | Entry |
|
||||||
|
|------------------------------- | -------------------- |
|
||||||
|
| Name | Karen Hambardzumyan |
|
||||||
|
| Company name (if applicable) | YerevaNN |
|
||||||
|
| Title or role (if applicable) | Researcher |
|
||||||
|
| Date | 2020-06-19 |
|
||||||
|
| GitHub username | mahnerak |
|
||||||
|
| Website (optional) | https://mahnerak.com/|
|
106
.github/contributors/myavrum.md
vendored
Normal file
106
.github/contributors/myavrum.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# spaCy contributor agreement
|
||||||
|
|
||||||
|
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||||
|
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||||
|
The SCA applies to any contribution that you make to any product or project
|
||||||
|
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||||
|
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||||
|
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||||
|
**"you"** shall mean the person or entity identified below.
|
||||||
|
|
||||||
|
If you agree to be bound by these terms, fill in the information requested
|
||||||
|
below and include the filled-in version with your first pull request, under the
|
||||||
|
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||||
|
should be your GitHub username, with the extension `.md`. For example, the user
|
||||||
|
example_user would create the file `.github/contributors/example_user.md`.
|
||||||
|
|
||||||
|
Read this agreement carefully before signing. These terms and conditions
|
||||||
|
constitute a binding legal agreement.
|
||||||
|
|
||||||
|
## Contributor Agreement
|
||||||
|
|
||||||
|
1. The term "contribution" or "contributed materials" means any source code,
|
||||||
|
object code, patch, tool, sample, graphic, specification, manual,
|
||||||
|
documentation, or any other material posted or submitted by you to the project.
|
||||||
|
|
||||||
|
2. With respect to any worldwide copyrights, or copyright applications and
|
||||||
|
registrations, in your contribution:
|
||||||
|
|
||||||
|
* you hereby assign to us joint ownership, and to the extent that such
|
||||||
|
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||||
|
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||||
|
royalty-free, unrestricted license to exercise all rights under those
|
||||||
|
copyrights. This includes, at our option, the right to sublicense these same
|
||||||
|
rights to third parties through multiple levels of sublicensees or other
|
||||||
|
licensing arrangements;
|
||||||
|
|
||||||
|
* you agree that each of us can do all things in relation to your
|
||||||
|
contribution as if each of us were the sole owners, and if one of us makes
|
||||||
|
a derivative work of your contribution, the one who makes the derivative
|
||||||
|
work (or has it made will be the sole owner of that derivative work;
|
||||||
|
|
||||||
|
* you agree that you will not assert any moral rights in your contribution
|
||||||
|
against us, our licensees or transferees;
|
||||||
|
|
||||||
|
* you agree that we may register a copyright in your contribution and
|
||||||
|
exercise all ownership rights associated with it; and
|
||||||
|
|
||||||
|
* you agree that neither of us has any duty to consult with, obtain the
|
||||||
|
consent of, pay or render an accounting to the other for any use or
|
||||||
|
distribution of your contribution.
|
||||||
|
|
||||||
|
3. With respect to any patents you own, or that you can license without payment
|
||||||
|
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||||
|
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||||
|
|
||||||
|
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||||
|
your contribution in whole or in part, alone or in combination with or
|
||||||
|
included in any product, work or materials arising out of the project to
|
||||||
|
which your contribution was submitted, and
|
||||||
|
|
||||||
|
* at our option, to sublicense these same rights to third parties through
|
||||||
|
multiple levels of sublicensees or other licensing arrangements.
|
||||||
|
|
||||||
|
4. Except as set out above, you keep all right, title, and interest in your
|
||||||
|
contribution. The rights that you grant to us under these terms are effective
|
||||||
|
on the date you first submitted a contribution to us, even if your submission
|
||||||
|
took place before the date you sign these terms.
|
||||||
|
|
||||||
|
5. You covenant, represent, warrant and agree that:
|
||||||
|
|
||||||
|
* Each contribution that you submit is and shall be an original work of
|
||||||
|
authorship and you can legally grant the rights set out in this SCA;
|
||||||
|
|
||||||
|
* to the best of your knowledge, each contribution will not violate any
|
||||||
|
third party's copyrights, trademarks, patents, or other intellectual
|
||||||
|
property rights; and
|
||||||
|
|
||||||
|
* each contribution shall be in compliance with U.S. export control laws and
|
||||||
|
other applicable export and import laws. You agree to notify us if you
|
||||||
|
become aware of any circumstance which would make any of the foregoing
|
||||||
|
representations inaccurate in any respect. We may publicly disclose your
|
||||||
|
participation in the project, including the fact that you have signed the SCA.
|
||||||
|
|
||||||
|
6. This SCA is governed by the laws of the State of California and applicable
|
||||||
|
U.S. Federal law. Any choice of law rules will not apply.
|
||||||
|
|
||||||
|
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||||
|
mark both statements:
|
||||||
|
|
||||||
|
* [x] I am signing on behalf of myself as an individual and no other person
|
||||||
|
or entity, including my employer, has or will have rights with respect to my
|
||||||
|
contributions.
|
||||||
|
|
||||||
|
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||||
|
actual authority to contractually bind that entity.
|
||||||
|
|
||||||
|
## Contributor Details
|
||||||
|
|
||||||
|
| Field | Entry |
|
||||||
|
|------------------------------- | -------------------- |
|
||||||
|
| Name | Marat M. Yavrumyan |
|
||||||
|
| Company name (if applicable) | YSU, UD_Armenian Project |
|
||||||
|
| Title or role (if applicable) | Dr., Principal Investigator |
|
||||||
|
| Date | 2020-06-19 |
|
||||||
|
| GitHub username | myavrum |
|
||||||
|
| Website (optional) | http://armtreebank.yerevann.com/ |
|
106
.github/contributors/theudas.md
vendored
Normal file
106
.github/contributors/theudas.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# spaCy contributor agreement
|
||||||
|
|
||||||
|
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||||
|
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||||
|
The SCA applies to any contribution that you make to any product or project
|
||||||
|
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||||
|
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||||
|
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
|
||||||
|
**"you"** shall mean the person or entity identified below.
|
||||||
|
|
||||||
|
If you agree to be bound by these terms, fill in the information requested
|
||||||
|
below and include the filled-in version with your first pull request, under the
|
||||||
|
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||||
|
should be your GitHub username, with the extension `.md`. For example, the user
|
||||||
|
example_user would create the file `.github/contributors/example_user.md`.
|
||||||
|
|
||||||
|
Read this agreement carefully before signing. These terms and conditions
|
||||||
|
constitute a binding legal agreement.
|
||||||
|
|
||||||
|
## Contributor Agreement
|
||||||
|
|
||||||
|
1. The term "contribution" or "contributed materials" means any source code,
|
||||||
|
object code, patch, tool, sample, graphic, specification, manual,
|
||||||
|
documentation, or any other material posted or submitted by you to the project.
|
||||||
|
|
||||||
|
2. With respect to any worldwide copyrights, or copyright applications and
|
||||||
|
registrations, in your contribution:
|
||||||
|
|
||||||
|
* you hereby assign to us joint ownership, and to the extent that such
|
||||||
|
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||||
|
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||||
|
royalty-free, unrestricted license to exercise all rights under those
|
||||||
|
copyrights. This includes, at our option, the right to sublicense these same
|
||||||
|
rights to third parties through multiple levels of sublicensees or other
|
||||||
|
licensing arrangements;
|
||||||
|
|
||||||
|
* you agree that each of us can do all things in relation to your
|
||||||
|
contribution as if each of us were the sole owners, and if one of us makes
|
||||||
|
a derivative work of your contribution, the one who makes the derivative
|
||||||
|
work (or has it made will be the sole owner of that derivative work;
|
||||||
|
|
||||||
|
* you agree that you will not assert any moral rights in your contribution
|
||||||
|
against us, our licensees or transferees;
|
||||||
|
|
||||||
|
* you agree that we may register a copyright in your contribution and
|
||||||
|
exercise all ownership rights associated with it; and
|
||||||
|
|
||||||
|
* you agree that neither of us has any duty to consult with, obtain the
|
||||||
|
consent of, pay or render an accounting to the other for any use or
|
||||||
|
distribution of your contribution.
|
||||||
|
|
||||||
|
3. With respect to any patents you own, or that you can license without payment
|
||||||
|
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||||
|
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||||
|
|
||||||
|
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||||
|
your contribution in whole or in part, alone or in combination with or
|
||||||
|
included in any product, work or materials arising out of the project to
|
||||||
|
which your contribution was submitted, and
|
||||||
|
|
||||||
|
* at our option, to sublicense these same rights to third parties through
|
||||||
|
multiple levels of sublicensees or other licensing arrangements.
|
||||||
|
|
||||||
|
4. Except as set out above, you keep all right, title, and interest in your
|
||||||
|
contribution. The rights that you grant to us under these terms are effective
|
||||||
|
on the date you first submitted a contribution to us, even if your submission
|
||||||
|
took place before the date you sign these terms.
|
||||||
|
|
||||||
|
5. You covenant, represent, warrant and agree that:
|
||||||
|
|
||||||
|
* Each contribution that you submit is and shall be an original work of
|
||||||
|
authorship and you can legally grant the rights set out in this SCA;
|
||||||
|
|
||||||
|
* to the best of your knowledge, each contribution will not violate any
|
||||||
|
third party's copyrights, trademarks, patents, or other intellectual
|
||||||
|
property rights; and
|
||||||
|
|
||||||
|
* each contribution shall be in compliance with U.S. export control laws and
|
||||||
|
other applicable export and import laws. You agree to notify us if you
|
||||||
|
become aware of any circumstance which would make any of the foregoing
|
||||||
|
representations inaccurate in any respect. We may publicly disclose your
|
||||||
|
participation in the project, including the fact that you have signed the SCA.
|
||||||
|
|
||||||
|
6. This SCA is governed by the laws of the State of California and applicable
|
||||||
|
U.S. Federal law. Any choice of law rules will not apply.
|
||||||
|
|
||||||
|
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||||
|
mark both statements:
|
||||||
|
|
||||||
|
* [x] I am signing on behalf of myself as an individual and no other person
|
||||||
|
or entity, including my employer, has or will have rights with respect to my
|
||||||
|
contributions.
|
||||||
|
|
||||||
|
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||||
|
actual authority to contractually bind that entity.
|
||||||
|
|
||||||
|
## Contributor Details
|
||||||
|
|
||||||
|
| Field | Entry |
|
||||||
|
|------------------------------- | ------------------------ |
|
||||||
|
| Name | Philipp Sodmann |
|
||||||
|
| Company name (if applicable) | Empolis |
|
||||||
|
| Title or role (if applicable) | |
|
||||||
|
| Date | 2017-05-06 |
|
||||||
|
| GitHub username | theudas |
|
||||||
|
| Website (optional) | |
|
29
.github/workflows/issue-manager.yml
vendored
Normal file
29
.github/workflows/issue-manager.yml
vendored
Normal file
|
@ -0,0 +1,29 @@
|
||||||
|
name: Issue Manager
|
||||||
|
|
||||||
|
on:
|
||||||
|
schedule:
|
||||||
|
- cron: "0 0 * * *"
|
||||||
|
issue_comment:
|
||||||
|
types:
|
||||||
|
- created
|
||||||
|
- edited
|
||||||
|
issues:
|
||||||
|
types:
|
||||||
|
- labeled
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
issue-manager:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: tiangolo/issue-manager@0.2.1
|
||||||
|
with:
|
||||||
|
token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
config: >
|
||||||
|
{
|
||||||
|
"resolved": {
|
||||||
|
"delay": "P7D",
|
||||||
|
"message": "This issue has been automatically closed because it was answered and there was no follow-up discussion.",
|
||||||
|
"remove_label_on_comment": true,
|
||||||
|
"remove_label_on_close": true
|
||||||
|
}
|
||||||
|
}
|
5
Makefile
5
Makefile
|
@ -5,8 +5,9 @@ VENV := ./env$(PYVER)
|
||||||
version := $(shell "bin/get-version.sh")
|
version := $(shell "bin/get-version.sh")
|
||||||
|
|
||||||
dist/spacy-$(version).pex : wheelhouse/spacy-$(version).stamp
|
dist/spacy-$(version).pex : wheelhouse/spacy-$(version).stamp
|
||||||
$(VENV)/bin/pex -f ./wheelhouse --no-index --disable-cache -m spacy -o $@ spacy==$(version) spacy_lookups_data
|
$(VENV)/bin/pex -f ./wheelhouse --no-index --disable-cache -m spacy -o $@ spacy==$(version) spacy-lookups-data jieba pkuseg==0.0.22 sudachipy sudachidict_core
|
||||||
chmod a+rx $@
|
chmod a+rx $@
|
||||||
|
cp $@ dist/spacy.pex
|
||||||
|
|
||||||
dist/pytest.pex : wheelhouse/pytest-*.whl
|
dist/pytest.pex : wheelhouse/pytest-*.whl
|
||||||
$(VENV)/bin/pex -f ./wheelhouse --no-index --disable-cache -m pytest -o $@ pytest pytest-timeout mock
|
$(VENV)/bin/pex -f ./wheelhouse --no-index --disable-cache -m pytest -o $@ pytest pytest-timeout mock
|
||||||
|
@ -14,7 +15,7 @@ dist/pytest.pex : wheelhouse/pytest-*.whl
|
||||||
|
|
||||||
wheelhouse/spacy-$(version).stamp : $(VENV)/bin/pex setup.py spacy/*.py* spacy/*/*.py*
|
wheelhouse/spacy-$(version).stamp : $(VENV)/bin/pex setup.py spacy/*.py* spacy/*/*.py*
|
||||||
$(VENV)/bin/pip wheel . -w ./wheelhouse
|
$(VENV)/bin/pip wheel . -w ./wheelhouse
|
||||||
$(VENV)/bin/pip wheel spacy_lookups_data -w ./wheelhouse
|
$(VENV)/bin/pip wheel spacy-lookups-data jieba pkuseg==0.0.22 sudachipy sudachidict_core -w ./wheelhouse
|
||||||
touch $@
|
touch $@
|
||||||
|
|
||||||
wheelhouse/pytest-%.whl : $(VENV)/bin/pex
|
wheelhouse/pytest-%.whl : $(VENV)/bin/pex
|
||||||
|
|
17
README.md
17
README.md
|
@ -6,12 +6,12 @@ spaCy is a library for advanced Natural Language Processing in Python and
|
||||||
Cython. It's built on the very latest research, and was designed from day one to
|
Cython. It's built on the very latest research, and was designed from day one to
|
||||||
be used in real products. spaCy comes with
|
be used in real products. spaCy comes with
|
||||||
[pretrained statistical models](https://spacy.io/models) and word vectors, and
|
[pretrained statistical models](https://spacy.io/models) and word vectors, and
|
||||||
currently supports tokenization for **50+ languages**. It features
|
currently supports tokenization for **60+ languages**. It features
|
||||||
state-of-the-art speed, convolutional **neural network models** for tagging,
|
state-of-the-art speed, convolutional **neural network models** for tagging,
|
||||||
parsing and **named entity recognition** and easy **deep learning** integration.
|
parsing and **named entity recognition** and easy **deep learning** integration.
|
||||||
It's commercial open-source software, released under the MIT license.
|
It's commercial open-source software, released under the MIT license.
|
||||||
|
|
||||||
💫 **Version 2.2 out now!**
|
💫 **Version 2.3 out now!**
|
||||||
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
|
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
|
||||||
|
|
||||||
[![Azure Pipelines](<https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build+(3.x)>)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8)
|
[![Azure Pipelines](<https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build+(3.x)>)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8)
|
||||||
|
@ -31,7 +31,7 @@ It's commercial open-source software, released under the MIT license.
|
||||||
| --------------- | -------------------------------------------------------------- |
|
| --------------- | -------------------------------------------------------------- |
|
||||||
| [spaCy 101] | New to spaCy? Here's everything you need to know! |
|
| [spaCy 101] | New to spaCy? Here's everything you need to know! |
|
||||||
| [Usage Guides] | How to use spaCy and its features. |
|
| [Usage Guides] | How to use spaCy and its features. |
|
||||||
| [New in v2.2] | New features, backwards incompatibilities and migration guide. |
|
| [New in v2.3] | New features, backwards incompatibilities and migration guide. |
|
||||||
| [API Reference] | The detailed reference for spaCy's API. |
|
| [API Reference] | The detailed reference for spaCy's API. |
|
||||||
| [Models] | Download statistical language models for spaCy. |
|
| [Models] | Download statistical language models for spaCy. |
|
||||||
| [Universe] | Libraries, extensions, demos, books and courses. |
|
| [Universe] | Libraries, extensions, demos, books and courses. |
|
||||||
|
@ -39,7 +39,7 @@ It's commercial open-source software, released under the MIT license.
|
||||||
| [Contribute] | How to contribute to the spaCy project and code base. |
|
| [Contribute] | How to contribute to the spaCy project and code base. |
|
||||||
|
|
||||||
[spacy 101]: https://spacy.io/usage/spacy-101
|
[spacy 101]: https://spacy.io/usage/spacy-101
|
||||||
[new in v2.2]: https://spacy.io/usage/v2-2
|
[new in v2.3]: https://spacy.io/usage/v2-3
|
||||||
[usage guides]: https://spacy.io/usage/
|
[usage guides]: https://spacy.io/usage/
|
||||||
[api reference]: https://spacy.io/api/
|
[api reference]: https://spacy.io/api/
|
||||||
[models]: https://spacy.io/models
|
[models]: https://spacy.io/models
|
||||||
|
@ -119,12 +119,13 @@ of `v2.0.13`).
|
||||||
pip install spacy
|
pip install spacy
|
||||||
```
|
```
|
||||||
|
|
||||||
To install additional data tables for lemmatization in **spaCy v2.2+** you can
|
To install additional data tables for lemmatization and normalization in
|
||||||
run `pip install spacy[lookups]` or install
|
**spaCy v2.2+** you can run `pip install spacy[lookups]` or install
|
||||||
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data)
|
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data)
|
||||||
separately. The lookups package is needed to create blank models with
|
separately. The lookups package is needed to create blank models with
|
||||||
lemmatization data, and to lemmatize in languages that don't yet come with
|
lemmatization data for v2.2+ plus normalization data for v2.3+, and to
|
||||||
pretrained models and aren't powered by third-party libraries.
|
lemmatize in languages that don't yet come with pretrained models and aren't
|
||||||
|
powered by third-party libraries.
|
||||||
|
|
||||||
When using pip it is generally recommended to install packages in a virtual
|
When using pip it is generally recommended to install packages in a virtual
|
||||||
environment to avoid modifying system state:
|
environment to avoid modifying system state:
|
||||||
|
|
|
@ -2,7 +2,7 @@
|
||||||
# coding: utf-8
|
# coding: utf-8
|
||||||
"""Using the parser to recognise your own semantics
|
"""Using the parser to recognise your own semantics
|
||||||
|
|
||||||
spaCy's parser component can be used to trained to predict any type of tree
|
spaCy's parser component can be trained to predict any type of tree
|
||||||
structure over your input text. You can also predict trees over whole documents
|
structure over your input text. You can also predict trees over whole documents
|
||||||
or chat logs, with connections between the sentence-roots used to annotate
|
or chat logs, with connections between the sentence-roots used to annotate
|
||||||
discourse structure. In this example, we'll build a message parser for a common
|
discourse structure. In this example, we'll build a message parser for a common
|
||||||
|
|
|
@ -60,7 +60,7 @@ install_requires =
|
||||||
|
|
||||||
[options.extras_require]
|
[options.extras_require]
|
||||||
lookups =
|
lookups =
|
||||||
spacy_lookups_data>=0.3.1,<0.4.0
|
spacy_lookups_data>=0.3.2,<0.4.0
|
||||||
cuda =
|
cuda =
|
||||||
cupy>=5.0.0b4,<9.0.0
|
cupy>=5.0.0b4,<9.0.0
|
||||||
cuda80 =
|
cuda80 =
|
||||||
|
@ -79,7 +79,8 @@ cuda102 =
|
||||||
cupy-cuda102>=5.0.0b4,<9.0.0
|
cupy-cuda102>=5.0.0b4,<9.0.0
|
||||||
# Language tokenizers with external dependencies
|
# Language tokenizers with external dependencies
|
||||||
ja =
|
ja =
|
||||||
fugashi>=0.1.3
|
sudachipy>=0.4.5
|
||||||
|
sudachidict_core>=20200330
|
||||||
ko =
|
ko =
|
||||||
natto-py==0.9.0
|
natto-py==0.9.0
|
||||||
th =
|
th =
|
||||||
|
|
|
@ -15,7 +15,6 @@ from .evaluate import evaluate # noqa: F401
|
||||||
from .convert import convert # noqa: F401
|
from .convert import convert # noqa: F401
|
||||||
from .init_model import init_model # noqa: F401
|
from .init_model import init_model # noqa: F401
|
||||||
from .validate import validate # noqa: F401
|
from .validate import validate # noqa: F401
|
||||||
from .project import project_clone, project_get_assets, project_run # noqa: F401
|
|
||||||
|
|
||||||
|
|
||||||
@app.command("link", no_args_is_help=True, deprecated=True, hidden=True)
|
@app.command("link", no_args_is_help=True, deprecated=True, hidden=True)
|
||||||
|
|
|
@ -3,7 +3,7 @@ def add_codes(err_cls):
|
||||||
|
|
||||||
class ErrorsWithCodes(err_cls):
|
class ErrorsWithCodes(err_cls):
|
||||||
def __getattribute__(self, code):
|
def __getattribute__(self, code):
|
||||||
msg = super().__getattribute__(code)
|
msg = super(ErrorsWithCodes, self).__getattribute__(code)
|
||||||
if code.startswith("__"): # python system attributes like __class__
|
if code.startswith("__"): # python system attributes like __class__
|
||||||
return msg
|
return msg
|
||||||
else:
|
else:
|
||||||
|
@ -111,6 +111,25 @@ class Warnings(object):
|
||||||
"`spacy.gold.biluo_tags_from_offsets(nlp.make_doc(text), entities)`"
|
"`spacy.gold.biluo_tags_from_offsets(nlp.make_doc(text), entities)`"
|
||||||
" to check the alignment. Misaligned entities ('-') will be "
|
" to check the alignment. Misaligned entities ('-') will be "
|
||||||
"ignored during training.")
|
"ignored during training.")
|
||||||
|
W031 = ("Model '{model}' ({model_version}) requires spaCy {version} and "
|
||||||
|
"is incompatible with the current spaCy version ({current}). This "
|
||||||
|
"may lead to unexpected results or runtime errors. To resolve "
|
||||||
|
"this, download a newer compatible model or retrain your custom "
|
||||||
|
"model with the current spaCy version. For more details and "
|
||||||
|
"available updates, run: python -m spacy validate")
|
||||||
|
W032 = ("Unable to determine model compatibility for model '{model}' "
|
||||||
|
"({model_version}) with the current spaCy version ({current}). "
|
||||||
|
"This may lead to unexpected results or runtime errors. To resolve "
|
||||||
|
"this, download a newer compatible model or retrain your custom "
|
||||||
|
"model with the current spaCy version. For more details and "
|
||||||
|
"available updates, run: python -m spacy validate")
|
||||||
|
W033 = ("Training a new {model} using a model with no lexeme normalization "
|
||||||
|
"table. This may degrade the performance of the model to some "
|
||||||
|
"degree. If this is intentional or the language you're using "
|
||||||
|
"doesn't have a normalization table, please ignore this warning. "
|
||||||
|
"If this is surprising, make sure you have the spacy-lookups-data "
|
||||||
|
"package installed. The languages with lexeme normalization tables "
|
||||||
|
"are currently: da, de, el, en, id, lb, pt, ru, sr, ta, th.")
|
||||||
|
|
||||||
# TODO: fix numbering after merging develop into master
|
# TODO: fix numbering after merging develop into master
|
||||||
W094 = ("Model '{model}' ({model_version}) specifies an under-constrained "
|
W094 = ("Model '{model}' ({model_version}) specifies an under-constrained "
|
||||||
|
@ -578,6 +597,9 @@ class Errors(object):
|
||||||
E197 = ("Row out of bounds, unable to add row {row} for key {key}.")
|
E197 = ("Row out of bounds, unable to add row {row} for key {key}.")
|
||||||
E198 = ("Unable to return {n} most similar vectors for the current vectors "
|
E198 = ("Unable to return {n} most similar vectors for the current vectors "
|
||||||
"table, which contains {n_rows} vectors.")
|
"table, which contains {n_rows} vectors.")
|
||||||
|
E199 = ("Unable to merge 0-length span at doc[{start}:{end}].")
|
||||||
|
E200 = ("Specifying a base model with a pretrained component '{component}' "
|
||||||
|
"can not be combined with adding a pretrained Tok2Vec layer.")
|
||||||
|
|
||||||
# TODO: fix numbering after merging develop into master
|
# TODO: fix numbering after merging develop into master
|
||||||
E983 = ("Invalid key for '{dict_name}': {key}. Available keys: "
|
E983 = ("Invalid key for '{dict_name}': {key}. Available keys: "
|
||||||
|
|
|
@ -1052,6 +1052,7 @@ cdef class GoldParse:
|
||||||
representing the external IDs in a knowledge base (KB)
|
representing the external IDs in a knowledge base (KB)
|
||||||
mapped to either 1.0 or 0.0, indicating positive and
|
mapped to either 1.0 or 0.0, indicating positive and
|
||||||
negative examples respectively.
|
negative examples respectively.
|
||||||
|
make_projective (bool): Whether to projectivize the dependency tree.
|
||||||
RETURNS (GoldParse): The newly constructed object.
|
RETURNS (GoldParse): The newly constructed object.
|
||||||
"""
|
"""
|
||||||
self.mem = Pool()
|
self.mem = Pool()
|
||||||
|
|
|
@ -446,6 +446,8 @@ cdef class Writer:
|
||||||
assert not path.isdir(loc), f"{loc} is directory"
|
assert not path.isdir(loc), f"{loc} is directory"
|
||||||
if isinstance(loc, Path):
|
if isinstance(loc, Path):
|
||||||
loc = bytes(loc)
|
loc = bytes(loc)
|
||||||
|
if path.exists(loc):
|
||||||
|
assert not path.isdir(loc), "%s is directory." % loc
|
||||||
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
||||||
self._fp = fopen(<char*>bytes_loc, 'wb')
|
self._fp = fopen(<char*>bytes_loc, 'wb')
|
||||||
if not self._fp:
|
if not self._fp:
|
||||||
|
@ -487,10 +489,10 @@ cdef class Writer:
|
||||||
|
|
||||||
cdef class Reader:
|
cdef class Reader:
|
||||||
def __init__(self, object loc):
|
def __init__(self, object loc):
|
||||||
assert path.exists(loc)
|
|
||||||
assert not path.isdir(loc)
|
|
||||||
if isinstance(loc, Path):
|
if isinstance(loc, Path):
|
||||||
loc = bytes(loc)
|
loc = bytes(loc)
|
||||||
|
assert path.exists(loc)
|
||||||
|
assert not path.isdir(loc)
|
||||||
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
||||||
self._fp = fopen(<char*>bytes_loc, 'rb')
|
self._fp = fopen(<char*>bytes_loc, 'rb')
|
||||||
if not self._fp:
|
if not self._fp:
|
||||||
|
|
|
@ -20,29 +20,25 @@ def noun_chunks(doclike):
|
||||||
conj = doc.vocab.strings.add("conj")
|
conj = doc.vocab.strings.add("conj")
|
||||||
nmod = doc.vocab.strings.add("nmod")
|
nmod = doc.vocab.strings.add("nmod")
|
||||||
np_label = doc.vocab.strings.add("NP")
|
np_label = doc.vocab.strings.add("NP")
|
||||||
seen = set()
|
prev_end = -1
|
||||||
for i, word in enumerate(doclike):
|
for i, word in enumerate(doclike):
|
||||||
if word.pos not in (NOUN, PROPN, PRON):
|
if word.pos not in (NOUN, PROPN, PRON):
|
||||||
continue
|
continue
|
||||||
# Prevent nested chunks from being produced
|
# Prevent nested chunks from being produced
|
||||||
if word.i in seen:
|
if word.left_edge.i <= prev_end:
|
||||||
continue
|
continue
|
||||||
if word.dep in np_deps:
|
if word.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
|
||||||
continue
|
|
||||||
flag = False
|
flag = False
|
||||||
if word.pos == NOUN:
|
if word.pos == NOUN:
|
||||||
# check for patterns such as γραμμή παραγωγής
|
# check for patterns such as γραμμή παραγωγής
|
||||||
for potential_nmod in word.rights:
|
for potential_nmod in word.rights:
|
||||||
if potential_nmod.dep == nmod:
|
if potential_nmod.dep == nmod:
|
||||||
seen.update(
|
prev_end = potential_nmod.i
|
||||||
j for j in range(word.left_edge.i, potential_nmod.i + 1)
|
|
||||||
)
|
|
||||||
yield word.left_edge.i, potential_nmod.i + 1, np_label
|
yield word.left_edge.i, potential_nmod.i + 1, np_label
|
||||||
flag = True
|
flag = True
|
||||||
break
|
break
|
||||||
if flag is False:
|
if flag is False:
|
||||||
seen.update(j for j in range(word.left_edge.i, word.i + 1))
|
prev_end = word.i
|
||||||
yield word.left_edge.i, word.i + 1, np_label
|
yield word.left_edge.i, word.i + 1, np_label
|
||||||
elif word.dep == conj:
|
elif word.dep == conj:
|
||||||
# covers the case: έχει όμορφα και έξυπνα παιδιά
|
# covers the case: έχει όμορφα και έξυπνα παιδιά
|
||||||
|
@ -51,9 +47,7 @@ def noun_chunks(doclike):
|
||||||
head = head.head
|
head = head.head
|
||||||
# If the head is an NP, and we're coordinated to it, we're an NP
|
# If the head is an NP, and we're coordinated to it, we're an NP
|
||||||
if head.dep in np_deps:
|
if head.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.i + 1))
|
|
||||||
yield word.left_edge.i, word.i + 1, np_label
|
yield word.left_edge.i, word.i + 1, np_label
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -25,17 +25,15 @@ def noun_chunks(doclike):
|
||||||
np_deps = [doc.vocab.strings.add(label) for label in labels]
|
np_deps = [doc.vocab.strings.add(label) for label in labels]
|
||||||
conj = doc.vocab.strings.add("conj")
|
conj = doc.vocab.strings.add("conj")
|
||||||
np_label = doc.vocab.strings.add("NP")
|
np_label = doc.vocab.strings.add("NP")
|
||||||
seen = set()
|
prev_end = -1
|
||||||
for i, word in enumerate(doclike):
|
for i, word in enumerate(doclike):
|
||||||
if word.pos not in (NOUN, PROPN, PRON):
|
if word.pos not in (NOUN, PROPN, PRON):
|
||||||
continue
|
continue
|
||||||
# Prevent nested chunks from being produced
|
# Prevent nested chunks from being produced
|
||||||
if word.i in seen:
|
if word.left_edge.i <= prev_end:
|
||||||
continue
|
continue
|
||||||
if word.dep in np_deps:
|
if word.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.i + 1))
|
|
||||||
yield word.left_edge.i, word.i + 1, np_label
|
yield word.left_edge.i, word.i + 1, np_label
|
||||||
elif word.dep == conj:
|
elif word.dep == conj:
|
||||||
head = word.head
|
head = word.head
|
||||||
|
@ -43,9 +41,7 @@ def noun_chunks(doclike):
|
||||||
head = head.head
|
head = head.head
|
||||||
# If the head is an NP, and we're coordinated to it, we're an NP
|
# If the head is an NP, and we're coordinated to it, we're an NP
|
||||||
if head.dep in np_deps:
|
if head.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.i + 1))
|
|
||||||
yield word.left_edge.i, word.i + 1, np_label
|
yield word.left_edge.i, word.i + 1, np_label
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -136,7 +136,19 @@ for pron in ["he", "she", "it"]:
|
||||||
|
|
||||||
# W-words, relative pronouns, prepositions etc.
|
# W-words, relative pronouns, prepositions etc.
|
||||||
|
|
||||||
for word in ["who", "what", "when", "where", "why", "how", "there", "that"]:
|
for word in [
|
||||||
|
"who",
|
||||||
|
"what",
|
||||||
|
"when",
|
||||||
|
"where",
|
||||||
|
"why",
|
||||||
|
"how",
|
||||||
|
"there",
|
||||||
|
"that",
|
||||||
|
"this",
|
||||||
|
"these",
|
||||||
|
"those",
|
||||||
|
]:
|
||||||
for orth in [word, word.title()]:
|
for orth in [word, word.title()]:
|
||||||
_exc[orth + "'s"] = [
|
_exc[orth + "'s"] = [
|
||||||
{ORTH: orth, LEMMA: word, NORM: word},
|
{ORTH: orth, LEMMA: word, NORM: word},
|
||||||
|
@ -396,6 +408,8 @@ _other_exc = {
|
||||||
{ORTH: "Let", LEMMA: "let", NORM: "let"},
|
{ORTH: "Let", LEMMA: "let", NORM: "let"},
|
||||||
{ORTH: "'s", LEMMA: PRON_LEMMA, NORM: "us"},
|
{ORTH: "'s", LEMMA: PRON_LEMMA, NORM: "us"},
|
||||||
],
|
],
|
||||||
|
"c'mon": [{ORTH: "c'm", NORM: "come", LEMMA: "come"}, {ORTH: "on"}],
|
||||||
|
"C'mon": [{ORTH: "C'm", NORM: "come", LEMMA: "come"}, {ORTH: "on"}],
|
||||||
}
|
}
|
||||||
|
|
||||||
_exc.update(_other_exc)
|
_exc.update(_other_exc)
|
||||||
|
|
|
@ -14,5 +14,9 @@ sentences = [
|
||||||
"El gato come pescado.",
|
"El gato come pescado.",
|
||||||
"Veo al hombre con el telescopio.",
|
"Veo al hombre con el telescopio.",
|
||||||
"La araña come moscas.",
|
"La araña come moscas.",
|
||||||
"El pingüino incuba en su nido.",
|
"El pingüino incuba en su nido sobre el hielo.",
|
||||||
|
"¿Dónde estais?",
|
||||||
|
"¿Quién es el presidente Francés?",
|
||||||
|
"¿Dónde está encuentra la capital de Argentina?",
|
||||||
|
"¿Cuándo nació José de San Martín?",
|
||||||
]
|
]
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES
|
from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES
|
||||||
from ..char_classes import LIST_ICONS, CURRENCY, LIST_UNITS, PUNCT
|
from ..char_classes import LIST_ICONS, CURRENCY, LIST_UNITS, PUNCT
|
||||||
from ..char_classes import CONCAT_QUOTES, ALPHA_LOWER, ALPHA_UPPER, ALPHA
|
from ..char_classes import CONCAT_QUOTES, ALPHA_LOWER, ALPHA_UPPER, ALPHA
|
||||||
|
|
|
@ -7,8 +7,12 @@ _exc = {
|
||||||
|
|
||||||
|
|
||||||
for exc_data in [
|
for exc_data in [
|
||||||
|
{ORTH: "n°", LEMMA: "número"},
|
||||||
|
{ORTH: "°C", LEMMA: "grados Celcius"},
|
||||||
{ORTH: "aprox.", LEMMA: "aproximadamente"},
|
{ORTH: "aprox.", LEMMA: "aproximadamente"},
|
||||||
{ORTH: "dna.", LEMMA: "docena"},
|
{ORTH: "dna.", LEMMA: "docena"},
|
||||||
|
{ORTH: "dpto.", LEMMA: "departamento"},
|
||||||
|
{ORTH: "ej.", LEMMA: "ejemplo"},
|
||||||
{ORTH: "esq.", LEMMA: "esquina"},
|
{ORTH: "esq.", LEMMA: "esquina"},
|
||||||
{ORTH: "pág.", LEMMA: "página"},
|
{ORTH: "pág.", LEMMA: "página"},
|
||||||
{ORTH: "p.ej.", LEMMA: "por ejemplo"},
|
{ORTH: "p.ej.", LEMMA: "por ejemplo"},
|
||||||
|
@ -16,6 +20,7 @@ for exc_data in [
|
||||||
{ORTH: "Vd.", LEMMA: PRON_LEMMA, NORM: "usted"},
|
{ORTH: "Vd.", LEMMA: PRON_LEMMA, NORM: "usted"},
|
||||||
{ORTH: "Uds.", LEMMA: PRON_LEMMA, NORM: "ustedes"},
|
{ORTH: "Uds.", LEMMA: PRON_LEMMA, NORM: "ustedes"},
|
||||||
{ORTH: "Vds.", LEMMA: PRON_LEMMA, NORM: "ustedes"},
|
{ORTH: "Vds.", LEMMA: PRON_LEMMA, NORM: "ustedes"},
|
||||||
|
{ORTH: "vol.", NORM: "volúmen"},
|
||||||
]:
|
]:
|
||||||
_exc[exc_data[ORTH]] = [exc_data]
|
_exc[exc_data[ORTH]] = [exc_data]
|
||||||
|
|
||||||
|
@ -35,10 +40,14 @@ for h in range(1, 12 + 1):
|
||||||
for orth in [
|
for orth in [
|
||||||
"a.C.",
|
"a.C.",
|
||||||
"a.J.C.",
|
"a.J.C.",
|
||||||
|
"d.C.",
|
||||||
|
"d.J.C.",
|
||||||
"apdo.",
|
"apdo.",
|
||||||
"Av.",
|
"Av.",
|
||||||
"Avda.",
|
"Avda.",
|
||||||
"Cía.",
|
"Cía.",
|
||||||
|
"Dr.",
|
||||||
|
"Dra.",
|
||||||
"EE.UU.",
|
"EE.UU.",
|
||||||
"etc.",
|
"etc.",
|
||||||
"fig.",
|
"fig.",
|
||||||
|
@ -54,9 +63,9 @@ for orth in [
|
||||||
"Prof.",
|
"Prof.",
|
||||||
"Profa.",
|
"Profa.",
|
||||||
"q.e.p.d.",
|
"q.e.p.d.",
|
||||||
"S.A.",
|
"Q.E.P.D." "S.A.",
|
||||||
"S.L.",
|
"S.L.",
|
||||||
"s.s.s.",
|
"S.R.L." "s.s.s.",
|
||||||
"Sr.",
|
"Sr.",
|
||||||
"Sra.",
|
"Sra.",
|
||||||
"Srta.",
|
"Srta.",
|
||||||
|
|
|
@ -25,17 +25,15 @@ def noun_chunks(doclike):
|
||||||
np_deps = [doc.vocab.strings.add(label) for label in labels]
|
np_deps = [doc.vocab.strings.add(label) for label in labels]
|
||||||
conj = doc.vocab.strings.add("conj")
|
conj = doc.vocab.strings.add("conj")
|
||||||
np_label = doc.vocab.strings.add("NP")
|
np_label = doc.vocab.strings.add("NP")
|
||||||
seen = set()
|
prev_end = -1
|
||||||
for i, word in enumerate(doclike):
|
for i, word in enumerate(doclike):
|
||||||
if word.pos not in (NOUN, PROPN, PRON):
|
if word.pos not in (NOUN, PROPN, PRON):
|
||||||
continue
|
continue
|
||||||
# Prevent nested chunks from being produced
|
# Prevent nested chunks from being produced
|
||||||
if word.i in seen:
|
if word.left_edge.i <= prev_end:
|
||||||
continue
|
continue
|
||||||
if word.dep in np_deps:
|
if word.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.i + 1))
|
|
||||||
yield word.left_edge.i, word.i + 1, np_label
|
yield word.left_edge.i, word.i + 1, np_label
|
||||||
elif word.dep == conj:
|
elif word.dep == conj:
|
||||||
head = word.head
|
head = word.head
|
||||||
|
@ -43,9 +41,7 @@ def noun_chunks(doclike):
|
||||||
head = head.head
|
head = head.head
|
||||||
# If the head is an NP, and we're coordinated to it, we're an NP
|
# If the head is an NP, and we're coordinated to it, we're an NP
|
||||||
if head.dep in np_deps:
|
if head.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.i + 1))
|
|
||||||
yield word.left_edge.i, word.i + 1, np_label
|
yield word.left_edge.i, word.i + 1, np_label
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -531,7 +531,6 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Beaumont-Hamel",
|
"Beaumont-Hamel",
|
||||||
"Beaumont-Louestault",
|
"Beaumont-Louestault",
|
||||||
"Beaumont-Monteux",
|
"Beaumont-Monteux",
|
||||||
"Beaumont-Pied-de-Buf",
|
|
||||||
"Beaumont-Pied-de-Bœuf",
|
"Beaumont-Pied-de-Bœuf",
|
||||||
"Beaumont-Sardolles",
|
"Beaumont-Sardolles",
|
||||||
"Beaumont-Village",
|
"Beaumont-Village",
|
||||||
|
@ -948,7 +947,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Buxières-sous-les-Côtes",
|
"Buxières-sous-les-Côtes",
|
||||||
"Buzy-Darmont",
|
"Buzy-Darmont",
|
||||||
"Byhleguhre-Byhlen",
|
"Byhleguhre-Byhlen",
|
||||||
"Burs-en-Othe",
|
"Bœurs-en-Othe",
|
||||||
"Bâle-Campagne",
|
"Bâle-Campagne",
|
||||||
"Bâle-Ville",
|
"Bâle-Ville",
|
||||||
"Béard-Géovreissiat",
|
"Béard-Géovreissiat",
|
||||||
|
@ -1586,11 +1585,11 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Cruci-Falgardiens",
|
"Cruci-Falgardiens",
|
||||||
"Cruquius-Oost",
|
"Cruquius-Oost",
|
||||||
"Cruviers-Lascours",
|
"Cruviers-Lascours",
|
||||||
"Crèvecur-en-Auge",
|
"Crèvecœur-en-Auge",
|
||||||
"Crèvecur-en-Brie",
|
"Crèvecœur-en-Brie",
|
||||||
"Crèvecur-le-Grand",
|
"Crèvecœur-le-Grand",
|
||||||
"Crèvecur-le-Petit",
|
"Crèvecœur-le-Petit",
|
||||||
"Crèvecur-sur-l'Escaut",
|
"Crèvecœur-sur-l'Escaut",
|
||||||
"Crécy-Couvé",
|
"Crécy-Couvé",
|
||||||
"Créon-d'Armagnac",
|
"Créon-d'Armagnac",
|
||||||
"Cubjac-Auvézère-Val-d'Ans",
|
"Cubjac-Auvézère-Val-d'Ans",
|
||||||
|
@ -1616,7 +1615,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Cuxac-Cabardès",
|
"Cuxac-Cabardès",
|
||||||
"Cuxac-d'Aude",
|
"Cuxac-d'Aude",
|
||||||
"Cuyk-Sainte-Agathe",
|
"Cuyk-Sainte-Agathe",
|
||||||
"Cuvres-et-Valsery",
|
"Cœuvres-et-Valsery",
|
||||||
"Céaux-d'Allègre",
|
"Céaux-d'Allègre",
|
||||||
"Céleste-Empire",
|
"Céleste-Empire",
|
||||||
"Cénac-et-Saint-Julien",
|
"Cénac-et-Saint-Julien",
|
||||||
|
@ -1679,7 +1678,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Devrai-Gondragnières",
|
"Devrai-Gondragnières",
|
||||||
"Dhuys et Morin-en-Brie",
|
"Dhuys et Morin-en-Brie",
|
||||||
"Diane-Capelle",
|
"Diane-Capelle",
|
||||||
"Dieffenbach-lès-Wrth",
|
"Dieffenbach-lès-Wœrth",
|
||||||
"Diekhusen-Fahrstedt",
|
"Diekhusen-Fahrstedt",
|
||||||
"Diennes-Aubigny",
|
"Diennes-Aubigny",
|
||||||
"Diensdorf-Radlow",
|
"Diensdorf-Radlow",
|
||||||
|
@ -1752,7 +1751,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Durdat-Larequille",
|
"Durdat-Larequille",
|
||||||
"Durfort-Lacapelette",
|
"Durfort-Lacapelette",
|
||||||
"Durfort-et-Saint-Martin-de-Sossenac",
|
"Durfort-et-Saint-Martin-de-Sossenac",
|
||||||
"Duil-sur-le-Mignon",
|
"Dœuil-sur-le-Mignon",
|
||||||
"Dão-Lafões",
|
"Dão-Lafões",
|
||||||
"Débats-Rivière-d'Orpra",
|
"Débats-Rivière-d'Orpra",
|
||||||
"Décines-Charpieu",
|
"Décines-Charpieu",
|
||||||
|
@ -2687,8 +2686,8 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Kuhlen-Wendorf",
|
"Kuhlen-Wendorf",
|
||||||
"KwaZulu-Natal",
|
"KwaZulu-Natal",
|
||||||
"Kyzyl-Arvat",
|
"Kyzyl-Arvat",
|
||||||
"Kur-la-Grande",
|
"Kœur-la-Grande",
|
||||||
"Kur-la-Petite",
|
"Kœur-la-Petite",
|
||||||
"Kölln-Reisiek",
|
"Kölln-Reisiek",
|
||||||
"Königsbach-Stein",
|
"Königsbach-Stein",
|
||||||
"Königshain-Wiederau",
|
"Königshain-Wiederau",
|
||||||
|
@ -4024,7 +4023,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Marcilly-d'Azergues",
|
"Marcilly-d'Azergues",
|
||||||
"Marcillé-Raoul",
|
"Marcillé-Raoul",
|
||||||
"Marcillé-Robert",
|
"Marcillé-Robert",
|
||||||
"Marcq-en-Barul",
|
"Marcq-en-Barœul",
|
||||||
"Marcy-l'Etoile",
|
"Marcy-l'Etoile",
|
||||||
"Marcy-l'Étoile",
|
"Marcy-l'Étoile",
|
||||||
"Mareil-Marly",
|
"Mareil-Marly",
|
||||||
|
@ -4258,7 +4257,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Monlezun-d'Armagnac",
|
"Monlezun-d'Armagnac",
|
||||||
"Monléon-Magnoac",
|
"Monléon-Magnoac",
|
||||||
"Monnetier-Mornex",
|
"Monnetier-Mornex",
|
||||||
"Mons-en-Barul",
|
"Mons-en-Barœul",
|
||||||
"Monsempron-Libos",
|
"Monsempron-Libos",
|
||||||
"Monsteroux-Milieu",
|
"Monsteroux-Milieu",
|
||||||
"Montacher-Villegardin",
|
"Montacher-Villegardin",
|
||||||
|
@ -4348,7 +4347,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Mornay-Berry",
|
"Mornay-Berry",
|
||||||
"Mortain-Bocage",
|
"Mortain-Bocage",
|
||||||
"Morteaux-Couliboeuf",
|
"Morteaux-Couliboeuf",
|
||||||
"Morteaux-Coulibuf",
|
"Morteaux-Coulibœuf",
|
||||||
"Morteaux-Coulibœuf",
|
"Morteaux-Coulibœuf",
|
||||||
"Mortes-Frontières",
|
"Mortes-Frontières",
|
||||||
"Mory-Montcrux",
|
"Mory-Montcrux",
|
||||||
|
@ -4391,7 +4390,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Muncq-Nieurlet",
|
"Muncq-Nieurlet",
|
||||||
"Murtin-Bogny",
|
"Murtin-Bogny",
|
||||||
"Murtin-et-le-Châtelet",
|
"Murtin-et-le-Châtelet",
|
||||||
"Murs-Verdey",
|
"Mœurs-Verdey",
|
||||||
"Ménestérol-Montignac",
|
"Ménestérol-Montignac",
|
||||||
"Ménil'muche",
|
"Ménil'muche",
|
||||||
"Ménil-Annelles",
|
"Ménil-Annelles",
|
||||||
|
@ -4612,7 +4611,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Neuves-Maisons",
|
"Neuves-Maisons",
|
||||||
"Neuvic-Entier",
|
"Neuvic-Entier",
|
||||||
"Neuvicq-Montguyon",
|
"Neuvicq-Montguyon",
|
||||||
"Neuville-lès-Luilly",
|
"Neuville-lès-Lœuilly",
|
||||||
"Neuvy-Bouin",
|
"Neuvy-Bouin",
|
||||||
"Neuvy-Deux-Clochers",
|
"Neuvy-Deux-Clochers",
|
||||||
"Neuvy-Grandchamp",
|
"Neuvy-Grandchamp",
|
||||||
|
@ -4773,8 +4772,8 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Nuncq-Hautecôte",
|
"Nuncq-Hautecôte",
|
||||||
"Nurieux-Volognat",
|
"Nurieux-Volognat",
|
||||||
"Nuthe-Urstromtal",
|
"Nuthe-Urstromtal",
|
||||||
"Nux-les-Mines",
|
"Nœux-les-Mines",
|
||||||
"Nux-lès-Auxi",
|
"Nœux-lès-Auxi",
|
||||||
"Nâves-Parmelan",
|
"Nâves-Parmelan",
|
||||||
"Nézignan-l'Evêque",
|
"Nézignan-l'Evêque",
|
||||||
"Nézignan-l'Évêque",
|
"Nézignan-l'Évêque",
|
||||||
|
@ -5343,7 +5342,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Quincy-Voisins",
|
"Quincy-Voisins",
|
||||||
"Quincy-sous-le-Mont",
|
"Quincy-sous-le-Mont",
|
||||||
"Quint-Fonsegrives",
|
"Quint-Fonsegrives",
|
||||||
"Quux-Haut-Maînil",
|
"Quœux-Haut-Maînil",
|
||||||
"Quœux-Haut-Maînil",
|
"Quœux-Haut-Maînil",
|
||||||
"Qwa-Qwa",
|
"Qwa-Qwa",
|
||||||
"R.-V.",
|
"R.-V.",
|
||||||
|
@ -5631,12 +5630,12 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Saint Aulaye-Puymangou",
|
"Saint Aulaye-Puymangou",
|
||||||
"Saint Geniez d'Olt et d'Aubrac",
|
"Saint Geniez d'Olt et d'Aubrac",
|
||||||
"Saint Martin de l'If",
|
"Saint Martin de l'If",
|
||||||
"Saint-Denux",
|
"Saint-Denœux",
|
||||||
"Saint-Jean-de-Buf",
|
"Saint-Jean-de-Bœuf",
|
||||||
"Saint-Martin-le-Nud",
|
"Saint-Martin-le-Nœud",
|
||||||
"Saint-Michel-Tubuf",
|
"Saint-Michel-Tubœuf",
|
||||||
"Saint-Paul - Flaugnac",
|
"Saint-Paul - Flaugnac",
|
||||||
"Saint-Pierre-de-Buf",
|
"Saint-Pierre-de-Bœuf",
|
||||||
"Saint-Thegonnec Loc-Eguiner",
|
"Saint-Thegonnec Loc-Eguiner",
|
||||||
"Sainte-Alvère-Saint-Laurent Les Bâtons",
|
"Sainte-Alvère-Saint-Laurent Les Bâtons",
|
||||||
"Salignac-Eyvignes",
|
"Salignac-Eyvignes",
|
||||||
|
@ -6208,7 +6207,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Tite-Live",
|
"Tite-Live",
|
||||||
"Titisee-Neustadt",
|
"Titisee-Neustadt",
|
||||||
"Tobel-Tägerschen",
|
"Tobel-Tägerschen",
|
||||||
"Togny-aux-Bufs",
|
"Togny-aux-Bœufs",
|
||||||
"Tongre-Notre-Dame",
|
"Tongre-Notre-Dame",
|
||||||
"Tonnay-Boutonne",
|
"Tonnay-Boutonne",
|
||||||
"Tonnay-Charente",
|
"Tonnay-Charente",
|
||||||
|
@ -6336,7 +6335,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Vals-près-le-Puy",
|
"Vals-près-le-Puy",
|
||||||
"Valverde-Enrique",
|
"Valverde-Enrique",
|
||||||
"Valzin-en-Petite-Montagne",
|
"Valzin-en-Petite-Montagne",
|
||||||
"Vanduvre-lès-Nancy",
|
"Vandœuvre-lès-Nancy",
|
||||||
"Varces-Allières-et-Risset",
|
"Varces-Allières-et-Risset",
|
||||||
"Varenne-l'Arconce",
|
"Varenne-l'Arconce",
|
||||||
"Varenne-sur-le-Doubs",
|
"Varenne-sur-le-Doubs",
|
||||||
|
@ -6457,9 +6456,9 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Villenave-d'Ornon",
|
"Villenave-d'Ornon",
|
||||||
"Villequier-Aumont",
|
"Villequier-Aumont",
|
||||||
"Villerouge-Termenès",
|
"Villerouge-Termenès",
|
||||||
"Villers-aux-Nuds",
|
"Villers-aux-Nœuds",
|
||||||
"Villez-sur-le-Neubourg",
|
"Villez-sur-le-Neubourg",
|
||||||
"Villiers-en-Désuvre",
|
"Villiers-en-Désœuvre",
|
||||||
"Villieu-Loyes-Mollon",
|
"Villieu-Loyes-Mollon",
|
||||||
"Villingen-Schwenningen",
|
"Villingen-Schwenningen",
|
||||||
"Villié-Morgon",
|
"Villié-Morgon",
|
||||||
|
@ -6467,7 +6466,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Vilosnes-Haraumont",
|
"Vilosnes-Haraumont",
|
||||||
"Vilters-Wangs",
|
"Vilters-Wangs",
|
||||||
"Vincent-Froideville",
|
"Vincent-Froideville",
|
||||||
"Vincy-Manuvre",
|
"Vincy-Manœuvre",
|
||||||
"Vincy-Manœuvre",
|
"Vincy-Manœuvre",
|
||||||
"Vincy-Reuil-et-Magny",
|
"Vincy-Reuil-et-Magny",
|
||||||
"Vindrac-Alayrac",
|
"Vindrac-Alayrac",
|
||||||
|
@ -6511,8 +6510,8 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Vrigne-Meusiens",
|
"Vrigne-Meusiens",
|
||||||
"Vrijhoeve-Capelle",
|
"Vrijhoeve-Capelle",
|
||||||
"Vuisternens-devant-Romont",
|
"Vuisternens-devant-Romont",
|
||||||
"Vlfling-lès-Bouzonville",
|
"Vœlfling-lès-Bouzonville",
|
||||||
"Vuil-et-Giget",
|
"Vœuil-et-Giget",
|
||||||
"Vélez-Blanco",
|
"Vélez-Blanco",
|
||||||
"Vélez-Málaga",
|
"Vélez-Málaga",
|
||||||
"Vélez-Rubio",
|
"Vélez-Rubio",
|
||||||
|
@ -6615,7 +6614,7 @@ FR_BASE_EXCEPTIONS = [
|
||||||
"Wust-Fischbeck",
|
"Wust-Fischbeck",
|
||||||
"Wutha-Farnroda",
|
"Wutha-Farnroda",
|
||||||
"Wy-dit-Joli-Village",
|
"Wy-dit-Joli-Village",
|
||||||
"Wlfling-lès-Sarreguemines",
|
"Wœlfling-lès-Sarreguemines",
|
||||||
"Wünnewil-Flamatt",
|
"Wünnewil-Flamatt",
|
||||||
"X-SAMPA",
|
"X-SAMPA",
|
||||||
"X-arbre",
|
"X-arbre",
|
||||||
|
|
|
@ -24,17 +24,15 @@ def noun_chunks(doclike):
|
||||||
np_deps = [doc.vocab.strings[label] for label in labels]
|
np_deps = [doc.vocab.strings[label] for label in labels]
|
||||||
conj = doc.vocab.strings.add("conj")
|
conj = doc.vocab.strings.add("conj")
|
||||||
np_label = doc.vocab.strings.add("NP")
|
np_label = doc.vocab.strings.add("NP")
|
||||||
seen = set()
|
prev_end = -1
|
||||||
for i, word in enumerate(doclike):
|
for i, word in enumerate(doclike):
|
||||||
if word.pos not in (NOUN, PROPN, PRON):
|
if word.pos not in (NOUN, PROPN, PRON):
|
||||||
continue
|
continue
|
||||||
# Prevent nested chunks from being produced
|
# Prevent nested chunks from being produced
|
||||||
if word.i in seen:
|
if word.left_edge.i <= prev_end:
|
||||||
continue
|
continue
|
||||||
if word.dep in np_deps:
|
if word.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.right_edge.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.right_edge.i + 1))
|
|
||||||
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
||||||
elif word.dep == conj:
|
elif word.dep == conj:
|
||||||
head = word.head
|
head = word.head
|
||||||
|
@ -42,9 +40,7 @@ def noun_chunks(doclike):
|
||||||
head = head.head
|
head = head.head
|
||||||
# If the head is an NP, and we're coordinated to it, we're an NP
|
# If the head is an NP, and we're coordinated to it, we're an NP
|
||||||
if head.dep in np_deps:
|
if head.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.right_edge.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.right_edge.i + 1))
|
|
||||||
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,7 +1,6 @@
|
||||||
import re
|
import re
|
||||||
|
|
||||||
from .punctuation import ELISION, HYPHENS
|
from .punctuation import ELISION, HYPHENS
|
||||||
from ..tokenizer_exceptions import URL_PATTERN
|
|
||||||
from ..char_classes import ALPHA_LOWER, ALPHA
|
from ..char_classes import ALPHA_LOWER, ALPHA
|
||||||
from ...symbols import ORTH, LEMMA
|
from ...symbols import ORTH, LEMMA
|
||||||
|
|
||||||
|
@ -452,9 +451,6 @@ _regular_exp += [
|
||||||
for hc in _hyphen_combination
|
for hc in _hyphen_combination
|
||||||
]
|
]
|
||||||
|
|
||||||
# URLs
|
|
||||||
_regular_exp.append(URL_PATTERN)
|
|
||||||
|
|
||||||
|
|
||||||
TOKENIZER_EXCEPTIONS = _exc
|
TOKENIZER_EXCEPTIONS = _exc
|
||||||
TOKEN_MATCH = re.compile(
|
TOKEN_MATCH = re.compile(
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
from .stop_words import STOP_WORDS
|
from .stop_words import STOP_WORDS
|
||||||
|
|
||||||
from ...language import Language
|
from ...language import Language
|
||||||
|
|
|
@ -1,7 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Example sentences to test spaCy and its language models.
|
Example sentences to test spaCy and its language models.
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
STOP_WORDS = set(
|
STOP_WORDS = set(
|
||||||
"""
|
"""
|
||||||
એમ
|
એમ
|
||||||
|
|
|
@ -7,7 +7,6 @@ _concat_icons = CONCAT_ICONS.replace("\u00B0", "")
|
||||||
|
|
||||||
_currency = r"\$¢£€¥฿"
|
_currency = r"\$¢£€¥฿"
|
||||||
_quotes = CONCAT_QUOTES.replace("'", "")
|
_quotes = CONCAT_QUOTES.replace("'", "")
|
||||||
_units = UNITS.replace("%", "")
|
|
||||||
|
|
||||||
_prefixes = (
|
_prefixes = (
|
||||||
LIST_PUNCT
|
LIST_PUNCT
|
||||||
|
@ -18,7 +17,8 @@ _prefixes = (
|
||||||
)
|
)
|
||||||
|
|
||||||
_suffixes = (
|
_suffixes = (
|
||||||
LIST_PUNCT
|
[r"\+"]
|
||||||
|
+ LIST_PUNCT
|
||||||
+ LIST_ELLIPSES
|
+ LIST_ELLIPSES
|
||||||
+ LIST_QUOTES
|
+ LIST_QUOTES
|
||||||
+ [_concat_icons]
|
+ [_concat_icons]
|
||||||
|
@ -26,7 +26,7 @@ _suffixes = (
|
||||||
r"(?<=[0-9])\+",
|
r"(?<=[0-9])\+",
|
||||||
r"(?<=°[FfCcKk])\.",
|
r"(?<=°[FfCcKk])\.",
|
||||||
r"(?<=[0-9])(?:[{c}])".format(c=_currency),
|
r"(?<=[0-9])(?:[{c}])".format(c=_currency),
|
||||||
r"(?<=[0-9])(?:{u})".format(u=_units),
|
r"(?<=[0-9])(?:{u})".format(u=UNITS),
|
||||||
r"(?<=[{al}{e}{q}(?:{c})])\.".format(
|
r"(?<=[{al}{e}{q}(?:{c})])\.".format(
|
||||||
al=ALPHA_LOWER, e=r"%²\-\+", q=CONCAT_QUOTES, c=_currency
|
al=ALPHA_LOWER, e=r"%²\-\+", q=CONCAT_QUOTES, c=_currency
|
||||||
),
|
),
|
||||||
|
|
|
@ -1,7 +1,6 @@
|
||||||
import re
|
import re
|
||||||
|
|
||||||
from ..punctuation import ALPHA_LOWER, CURRENCY
|
from ..punctuation import ALPHA_LOWER, CURRENCY
|
||||||
from ..tokenizer_exceptions import URL_PATTERN
|
|
||||||
from ...symbols import ORTH
|
from ...symbols import ORTH
|
||||||
|
|
||||||
|
|
||||||
|
@ -646,4 +645,4 @@ _nums = r"(({ne})|({t})|({on})|({c}))({s})?".format(
|
||||||
|
|
||||||
|
|
||||||
TOKENIZER_EXCEPTIONS = _exc
|
TOKENIZER_EXCEPTIONS = _exc
|
||||||
TOKEN_MATCH = re.compile(r"^({u})|({n})$".format(u=URL_PATTERN, n=_nums)).match
|
TOKEN_MATCH = re.compile(r"^{n}$".format(n=_nums)).match
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
from .stop_words import STOP_WORDS
|
from .stop_words import STOP_WORDS
|
||||||
from .lex_attrs import LEX_ATTRS
|
from .lex_attrs import LEX_ATTRS
|
||||||
from .tag_map import TAG_MAP
|
from .tag_map import TAG_MAP
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Example sentences to test spaCy and its language models.
|
Example sentences to test spaCy and its language models.
|
||||||
>>> from spacy.lang.hy.examples import sentences
|
>>> from spacy.lang.hy.examples import sentences
|
||||||
|
|
|
@ -1,12 +1,9 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
from ...attrs import LIKE_NUM
|
from ...attrs import LIKE_NUM
|
||||||
|
|
||||||
|
|
||||||
_num_words = [
|
_num_words = [
|
||||||
"զրօ",
|
"զրո",
|
||||||
"մէկ",
|
"մեկ",
|
||||||
"երկու",
|
"երկու",
|
||||||
"երեք",
|
"երեք",
|
||||||
"չորս",
|
"չորս",
|
||||||
|
@ -28,10 +25,10 @@ _num_words = [
|
||||||
"քսան" "երեսուն",
|
"քսան" "երեսուն",
|
||||||
"քառասուն",
|
"քառասուն",
|
||||||
"հիսուն",
|
"հիսուն",
|
||||||
"վաթցսուն",
|
"վաթսուն",
|
||||||
"յոթանասուն",
|
"յոթանասուն",
|
||||||
"ութսուն",
|
"ութսուն",
|
||||||
"ինիսուն",
|
"իննսուն",
|
||||||
"հարյուր",
|
"հարյուր",
|
||||||
"հազար",
|
"հազար",
|
||||||
"միլիոն",
|
"միլիոն",
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
STOP_WORDS = set(
|
STOP_WORDS = set(
|
||||||
"""
|
"""
|
||||||
նա
|
նա
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
from ...symbols import POS, ADJ, NUM, DET, ADV, ADP, X, VERB, NOUN
|
from ...symbols import POS, ADJ, NUM, DET, ADV, ADP, X, VERB, NOUN
|
||||||
from ...symbols import PROPN, PART, INTJ, PRON, SCONJ, AUX, CCONJ
|
from ...symbols import PROPN, PART, INTJ, PRON, SCONJ, AUX, CCONJ
|
||||||
|
|
||||||
|
|
|
@ -24,17 +24,15 @@ def noun_chunks(doclike):
|
||||||
np_deps = [doc.vocab.strings[label] for label in labels]
|
np_deps = [doc.vocab.strings[label] for label in labels]
|
||||||
conj = doc.vocab.strings.add("conj")
|
conj = doc.vocab.strings.add("conj")
|
||||||
np_label = doc.vocab.strings.add("NP")
|
np_label = doc.vocab.strings.add("NP")
|
||||||
seen = set()
|
prev_end = -1
|
||||||
for i, word in enumerate(doclike):
|
for i, word in enumerate(doclike):
|
||||||
if word.pos not in (NOUN, PROPN, PRON):
|
if word.pos not in (NOUN, PROPN, PRON):
|
||||||
continue
|
continue
|
||||||
# Prevent nested chunks from being produced
|
# Prevent nested chunks from being produced
|
||||||
if word.i in seen:
|
if word.left_edge.i <= prev_end:
|
||||||
continue
|
continue
|
||||||
if word.dep in np_deps:
|
if word.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.right_edge.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.right_edge.i + 1))
|
|
||||||
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
||||||
elif word.dep == conj:
|
elif word.dep == conj:
|
||||||
head = word.head
|
head = word.head
|
||||||
|
@ -42,9 +40,7 @@ def noun_chunks(doclike):
|
||||||
head = head.head
|
head = head.head
|
||||||
# If the head is an NP, and we're coordinated to it, we're an NP
|
# If the head is an NP, and we're coordinated to it, we're an NP
|
||||||
if head.dep in np_deps:
|
if head.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.right_edge.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.right_edge.i + 1))
|
|
||||||
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,111 +1,266 @@
|
||||||
import re
|
import srsly
|
||||||
from collections import namedtuple
|
from collections import namedtuple, OrderedDict
|
||||||
|
|
||||||
from .stop_words import STOP_WORDS
|
from .stop_words import STOP_WORDS
|
||||||
|
from .syntax_iterators import SYNTAX_ITERATORS
|
||||||
from .tag_map import TAG_MAP
|
from .tag_map import TAG_MAP
|
||||||
|
from .tag_orth_map import TAG_ORTH_MAP
|
||||||
|
from .tag_bigram_map import TAG_BIGRAM_MAP
|
||||||
from ...attrs import LANG
|
from ...attrs import LANG
|
||||||
from ...language import Language
|
|
||||||
from ...tokens import Doc
|
|
||||||
from ...compat import copy_reg
|
from ...compat import copy_reg
|
||||||
|
from ...errors import Errors
|
||||||
|
from ...language import Language
|
||||||
|
from ...symbols import POS
|
||||||
|
from ...tokens import Doc
|
||||||
from ...util import DummyTokenizer
|
from ...util import DummyTokenizer
|
||||||
|
from ... import util
|
||||||
|
|
||||||
|
|
||||||
|
# Hold the attributes we need with convenient names
|
||||||
|
DetailedToken = namedtuple("DetailedToken", ["surface", "pos", "lemma"])
|
||||||
|
|
||||||
# Handling for multiple spaces in a row is somewhat awkward, this simplifies
|
# Handling for multiple spaces in a row is somewhat awkward, this simplifies
|
||||||
# the flow by creating a dummy with the same interface.
|
# the flow by creating a dummy with the same interface.
|
||||||
DummyNode = namedtuple("DummyNode", ["surface", "pos", "feature"])
|
DummyNode = namedtuple("DummyNode", ["surface", "pos", "lemma"])
|
||||||
DummyNodeFeatures = namedtuple("DummyNodeFeatures", ["lemma"])
|
DummySpace = DummyNode(" ", " ", " ")
|
||||||
DummySpace = DummyNode(" ", " ", DummyNodeFeatures(" "))
|
|
||||||
|
|
||||||
|
|
||||||
def try_fugashi_import():
|
def try_sudachi_import(split_mode="A"):
|
||||||
"""Fugashi is required for Japanese support, so check for it.
|
"""SudachiPy is required for Japanese support, so check for it.
|
||||||
It it's not available blow up and explain how to fix it."""
|
It it's not available blow up and explain how to fix it.
|
||||||
|
split_mode should be one of these values: "A", "B", "C", None->"A"."""
|
||||||
try:
|
try:
|
||||||
import fugashi
|
from sudachipy import dictionary, tokenizer
|
||||||
|
|
||||||
return fugashi
|
split_mode = {
|
||||||
|
None: tokenizer.Tokenizer.SplitMode.A,
|
||||||
|
"A": tokenizer.Tokenizer.SplitMode.A,
|
||||||
|
"B": tokenizer.Tokenizer.SplitMode.B,
|
||||||
|
"C": tokenizer.Tokenizer.SplitMode.C,
|
||||||
|
}[split_mode]
|
||||||
|
tok = dictionary.Dictionary().create(mode=split_mode)
|
||||||
|
return tok
|
||||||
except ImportError:
|
except ImportError:
|
||||||
raise ImportError(
|
raise ImportError(
|
||||||
"Japanese support requires Fugashi: " "https://github.com/polm/fugashi"
|
"Japanese support requires SudachiPy and SudachiDict-core "
|
||||||
|
"(https://github.com/WorksApplications/SudachiPy). "
|
||||||
|
"Install with `pip install sudachipy sudachidict_core` or "
|
||||||
|
"install spaCy with `pip install spacy[ja]`."
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def resolve_pos(token):
|
def resolve_pos(orth, pos, next_pos):
|
||||||
"""If necessary, add a field to the POS tag for UD mapping.
|
"""If necessary, add a field to the POS tag for UD mapping.
|
||||||
Under Universal Dependencies, sometimes the same Unidic POS tag can
|
Under Universal Dependencies, sometimes the same Unidic POS tag can
|
||||||
be mapped differently depending on the literal token or its context
|
be mapped differently depending on the literal token or its context
|
||||||
in the sentence. This function adds information to the POS tag to
|
in the sentence. This function returns resolved POSs for both token
|
||||||
resolve ambiguous mappings.
|
and next_token by tuple.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# this is only used for consecutive ascii spaces
|
# Some tokens have their UD tag decided based on the POS of the following
|
||||||
if token.surface == " ":
|
# token.
|
||||||
return "空白"
|
|
||||||
|
|
||||||
# TODO: This is a first take. The rules here are crude approximations.
|
# orth based rules
|
||||||
# For many of these, full dependencies are needed to properly resolve
|
if pos[0] in TAG_ORTH_MAP:
|
||||||
# PoS mappings.
|
orth_map = TAG_ORTH_MAP[pos[0]]
|
||||||
if token.pos == "連体詞,*,*,*":
|
if orth in orth_map:
|
||||||
if re.match(r"[こそあど此其彼]の", token.surface):
|
return orth_map[orth], None
|
||||||
return token.pos + ",DET"
|
|
||||||
if re.match(r"[こそあど此其彼]", token.surface):
|
# tag bi-gram mapping
|
||||||
return token.pos + ",PRON"
|
if next_pos:
|
||||||
return token.pos + ",ADJ"
|
tag_bigram = pos[0], next_pos[0]
|
||||||
return token.pos
|
if tag_bigram in TAG_BIGRAM_MAP:
|
||||||
|
bipos = TAG_BIGRAM_MAP[tag_bigram]
|
||||||
|
if bipos[0] is None:
|
||||||
|
return TAG_MAP[pos[0]][POS], bipos[1]
|
||||||
|
else:
|
||||||
|
return bipos
|
||||||
|
|
||||||
|
return TAG_MAP[pos[0]][POS], None
|
||||||
|
|
||||||
|
|
||||||
def get_words_and_spaces(tokenizer, text):
|
# Use a mapping of paired punctuation to avoid splitting quoted sentences.
|
||||||
"""Get the individual tokens that make up the sentence and handle white space.
|
pairpunct = {"「": "」", "『": "』", "【": "】"}
|
||||||
|
|
||||||
Japanese doesn't usually use white space, and MeCab's handling of it for
|
|
||||||
multiple spaces in a row is somewhat awkward.
|
def separate_sentences(doc):
|
||||||
|
"""Given a doc, mark tokens that start sentences based on Unidic tags.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
tokens = tokenizer.parseToNodeList(text)
|
stack = [] # save paired punctuation
|
||||||
|
|
||||||
|
for i, token in enumerate(doc[:-2]):
|
||||||
|
# Set all tokens after the first to false by default. This is necessary
|
||||||
|
# for the doc code to be aware we've done sentencization, see
|
||||||
|
# `is_sentenced`.
|
||||||
|
token.sent_start = i == 0
|
||||||
|
if token.tag_:
|
||||||
|
if token.tag_ == "補助記号-括弧開":
|
||||||
|
ts = str(token)
|
||||||
|
if ts in pairpunct:
|
||||||
|
stack.append(pairpunct[ts])
|
||||||
|
elif stack and ts == stack[-1]:
|
||||||
|
stack.pop()
|
||||||
|
|
||||||
|
if token.tag_ == "補助記号-句点":
|
||||||
|
next_token = doc[i + 1]
|
||||||
|
if next_token.tag_ != token.tag_ and not stack:
|
||||||
|
next_token.sent_start = True
|
||||||
|
|
||||||
|
|
||||||
|
def get_dtokens(tokenizer, text):
|
||||||
|
tokens = tokenizer.tokenize(text)
|
||||||
words = []
|
words = []
|
||||||
spaces = []
|
for ti, token in enumerate(tokens):
|
||||||
for token in tokens:
|
tag = "-".join([xx for xx in token.part_of_speech()[:4] if xx != "*"])
|
||||||
# If there's more than one space, spaces after the first become tokens
|
inf = "-".join([xx for xx in token.part_of_speech()[4:] if xx != "*"])
|
||||||
for ii in range(len(token.white_space) - 1):
|
dtoken = DetailedToken(token.surface(), (tag, inf), token.dictionary_form())
|
||||||
words.append(DummySpace)
|
if ti > 0 and words[-1].pos[0] == "空白" and tag == "空白":
|
||||||
spaces.append(False)
|
# don't add multiple space tokens in a row
|
||||||
|
continue
|
||||||
|
words.append(dtoken)
|
||||||
|
|
||||||
words.append(token)
|
# remove empty tokens. These can be produced with characters like … that
|
||||||
spaces.append(bool(token.white_space))
|
# Sudachi normalizes internally.
|
||||||
return words, spaces
|
words = [ww for ww in words if len(ww.surface) > 0]
|
||||||
|
return words
|
||||||
|
|
||||||
|
|
||||||
|
def get_words_lemmas_tags_spaces(dtokens, text, gap_tag=("空白", "")):
|
||||||
|
words = [x.surface for x in dtokens]
|
||||||
|
if "".join("".join(words).split()) != "".join(text.split()):
|
||||||
|
raise ValueError(Errors.E194.format(text=text, words=words))
|
||||||
|
text_words = []
|
||||||
|
text_lemmas = []
|
||||||
|
text_tags = []
|
||||||
|
text_spaces = []
|
||||||
|
text_pos = 0
|
||||||
|
# handle empty and whitespace-only texts
|
||||||
|
if len(words) == 0:
|
||||||
|
return text_words, text_lemmas, text_tags, text_spaces
|
||||||
|
elif len([word for word in words if not word.isspace()]) == 0:
|
||||||
|
assert text.isspace()
|
||||||
|
text_words = [text]
|
||||||
|
text_lemmas = [text]
|
||||||
|
text_tags = [gap_tag]
|
||||||
|
text_spaces = [False]
|
||||||
|
return text_words, text_lemmas, text_tags, text_spaces
|
||||||
|
# normalize words to remove all whitespace tokens
|
||||||
|
norm_words, norm_dtokens = zip(
|
||||||
|
*[
|
||||||
|
(word, dtokens)
|
||||||
|
for word, dtokens in zip(words, dtokens)
|
||||||
|
if not word.isspace()
|
||||||
|
]
|
||||||
|
)
|
||||||
|
# align words with text
|
||||||
|
for word, dtoken in zip(norm_words, norm_dtokens):
|
||||||
|
try:
|
||||||
|
word_start = text[text_pos:].index(word)
|
||||||
|
except ValueError:
|
||||||
|
raise ValueError(Errors.E194.format(text=text, words=words))
|
||||||
|
if word_start > 0:
|
||||||
|
w = text[text_pos : text_pos + word_start]
|
||||||
|
text_words.append(w)
|
||||||
|
text_lemmas.append(w)
|
||||||
|
text_tags.append(gap_tag)
|
||||||
|
text_spaces.append(False)
|
||||||
|
text_pos += word_start
|
||||||
|
text_words.append(word)
|
||||||
|
text_lemmas.append(dtoken.lemma)
|
||||||
|
text_tags.append(dtoken.pos)
|
||||||
|
text_spaces.append(False)
|
||||||
|
text_pos += len(word)
|
||||||
|
if text_pos < len(text) and text[text_pos] == " ":
|
||||||
|
text_spaces[-1] = True
|
||||||
|
text_pos += 1
|
||||||
|
if text_pos < len(text):
|
||||||
|
w = text[text_pos:]
|
||||||
|
text_words.append(w)
|
||||||
|
text_lemmas.append(w)
|
||||||
|
text_tags.append(gap_tag)
|
||||||
|
text_spaces.append(False)
|
||||||
|
return text_words, text_lemmas, text_tags, text_spaces
|
||||||
|
|
||||||
|
|
||||||
class JapaneseTokenizer(DummyTokenizer):
|
class JapaneseTokenizer(DummyTokenizer):
|
||||||
def __init__(self, cls, nlp=None):
|
def __init__(self, cls, nlp=None, config={}):
|
||||||
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
|
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
|
||||||
self.tokenizer = try_fugashi_import().Tagger()
|
self.split_mode = config.get("split_mode", None)
|
||||||
self.tokenizer.parseToNodeList("") # see #2901
|
self.tokenizer = try_sudachi_import(self.split_mode)
|
||||||
|
|
||||||
def __call__(self, text):
|
def __call__(self, text):
|
||||||
dtokens, spaces = get_words_and_spaces(self.tokenizer, text)
|
dtokens = get_dtokens(self.tokenizer, text)
|
||||||
words = [x.surface for x in dtokens]
|
|
||||||
|
words, lemmas, unidic_tags, spaces = get_words_lemmas_tags_spaces(dtokens, text)
|
||||||
doc = Doc(self.vocab, words=words, spaces=spaces)
|
doc = Doc(self.vocab, words=words, spaces=spaces)
|
||||||
unidic_tags = []
|
next_pos = None
|
||||||
for token, dtoken in zip(doc, dtokens):
|
for idx, (token, lemma, unidic_tag) in enumerate(zip(doc, lemmas, unidic_tags)):
|
||||||
unidic_tags.append(dtoken.pos)
|
token.tag_ = unidic_tag[0]
|
||||||
token.tag_ = resolve_pos(dtoken)
|
if next_pos:
|
||||||
|
token.pos = next_pos
|
||||||
|
next_pos = None
|
||||||
|
else:
|
||||||
|
token.pos, next_pos = resolve_pos(
|
||||||
|
token.orth_,
|
||||||
|
unidic_tag,
|
||||||
|
unidic_tags[idx + 1] if idx + 1 < len(unidic_tags) else None,
|
||||||
|
)
|
||||||
|
|
||||||
# if there's no lemma info (it's an unk) just use the surface
|
# if there's no lemma info (it's an unk) just use the surface
|
||||||
token.lemma_ = dtoken.feature.lemma or dtoken.surface
|
token.lemma_ = lemma
|
||||||
doc.user_data["unidic_tags"] = unidic_tags
|
doc.user_data["unidic_tags"] = unidic_tags
|
||||||
|
|
||||||
return doc
|
return doc
|
||||||
|
|
||||||
|
def _get_config(self):
|
||||||
|
config = OrderedDict((("split_mode", self.split_mode),))
|
||||||
|
return config
|
||||||
|
|
||||||
|
def _set_config(self, config={}):
|
||||||
|
self.split_mode = config.get("split_mode", None)
|
||||||
|
|
||||||
|
def to_bytes(self, **kwargs):
|
||||||
|
serializers = OrderedDict(
|
||||||
|
(("cfg", lambda: srsly.json_dumps(self._get_config())),)
|
||||||
|
)
|
||||||
|
return util.to_bytes(serializers, [])
|
||||||
|
|
||||||
|
def from_bytes(self, data, **kwargs):
|
||||||
|
deserializers = OrderedDict(
|
||||||
|
(("cfg", lambda b: self._set_config(srsly.json_loads(b))),)
|
||||||
|
)
|
||||||
|
util.from_bytes(data, deserializers, [])
|
||||||
|
self.tokenizer = try_sudachi_import(self.split_mode)
|
||||||
|
return self
|
||||||
|
|
||||||
|
def to_disk(self, path, **kwargs):
|
||||||
|
path = util.ensure_path(path)
|
||||||
|
serializers = OrderedDict(
|
||||||
|
(("cfg", lambda p: srsly.write_json(p, self._get_config())),)
|
||||||
|
)
|
||||||
|
return util.to_disk(path, serializers, [])
|
||||||
|
|
||||||
|
def from_disk(self, path, **kwargs):
|
||||||
|
path = util.ensure_path(path)
|
||||||
|
serializers = OrderedDict(
|
||||||
|
(("cfg", lambda p: self._set_config(srsly.read_json(p))),)
|
||||||
|
)
|
||||||
|
util.from_disk(path, serializers, [])
|
||||||
|
self.tokenizer = try_sudachi_import(self.split_mode)
|
||||||
|
|
||||||
|
|
||||||
class JapaneseDefaults(Language.Defaults):
|
class JapaneseDefaults(Language.Defaults):
|
||||||
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
||||||
lex_attr_getters[LANG] = lambda _text: "ja"
|
lex_attr_getters[LANG] = lambda _text: "ja"
|
||||||
stop_words = STOP_WORDS
|
stop_words = STOP_WORDS
|
||||||
tag_map = TAG_MAP
|
tag_map = TAG_MAP
|
||||||
|
syntax_iterators = SYNTAX_ITERATORS
|
||||||
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
|
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def create_tokenizer(cls, nlp=None):
|
def create_tokenizer(cls, nlp=None, config={}):
|
||||||
return JapaneseTokenizer(cls, nlp)
|
return JapaneseTokenizer(cls, nlp, config)
|
||||||
|
|
||||||
|
|
||||||
class Japanese(Language):
|
class Japanese(Language):
|
||||||
|
|
176
spacy/lang/ja/bunsetu.py
Normal file
176
spacy/lang/ja/bunsetu.py
Normal file
|
@ -0,0 +1,176 @@
|
||||||
|
POS_PHRASE_MAP = {
|
||||||
|
"NOUN": "NP",
|
||||||
|
"NUM": "NP",
|
||||||
|
"PRON": "NP",
|
||||||
|
"PROPN": "NP",
|
||||||
|
"VERB": "VP",
|
||||||
|
"ADJ": "ADJP",
|
||||||
|
"ADV": "ADVP",
|
||||||
|
"CCONJ": "CCONJP",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# return value: [(bunsetu_tokens, phrase_type={'NP', 'VP', 'ADJP', 'ADVP'}, phrase_tokens)]
|
||||||
|
def yield_bunsetu(doc, debug=False):
|
||||||
|
bunsetu = []
|
||||||
|
bunsetu_may_end = False
|
||||||
|
phrase_type = None
|
||||||
|
phrase = None
|
||||||
|
prev = None
|
||||||
|
prev_tag = None
|
||||||
|
prev_dep = None
|
||||||
|
prev_head = None
|
||||||
|
for t in doc:
|
||||||
|
pos = t.pos_
|
||||||
|
pos_type = POS_PHRASE_MAP.get(pos, None)
|
||||||
|
tag = t.tag_
|
||||||
|
dep = t.dep_
|
||||||
|
head = t.head.i
|
||||||
|
if debug:
|
||||||
|
print(
|
||||||
|
t.i,
|
||||||
|
t.orth_,
|
||||||
|
pos,
|
||||||
|
pos_type,
|
||||||
|
dep,
|
||||||
|
head,
|
||||||
|
bunsetu_may_end,
|
||||||
|
phrase_type,
|
||||||
|
phrase,
|
||||||
|
bunsetu,
|
||||||
|
)
|
||||||
|
|
||||||
|
# DET is always an individual bunsetu
|
||||||
|
if pos == "DET":
|
||||||
|
if bunsetu:
|
||||||
|
yield bunsetu, phrase_type, phrase
|
||||||
|
yield [t], None, None
|
||||||
|
bunsetu = []
|
||||||
|
bunsetu_may_end = False
|
||||||
|
phrase_type = None
|
||||||
|
phrase = None
|
||||||
|
|
||||||
|
# PRON or Open PUNCT always splits bunsetu
|
||||||
|
elif tag == "補助記号-括弧開":
|
||||||
|
if bunsetu:
|
||||||
|
yield bunsetu, phrase_type, phrase
|
||||||
|
bunsetu = [t]
|
||||||
|
bunsetu_may_end = True
|
||||||
|
phrase_type = None
|
||||||
|
phrase = None
|
||||||
|
|
||||||
|
# bunsetu head not appeared
|
||||||
|
elif phrase_type is None:
|
||||||
|
if bunsetu and prev_tag == "補助記号-読点":
|
||||||
|
yield bunsetu, phrase_type, phrase
|
||||||
|
bunsetu = []
|
||||||
|
bunsetu_may_end = False
|
||||||
|
phrase_type = None
|
||||||
|
phrase = None
|
||||||
|
bunsetu.append(t)
|
||||||
|
if pos_type: # begin phrase
|
||||||
|
phrase = [t]
|
||||||
|
phrase_type = pos_type
|
||||||
|
if pos_type in {"ADVP", "CCONJP"}:
|
||||||
|
bunsetu_may_end = True
|
||||||
|
|
||||||
|
# entering new bunsetu
|
||||||
|
elif pos_type and (
|
||||||
|
pos_type != phrase_type
|
||||||
|
or bunsetu_may_end # different phrase type arises # same phrase type but bunsetu already ended
|
||||||
|
):
|
||||||
|
# exceptional case: NOUN to VERB
|
||||||
|
if (
|
||||||
|
phrase_type == "NP"
|
||||||
|
and pos_type == "VP"
|
||||||
|
and prev_dep == "compound"
|
||||||
|
and prev_head == t.i
|
||||||
|
):
|
||||||
|
bunsetu.append(t)
|
||||||
|
phrase_type = "VP"
|
||||||
|
phrase.append(t)
|
||||||
|
# exceptional case: VERB to NOUN
|
||||||
|
elif (
|
||||||
|
phrase_type == "VP"
|
||||||
|
and pos_type == "NP"
|
||||||
|
and (
|
||||||
|
prev_dep == "compound"
|
||||||
|
and prev_head == t.i
|
||||||
|
or dep == "compound"
|
||||||
|
and prev == head
|
||||||
|
or prev_dep == "nmod"
|
||||||
|
and prev_head == t.i
|
||||||
|
)
|
||||||
|
):
|
||||||
|
bunsetu.append(t)
|
||||||
|
phrase_type = "NP"
|
||||||
|
phrase.append(t)
|
||||||
|
else:
|
||||||
|
yield bunsetu, phrase_type, phrase
|
||||||
|
bunsetu = [t]
|
||||||
|
bunsetu_may_end = False
|
||||||
|
phrase_type = pos_type
|
||||||
|
phrase = [t]
|
||||||
|
|
||||||
|
# NOUN bunsetu
|
||||||
|
elif phrase_type == "NP":
|
||||||
|
bunsetu.append(t)
|
||||||
|
if not bunsetu_may_end and (
|
||||||
|
(
|
||||||
|
(pos_type == "NP" or pos == "SYM")
|
||||||
|
and (prev_head == t.i or prev_head == head)
|
||||||
|
and prev_dep in {"compound", "nummod"}
|
||||||
|
)
|
||||||
|
or (
|
||||||
|
pos == "PART"
|
||||||
|
and (prev == head or prev_head == head)
|
||||||
|
and dep == "mark"
|
||||||
|
)
|
||||||
|
):
|
||||||
|
phrase.append(t)
|
||||||
|
else:
|
||||||
|
bunsetu_may_end = True
|
||||||
|
|
||||||
|
# VERB bunsetu
|
||||||
|
elif phrase_type == "VP":
|
||||||
|
bunsetu.append(t)
|
||||||
|
if (
|
||||||
|
not bunsetu_may_end
|
||||||
|
and pos == "VERB"
|
||||||
|
and prev_head == t.i
|
||||||
|
and prev_dep == "compound"
|
||||||
|
):
|
||||||
|
phrase.append(t)
|
||||||
|
else:
|
||||||
|
bunsetu_may_end = True
|
||||||
|
|
||||||
|
# ADJ bunsetu
|
||||||
|
elif phrase_type == "ADJP" and tag != "連体詞":
|
||||||
|
bunsetu.append(t)
|
||||||
|
if not bunsetu_may_end and (
|
||||||
|
(
|
||||||
|
pos == "NOUN"
|
||||||
|
and (prev_head == t.i or prev_head == head)
|
||||||
|
and prev_dep in {"amod", "compound"}
|
||||||
|
)
|
||||||
|
or (
|
||||||
|
pos == "PART"
|
||||||
|
and (prev == head or prev_head == head)
|
||||||
|
and dep == "mark"
|
||||||
|
)
|
||||||
|
):
|
||||||
|
phrase.append(t)
|
||||||
|
else:
|
||||||
|
bunsetu_may_end = True
|
||||||
|
|
||||||
|
# other bunsetu
|
||||||
|
else:
|
||||||
|
bunsetu.append(t)
|
||||||
|
|
||||||
|
prev = t.i
|
||||||
|
prev_tag = t.tag_
|
||||||
|
prev_dep = t.dep_
|
||||||
|
prev_head = head
|
||||||
|
|
||||||
|
if bunsetu:
|
||||||
|
yield bunsetu, phrase_type, phrase
|
54
spacy/lang/ja/syntax_iterators.py
Normal file
54
spacy/lang/ja/syntax_iterators.py
Normal file
|
@ -0,0 +1,54 @@
|
||||||
|
from ...symbols import NOUN, PROPN, PRON, VERB
|
||||||
|
|
||||||
|
# XXX this can probably be pruned a bit
|
||||||
|
labels = [
|
||||||
|
"nsubj",
|
||||||
|
"nmod",
|
||||||
|
"dobj",
|
||||||
|
"nsubjpass",
|
||||||
|
"pcomp",
|
||||||
|
"pobj",
|
||||||
|
"obj",
|
||||||
|
"obl",
|
||||||
|
"dative",
|
||||||
|
"appos",
|
||||||
|
"attr",
|
||||||
|
"ROOT",
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def noun_chunks(obj):
|
||||||
|
"""
|
||||||
|
Detect base noun phrases from a dependency parse. Works on both Doc and Span.
|
||||||
|
"""
|
||||||
|
|
||||||
|
doc = obj.doc # Ensure works on both Doc and Span.
|
||||||
|
np_deps = [doc.vocab.strings.add(label) for label in labels]
|
||||||
|
doc.vocab.strings.add("conj")
|
||||||
|
np_label = doc.vocab.strings.add("NP")
|
||||||
|
seen = set()
|
||||||
|
for i, word in enumerate(obj):
|
||||||
|
if word.pos not in (NOUN, PROPN, PRON):
|
||||||
|
continue
|
||||||
|
# Prevent nested chunks from being produced
|
||||||
|
if word.i in seen:
|
||||||
|
continue
|
||||||
|
if word.dep in np_deps:
|
||||||
|
unseen = [w.i for w in word.subtree if w.i not in seen]
|
||||||
|
if not unseen:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# this takes care of particles etc.
|
||||||
|
seen.update(j.i for j in word.subtree)
|
||||||
|
# This avoids duplicating embedded clauses
|
||||||
|
seen.update(range(word.i + 1))
|
||||||
|
|
||||||
|
# if the head of this is a verb, mark that and rights seen
|
||||||
|
# Don't do the subtree as that can hide other phrases
|
||||||
|
if word.head.pos == VERB:
|
||||||
|
seen.add(word.head.i)
|
||||||
|
seen.update(w.i for w in word.head.rights)
|
||||||
|
yield unseen[0], word.i + 1, np_label
|
||||||
|
|
||||||
|
|
||||||
|
SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}
|
28
spacy/lang/ja/tag_bigram_map.py
Normal file
28
spacy/lang/ja/tag_bigram_map.py
Normal file
|
@ -0,0 +1,28 @@
|
||||||
|
from ...symbols import ADJ, AUX, NOUN, PART, VERB
|
||||||
|
|
||||||
|
# mapping from tag bi-gram to pos of previous token
|
||||||
|
TAG_BIGRAM_MAP = {
|
||||||
|
# This covers only small part of AUX.
|
||||||
|
("形容詞-非自立可能", "助詞-終助詞"): (AUX, None),
|
||||||
|
("名詞-普通名詞-形状詞可能", "助動詞"): (ADJ, None),
|
||||||
|
# ("副詞", "名詞-普通名詞-形状詞可能"): (None, ADJ),
|
||||||
|
# This covers acl, advcl, obl and root, but has side effect for compound.
|
||||||
|
("名詞-普通名詞-サ変可能", "動詞-非自立可能"): (VERB, AUX),
|
||||||
|
# This covers almost all of the deps
|
||||||
|
("名詞-普通名詞-サ変形状詞可能", "動詞-非自立可能"): (VERB, AUX),
|
||||||
|
("名詞-普通名詞-副詞可能", "動詞-非自立可能"): (None, VERB),
|
||||||
|
("副詞", "動詞-非自立可能"): (None, VERB),
|
||||||
|
("形容詞-一般", "動詞-非自立可能"): (None, VERB),
|
||||||
|
("形容詞-非自立可能", "動詞-非自立可能"): (None, VERB),
|
||||||
|
("接頭辞", "動詞-非自立可能"): (None, VERB),
|
||||||
|
("助詞-係助詞", "動詞-非自立可能"): (None, VERB),
|
||||||
|
("助詞-副助詞", "動詞-非自立可能"): (None, VERB),
|
||||||
|
("助詞-格助詞", "動詞-非自立可能"): (None, VERB),
|
||||||
|
("補助記号-読点", "動詞-非自立可能"): (None, VERB),
|
||||||
|
("形容詞-一般", "接尾辞-名詞的-一般"): (None, PART),
|
||||||
|
("助詞-格助詞", "形状詞-助動詞語幹"): (None, NOUN),
|
||||||
|
("連体詞", "形状詞-助動詞語幹"): (None, NOUN),
|
||||||
|
("動詞-一般", "助詞-副助詞"): (None, PART),
|
||||||
|
("動詞-非自立可能", "助詞-副助詞"): (None, PART),
|
||||||
|
("助動詞", "助詞-副助詞"): (None, PART),
|
||||||
|
}
|
|
@ -1,79 +1,68 @@
|
||||||
from ...symbols import POS, PUNCT, INTJ, X, ADJ, AUX, ADP, PART, SCONJ, NOUN
|
from ...symbols import POS, PUNCT, INTJ, ADJ, AUX, ADP, PART, SCONJ, NOUN
|
||||||
from ...symbols import SYM, PRON, VERB, ADV, PROPN, NUM, DET, SPACE
|
from ...symbols import SYM, PRON, VERB, ADV, PROPN, NUM, DET, SPACE, CCONJ
|
||||||
|
|
||||||
|
|
||||||
TAG_MAP = {
|
TAG_MAP = {
|
||||||
# Explanation of Unidic tags:
|
# Explanation of Unidic tags:
|
||||||
# https://www.gavo.t.u-tokyo.ac.jp/~mine/japanese/nlp+slp/UNIDIC_manual.pdf
|
# https://www.gavo.t.u-tokyo.ac.jp/~mine/japanese/nlp+slp/UNIDIC_manual.pdf
|
||||||
# Universal Dependencies Mapping:
|
# Universal Dependencies Mapping: (Some of the entries in this mapping are updated to v2.6 in the list below)
|
||||||
# http://universaldependencies.org/ja/overview/morphology.html
|
# http://universaldependencies.org/ja/overview/morphology.html
|
||||||
# http://universaldependencies.org/ja/pos/all.html
|
# http://universaldependencies.org/ja/pos/all.html
|
||||||
"記号,一般,*,*": {
|
"記号-一般": {POS: NOUN}, # this includes characters used to represent sounds like ドレミ
|
||||||
POS: PUNCT
|
"記号-文字": {
|
||||||
}, # this includes characters used to represent sounds like ドレミ
|
POS: NOUN
|
||||||
"記号,文字,*,*": {
|
}, # this is for Greek and Latin characters having some meanings, or used as symbols, as in math
|
||||||
POS: PUNCT
|
"感動詞-フィラー": {POS: INTJ},
|
||||||
}, # this is for Greek and Latin characters used as sumbols, as in math
|
"感動詞-一般": {POS: INTJ},
|
||||||
"感動詞,フィラー,*,*": {POS: INTJ},
|
|
||||||
"感動詞,一般,*,*": {POS: INTJ},
|
|
||||||
# this is specifically for unicode full-width space
|
|
||||||
"空白,*,*,*": {POS: X},
|
|
||||||
# This is used when sequential half-width spaces are present
|
|
||||||
"空白": {POS: SPACE},
|
"空白": {POS: SPACE},
|
||||||
"形状詞,一般,*,*": {POS: ADJ},
|
"形状詞-一般": {POS: ADJ},
|
||||||
"形状詞,タリ,*,*": {POS: ADJ},
|
"形状詞-タリ": {POS: ADJ},
|
||||||
"形状詞,助動詞語幹,*,*": {POS: ADJ},
|
"形状詞-助動詞語幹": {POS: AUX},
|
||||||
"形容詞,一般,*,*": {POS: ADJ},
|
"形容詞-一般": {POS: ADJ},
|
||||||
"形容詞,非自立可能,*,*": {POS: AUX}, # XXX ADJ if alone, AUX otherwise
|
"形容詞-非自立可能": {POS: ADJ}, # XXX ADJ if alone, AUX otherwise
|
||||||
"助詞,格助詞,*,*": {POS: ADP},
|
"助詞-格助詞": {POS: ADP},
|
||||||
"助詞,係助詞,*,*": {POS: ADP},
|
"助詞-係助詞": {POS: ADP},
|
||||||
"助詞,終助詞,*,*": {POS: PART},
|
"助詞-終助詞": {POS: PART},
|
||||||
"助詞,準体助詞,*,*": {POS: SCONJ}, # の as in 走るのが速い
|
"助詞-準体助詞": {POS: SCONJ}, # の as in 走るのが速い
|
||||||
"助詞,接続助詞,*,*": {POS: SCONJ}, # verb ending て
|
"助詞-接続助詞": {POS: SCONJ}, # verb ending て0
|
||||||
"助詞,副助詞,*,*": {POS: PART}, # ばかり, つつ after a verb
|
"助詞-副助詞": {POS: ADP}, # ばかり, つつ after a verb
|
||||||
"助動詞,*,*,*": {POS: AUX},
|
"助動詞": {POS: AUX},
|
||||||
"接続詞,*,*,*": {POS: SCONJ}, # XXX: might need refinement
|
"接続詞": {POS: CCONJ}, # XXX: might need refinement
|
||||||
"接頭辞,*,*,*": {POS: NOUN},
|
"接頭辞": {POS: NOUN},
|
||||||
"接尾辞,形状詞的,*,*": {POS: ADJ}, # がち, チック
|
"接尾辞-形状詞的": {POS: PART}, # がち, チック
|
||||||
"接尾辞,形容詞的,*,*": {POS: ADJ}, # -らしい
|
"接尾辞-形容詞的": {POS: AUX}, # -らしい
|
||||||
"接尾辞,動詞的,*,*": {POS: NOUN}, # -じみ
|
"接尾辞-動詞的": {POS: PART}, # -じみ
|
||||||
"接尾辞,名詞的,サ変可能,*": {POS: NOUN}, # XXX see 名詞,普通名詞,サ変可能,*
|
"接尾辞-名詞的-サ変可能": {POS: NOUN}, # XXX see 名詞,普通名詞,サ変可能,*
|
||||||
"接尾辞,名詞的,一般,*": {POS: NOUN},
|
"接尾辞-名詞的-一般": {POS: NOUN},
|
||||||
"接尾辞,名詞的,助数詞,*": {POS: NOUN},
|
"接尾辞-名詞的-助数詞": {POS: NOUN},
|
||||||
"接尾辞,名詞的,副詞可能,*": {POS: NOUN}, # -後, -過ぎ
|
"接尾辞-名詞的-副詞可能": {POS: NOUN}, # -後, -過ぎ
|
||||||
"代名詞,*,*,*": {POS: PRON},
|
"代名詞": {POS: PRON},
|
||||||
"動詞,一般,*,*": {POS: VERB},
|
"動詞-一般": {POS: VERB},
|
||||||
"動詞,非自立可能,*,*": {POS: VERB}, # XXX VERB if alone, AUX otherwise
|
"動詞-非自立可能": {POS: AUX}, # XXX VERB if alone, AUX otherwise
|
||||||
"動詞,非自立可能,*,*,AUX": {POS: AUX},
|
"副詞": {POS: ADV},
|
||||||
"動詞,非自立可能,*,*,VERB": {POS: VERB},
|
"補助記号-AA-一般": {POS: SYM}, # text art
|
||||||
"副詞,*,*,*": {POS: ADV},
|
"補助記号-AA-顔文字": {POS: PUNCT}, # kaomoji
|
||||||
"補助記号,AA,一般,*": {POS: SYM}, # text art
|
"補助記号-一般": {POS: SYM},
|
||||||
"補助記号,AA,顔文字,*": {POS: SYM}, # kaomoji
|
"補助記号-括弧開": {POS: PUNCT}, # open bracket
|
||||||
"補助記号,一般,*,*": {POS: SYM},
|
"補助記号-括弧閉": {POS: PUNCT}, # close bracket
|
||||||
"補助記号,括弧開,*,*": {POS: PUNCT}, # open bracket
|
"補助記号-句点": {POS: PUNCT}, # period or other EOS marker
|
||||||
"補助記号,括弧閉,*,*": {POS: PUNCT}, # close bracket
|
"補助記号-読点": {POS: PUNCT}, # comma
|
||||||
"補助記号,句点,*,*": {POS: PUNCT}, # period or other EOS marker
|
"名詞-固有名詞-一般": {POS: PROPN}, # general proper noun
|
||||||
"補助記号,読点,*,*": {POS: PUNCT}, # comma
|
"名詞-固有名詞-人名-一般": {POS: PROPN}, # person's name
|
||||||
"名詞,固有名詞,一般,*": {POS: PROPN}, # general proper noun
|
"名詞-固有名詞-人名-姓": {POS: PROPN}, # surname
|
||||||
"名詞,固有名詞,人名,一般": {POS: PROPN}, # person's name
|
"名詞-固有名詞-人名-名": {POS: PROPN}, # first name
|
||||||
"名詞,固有名詞,人名,姓": {POS: PROPN}, # surname
|
"名詞-固有名詞-地名-一般": {POS: PROPN}, # place name
|
||||||
"名詞,固有名詞,人名,名": {POS: PROPN}, # first name
|
"名詞-固有名詞-地名-国": {POS: PROPN}, # country name
|
||||||
"名詞,固有名詞,地名,一般": {POS: PROPN}, # place name
|
"名詞-助動詞語幹": {POS: AUX},
|
||||||
"名詞,固有名詞,地名,国": {POS: PROPN}, # country name
|
"名詞-数詞": {POS: NUM}, # includes Chinese numerals
|
||||||
"名詞,助動詞語幹,*,*": {POS: AUX},
|
"名詞-普通名詞-サ変可能": {POS: NOUN}, # XXX: sometimes VERB in UDv2; suru-verb noun
|
||||||
"名詞,数詞,*,*": {POS: NUM}, # includes Chinese numerals
|
"名詞-普通名詞-サ変形状詞可能": {POS: NOUN},
|
||||||
"名詞,普通名詞,サ変可能,*": {POS: NOUN}, # XXX: sometimes VERB in UDv2; suru-verb noun
|
"名詞-普通名詞-一般": {POS: NOUN},
|
||||||
"名詞,普通名詞,サ変可能,*,NOUN": {POS: NOUN},
|
"名詞-普通名詞-形状詞可能": {POS: NOUN}, # XXX: sometimes ADJ in UDv2
|
||||||
"名詞,普通名詞,サ変可能,*,VERB": {POS: VERB},
|
"名詞-普通名詞-助数詞可能": {POS: NOUN}, # counter / unit
|
||||||
"名詞,普通名詞,サ変形状詞可能,*": {POS: NOUN}, # ex: 下手
|
"名詞-普通名詞-副詞可能": {POS: NOUN},
|
||||||
"名詞,普通名詞,一般,*": {POS: NOUN},
|
"連体詞": {POS: DET}, # XXX this has exceptions based on literal token
|
||||||
"名詞,普通名詞,形状詞可能,*": {POS: NOUN}, # XXX: sometimes ADJ in UDv2
|
# GSD tags. These aren't in Unidic, but we need them for the GSD data.
|
||||||
"名詞,普通名詞,形状詞可能,*,NOUN": {POS: NOUN},
|
"外国語": {POS: PROPN}, # Foreign words
|
||||||
"名詞,普通名詞,形状詞可能,*,ADJ": {POS: ADJ},
|
"絵文字・記号等": {POS: SYM}, # emoji / kaomoji ^^;
|
||||||
"名詞,普通名詞,助数詞可能,*": {POS: NOUN}, # counter / unit
|
|
||||||
"名詞,普通名詞,副詞可能,*": {POS: NOUN},
|
|
||||||
"連体詞,*,*,*": {POS: ADJ}, # XXX this has exceptions based on literal token
|
|
||||||
"連体詞,*,*,*,ADJ": {POS: ADJ},
|
|
||||||
"連体詞,*,*,*,PRON": {POS: PRON},
|
|
||||||
"連体詞,*,*,*,DET": {POS: DET},
|
|
||||||
}
|
}
|
||||||
|
|
22
spacy/lang/ja/tag_orth_map.py
Normal file
22
spacy/lang/ja/tag_orth_map.py
Normal file
|
@ -0,0 +1,22 @@
|
||||||
|
from ...symbols import DET, PART, PRON, SPACE, X
|
||||||
|
|
||||||
|
# mapping from tag bi-gram to pos of previous token
|
||||||
|
TAG_ORTH_MAP = {
|
||||||
|
"空白": {" ": SPACE, " ": X},
|
||||||
|
"助詞-副助詞": {"たり": PART},
|
||||||
|
"連体詞": {
|
||||||
|
"あの": DET,
|
||||||
|
"かの": DET,
|
||||||
|
"この": DET,
|
||||||
|
"その": DET,
|
||||||
|
"どの": DET,
|
||||||
|
"彼の": DET,
|
||||||
|
"此の": DET,
|
||||||
|
"其の": DET,
|
||||||
|
"ある": PRON,
|
||||||
|
"こんな": PRON,
|
||||||
|
"そんな": PRON,
|
||||||
|
"どんな": PRON,
|
||||||
|
"あらゆる": PRON,
|
||||||
|
},
|
||||||
|
}
|
|
@ -1,7 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Example sentences to test spaCy and its language models.
|
Example sentences to test spaCy and its language models.
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
from .stop_words import STOP_WORDS
|
from .stop_words import STOP_WORDS
|
||||||
|
|
||||||
from ...language import Language
|
from ...language import Language
|
||||||
|
|
|
@ -1,7 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Example sentences to test spaCy and its language models.
|
Example sentences to test spaCy and its language models.
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
from ...attrs import LIKE_NUM
|
from ...attrs import LIKE_NUM
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,7 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
|
|
||||||
STOP_WORDS = set(
|
STOP_WORDS = set(
|
||||||
"""
|
"""
|
||||||
അത്
|
അത്
|
||||||
|
|
|
@ -24,17 +24,15 @@ def noun_chunks(doclike):
|
||||||
np_deps = [doc.vocab.strings[label] for label in labels]
|
np_deps = [doc.vocab.strings[label] for label in labels]
|
||||||
conj = doc.vocab.strings.add("conj")
|
conj = doc.vocab.strings.add("conj")
|
||||||
np_label = doc.vocab.strings.add("NP")
|
np_label = doc.vocab.strings.add("NP")
|
||||||
seen = set()
|
prev_end = -1
|
||||||
for i, word in enumerate(doclike):
|
for i, word in enumerate(doclike):
|
||||||
if word.pos not in (NOUN, PROPN, PRON):
|
if word.pos not in (NOUN, PROPN, PRON):
|
||||||
continue
|
continue
|
||||||
# Prevent nested chunks from being produced
|
# Prevent nested chunks from being produced
|
||||||
if word.i in seen:
|
if word.left_edge.i <= prev_end:
|
||||||
continue
|
continue
|
||||||
if word.dep in np_deps:
|
if word.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.right_edge.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.right_edge.i + 1))
|
|
||||||
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
||||||
elif word.dep == conj:
|
elif word.dep == conj:
|
||||||
head = word.head
|
head = word.head
|
||||||
|
@ -42,9 +40,7 @@ def noun_chunks(doclike):
|
||||||
head = head.head
|
head = head.head
|
||||||
# If the head is an NP, and we're coordinated to it, we're an NP
|
# If the head is an NP, and we're coordinated to it, we're an NP
|
||||||
if head.dep in np_deps:
|
if head.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.right_edge.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.right_edge.i + 1))
|
|
||||||
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,103 +1,75 @@
|
||||||
# coding: utf-8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
from ...lemmatizer import Lemmatizer
|
from ...lemmatizer import Lemmatizer
|
||||||
from ...parts_of_speech import NAMES
|
from ...parts_of_speech import NAMES
|
||||||
|
|
||||||
|
|
||||||
class PolishLemmatizer(Lemmatizer):
|
class PolishLemmatizer(Lemmatizer):
|
||||||
# This lemmatizer implements lookup lemmatization based on
|
# This lemmatizer implements lookup lemmatization based on the Morfeusz
|
||||||
# the Morfeusz dictionary (morfeusz.sgjp.pl/en) by Institute of Computer Science PAS
|
# dictionary (morfeusz.sgjp.pl/en) by Institute of Computer Science PAS.
|
||||||
# It utilizes some prefix based improvements for
|
# It utilizes some prefix based improvements for verb and adjectives
|
||||||
# verb and adjectives lemmatization, as well as case-sensitive
|
# lemmatization, as well as case-sensitive lemmatization for nouns.
|
||||||
# lemmatization for nouns
|
|
||||||
def __init__(self, lookups, *args, **kwargs):
|
|
||||||
# this lemmatizer is lookup based, so it does not require an index, exceptionlist, or rules
|
|
||||||
super().__init__(lookups)
|
|
||||||
self.lemma_lookups = {}
|
|
||||||
for tag in [
|
|
||||||
"ADJ",
|
|
||||||
"ADP",
|
|
||||||
"ADV",
|
|
||||||
"AUX",
|
|
||||||
"NOUN",
|
|
||||||
"NUM",
|
|
||||||
"PART",
|
|
||||||
"PRON",
|
|
||||||
"VERB",
|
|
||||||
"X",
|
|
||||||
]:
|
|
||||||
self.lemma_lookups[tag] = self.lookups.get_table(
|
|
||||||
"lemma_lookup_" + tag.lower(), {}
|
|
||||||
)
|
|
||||||
self.lemma_lookups["DET"] = self.lemma_lookups["X"]
|
|
||||||
self.lemma_lookups["PROPN"] = self.lemma_lookups["NOUN"]
|
|
||||||
|
|
||||||
def __call__(self, string, univ_pos, morphology=None):
|
def __call__(self, string, univ_pos, morphology=None):
|
||||||
if isinstance(univ_pos, int):
|
if isinstance(univ_pos, int):
|
||||||
univ_pos = NAMES.get(univ_pos, "X")
|
univ_pos = NAMES.get(univ_pos, "X")
|
||||||
univ_pos = univ_pos.upper()
|
univ_pos = univ_pos.upper()
|
||||||
|
|
||||||
|
lookup_pos = univ_pos.lower()
|
||||||
|
if univ_pos == "PROPN":
|
||||||
|
lookup_pos = "noun"
|
||||||
|
lookup_table = self.lookups.get_table("lemma_lookup_" + lookup_pos, {})
|
||||||
|
|
||||||
if univ_pos == "NOUN":
|
if univ_pos == "NOUN":
|
||||||
return self.lemmatize_noun(string, morphology)
|
return self.lemmatize_noun(string, morphology, lookup_table)
|
||||||
|
|
||||||
if univ_pos != "PROPN":
|
if univ_pos != "PROPN":
|
||||||
string = string.lower()
|
string = string.lower()
|
||||||
|
|
||||||
if univ_pos == "ADJ":
|
if univ_pos == "ADJ":
|
||||||
return self.lemmatize_adj(string, morphology)
|
return self.lemmatize_adj(string, morphology, lookup_table)
|
||||||
elif univ_pos == "VERB":
|
elif univ_pos == "VERB":
|
||||||
return self.lemmatize_verb(string, morphology)
|
return self.lemmatize_verb(string, morphology, lookup_table)
|
||||||
|
|
||||||
lemma_dict = self.lemma_lookups.get(univ_pos, {})
|
return [lookup_table.get(string, string.lower())]
|
||||||
return [lemma_dict.get(string, string.lower())]
|
|
||||||
|
|
||||||
def lemmatize_adj(self, string, morphology):
|
def lemmatize_adj(self, string, morphology, lookup_table):
|
||||||
# this method utilizes different procedures for adjectives
|
# this method utilizes different procedures for adjectives
|
||||||
# with 'nie' and 'naj' prefixes
|
# with 'nie' and 'naj' prefixes
|
||||||
lemma_dict = self.lemma_lookups["ADJ"]
|
|
||||||
|
|
||||||
if string[:3] == "nie":
|
if string[:3] == "nie":
|
||||||
search_string = string[3:]
|
search_string = string[3:]
|
||||||
if search_string[:3] == "naj":
|
if search_string[:3] == "naj":
|
||||||
naj_search_string = search_string[3:]
|
naj_search_string = search_string[3:]
|
||||||
if naj_search_string in lemma_dict:
|
if naj_search_string in lookup_table:
|
||||||
return [lemma_dict[naj_search_string]]
|
return [lookup_table[naj_search_string]]
|
||||||
if search_string in lemma_dict:
|
if search_string in lookup_table:
|
||||||
return [lemma_dict[search_string]]
|
return [lookup_table[search_string]]
|
||||||
|
|
||||||
if string[:3] == "naj":
|
if string[:3] == "naj":
|
||||||
naj_search_string = string[3:]
|
naj_search_string = string[3:]
|
||||||
if naj_search_string in lemma_dict:
|
if naj_search_string in lookup_table:
|
||||||
return [lemma_dict[naj_search_string]]
|
return [lookup_table[naj_search_string]]
|
||||||
|
|
||||||
return [lemma_dict.get(string, string)]
|
return [lookup_table.get(string, string)]
|
||||||
|
|
||||||
def lemmatize_verb(self, string, morphology):
|
def lemmatize_verb(self, string, morphology, lookup_table):
|
||||||
# this method utilizes a different procedure for verbs
|
# this method utilizes a different procedure for verbs
|
||||||
# with 'nie' prefix
|
# with 'nie' prefix
|
||||||
lemma_dict = self.lemma_lookups["VERB"]
|
|
||||||
|
|
||||||
if string[:3] == "nie":
|
if string[:3] == "nie":
|
||||||
search_string = string[3:]
|
search_string = string[3:]
|
||||||
if search_string in lemma_dict:
|
if search_string in lookup_table:
|
||||||
return [lemma_dict[search_string]]
|
return [lookup_table[search_string]]
|
||||||
|
|
||||||
return [lemma_dict.get(string, string)]
|
return [lookup_table.get(string, string)]
|
||||||
|
|
||||||
def lemmatize_noun(self, string, morphology):
|
def lemmatize_noun(self, string, morphology, lookup_table):
|
||||||
# this method is case-sensitive, in order to work
|
# this method is case-sensitive, in order to work
|
||||||
# for incorrectly tagged proper names
|
# for incorrectly tagged proper names
|
||||||
lemma_dict = self.lemma_lookups["NOUN"]
|
|
||||||
|
|
||||||
if string != string.lower():
|
if string != string.lower():
|
||||||
if string.lower() in lemma_dict:
|
if string.lower() in lookup_table:
|
||||||
return [lemma_dict[string.lower()]]
|
return [lookup_table[string.lower()]]
|
||||||
elif string in lemma_dict:
|
elif string in lookup_table:
|
||||||
return [lemma_dict[string]]
|
return [lookup_table[string]]
|
||||||
return [string.lower()]
|
return [string.lower()]
|
||||||
|
|
||||||
return [lemma_dict.get(string, string)]
|
return [lookup_table.get(string, string)]
|
||||||
|
|
||||||
def lookup(self, string, orth=None):
|
def lookup(self, string, orth=None):
|
||||||
return string.lower()
|
return string.lower()
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
from ...attrs import LIKE_NUM
|
from ...attrs import LIKE_NUM
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -25,17 +25,15 @@ def noun_chunks(doclike):
|
||||||
np_deps = [doc.vocab.strings[label] for label in labels]
|
np_deps = [doc.vocab.strings[label] for label in labels]
|
||||||
conj = doc.vocab.strings.add("conj")
|
conj = doc.vocab.strings.add("conj")
|
||||||
np_label = doc.vocab.strings.add("NP")
|
np_label = doc.vocab.strings.add("NP")
|
||||||
seen = set()
|
prev_end = -1
|
||||||
for i, word in enumerate(doclike):
|
for i, word in enumerate(doclike):
|
||||||
if word.pos not in (NOUN, PROPN, PRON):
|
if word.pos not in (NOUN, PROPN, PRON):
|
||||||
continue
|
continue
|
||||||
# Prevent nested chunks from being produced
|
# Prevent nested chunks from being produced
|
||||||
if word.i in seen:
|
if word.left_edge.i <= prev_end:
|
||||||
continue
|
continue
|
||||||
if word.dep in np_deps:
|
if word.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.right_edge.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.right_edge.i + 1))
|
|
||||||
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
||||||
elif word.dep == conj:
|
elif word.dep == conj:
|
||||||
head = word.head
|
head = word.head
|
||||||
|
@ -43,9 +41,7 @@ def noun_chunks(doclike):
|
||||||
head = head.head
|
head = head.head
|
||||||
# If the head is an NP, and we're coordinated to it, we're an NP
|
# If the head is an NP, and we're coordinated to it, we're an NP
|
||||||
if head.dep in np_deps:
|
if head.dep in np_deps:
|
||||||
if any(w.i in seen for w in word.subtree):
|
prev_end = word.right_edge.i
|
||||||
continue
|
|
||||||
seen.update(j for j in range(word.left_edge.i, word.right_edge.i + 1))
|
|
||||||
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
yield word.left_edge.i, word.right_edge.i + 1, np_label
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -14,4 +14,9 @@ sentences = [
|
||||||
"இந்த ஃபோனுடன் சுமார் ரூ.2,990 மதிப்புள்ள போட் ராக்கர்ஸ் நிறுவனத்தின் ஸ்போர்ட் புளூடூத் ஹெட்போன்ஸ் இலவசமாக வழங்கப்படவுள்ளது.",
|
"இந்த ஃபோனுடன் சுமார் ரூ.2,990 மதிப்புள்ள போட் ராக்கர்ஸ் நிறுவனத்தின் ஸ்போர்ட் புளூடூத் ஹெட்போன்ஸ் இலவசமாக வழங்கப்படவுள்ளது.",
|
||||||
"மட்டக்களப்பில் பல இடங்களில் வீட்டுத் திட்டங்களுக்கு இன்று அடிக்கல் நாட்டல்",
|
"மட்டக்களப்பில் பல இடங்களில் வீட்டுத் திட்டங்களுக்கு இன்று அடிக்கல் நாட்டல்",
|
||||||
"ஐ போன்க்கு முகத்தை வைத்து அன்லாக் செய்யும் முறை மற்றும் விரலால் தொட்டு அன்லாக் செய்யும் முறையை வாட்ஸ் ஆப் நிறுவனம் இதற்கு முன் கண்டுபிடித்தது",
|
"ஐ போன்க்கு முகத்தை வைத்து அன்லாக் செய்யும் முறை மற்றும் விரலால் தொட்டு அன்லாக் செய்யும் முறையை வாட்ஸ் ஆப் நிறுவனம் இதற்கு முன் கண்டுபிடித்தது",
|
||||||
|
"இது ஒரு வாக்கியம்.",
|
||||||
|
"ஆப்பிள் நிறுவனம் யு.கே. தொடக்க நிறுவனத்தை ஒரு லட்சம் கோடிக்கு வாங்கப் பார்க்கிறது",
|
||||||
|
"தன்னாட்சி கார்கள் காப்பீட்டு பொறுப்பை உற்பத்தியாளரிடம் மாற்றுகின்றன",
|
||||||
|
"நடைபாதை விநியோக ரோபோக்களை தடை செய்வதை சான் பிரான்சிஸ்கோ கருதுகிறது",
|
||||||
|
"லண்டன் ஐக்கிய இராச்சியத்தில் ஒரு பெரிய நகரம்.",
|
||||||
]
|
]
|
||||||
|
|
|
@ -55,7 +55,8 @@ URL_PATTERN = (
|
||||||
# fmt: on
|
# fmt: on
|
||||||
).strip()
|
).strip()
|
||||||
|
|
||||||
TOKEN_MATCH = re.compile("(?u)" + URL_PATTERN).match
|
TOKEN_MATCH = None
|
||||||
|
URL_MATCH = re.compile("(?u)" + URL_PATTERN).match
|
||||||
|
|
||||||
|
|
||||||
BASE_EXCEPTIONS = {}
|
BASE_EXCEPTIONS = {}
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
from ...symbols import POS, PUNCT, ADJ, SCONJ, CCONJ, NUM, DET, ADV, ADP, X
|
from ...symbols import POS, PUNCT, ADJ, SCONJ, CCONJ, NUM, DET, ADV, ADP, X
|
||||||
from ...symbols import NOUN, PART, INTJ, PRON, VERB, SPACE
|
from ...symbols import NOUN, PART, INTJ, PRON, VERB, SPACE, PROPN
|
||||||
|
|
||||||
# The Chinese part-of-speech tagger uses the OntoNotes 5 version of the Penn
|
# The Chinese part-of-speech tagger uses the OntoNotes 5 version of the Penn
|
||||||
# Treebank tag set. We also map the tags to the simpler Universal Dependencies
|
# Treebank tag set. We also map the tags to the simpler Universal Dependencies
|
||||||
|
@ -25,7 +25,7 @@ TAG_MAP = {
|
||||||
"URL": {POS: X},
|
"URL": {POS: X},
|
||||||
"INF": {POS: X},
|
"INF": {POS: X},
|
||||||
"NN": {POS: NOUN},
|
"NN": {POS: NOUN},
|
||||||
"NR": {POS: NOUN},
|
"NR": {POS: PROPN},
|
||||||
"NT": {POS: NOUN},
|
"NT": {POS: NOUN},
|
||||||
"VA": {POS: VERB},
|
"VA": {POS: VERB},
|
||||||
"VC": {POS: VERB},
|
"VC": {POS: VERB},
|
||||||
|
|
|
@ -25,7 +25,7 @@ from .util import link_vectors_to_models, create_default_optimizer, registry
|
||||||
from .attrs import IS_STOP, LANG, NORM
|
from .attrs import IS_STOP, LANG, NORM
|
||||||
from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
||||||
from .lang.punctuation import TOKENIZER_INFIXES
|
from .lang.punctuation import TOKENIZER_INFIXES
|
||||||
from .lang.tokenizer_exceptions import TOKEN_MATCH
|
from .lang.tokenizer_exceptions import TOKEN_MATCH, URL_MATCH
|
||||||
from .lang.norm_exceptions import BASE_NORMS
|
from .lang.norm_exceptions import BASE_NORMS
|
||||||
from .lang.tag_map import TAG_MAP
|
from .lang.tag_map import TAG_MAP
|
||||||
from .tokens import Doc
|
from .tokens import Doc
|
||||||
|
@ -86,6 +86,7 @@ class BaseDefaults(object):
|
||||||
def create_tokenizer(cls, nlp=None):
|
def create_tokenizer(cls, nlp=None):
|
||||||
rules = cls.tokenizer_exceptions
|
rules = cls.tokenizer_exceptions
|
||||||
token_match = cls.token_match
|
token_match = cls.token_match
|
||||||
|
url_match = cls.url_match
|
||||||
prefix_search = (
|
prefix_search = (
|
||||||
util.compile_prefix_regex(cls.prefixes).search if cls.prefixes else None
|
util.compile_prefix_regex(cls.prefixes).search if cls.prefixes else None
|
||||||
)
|
)
|
||||||
|
@ -103,10 +104,12 @@ class BaseDefaults(object):
|
||||||
suffix_search=suffix_search,
|
suffix_search=suffix_search,
|
||||||
infix_finditer=infix_finditer,
|
infix_finditer=infix_finditer,
|
||||||
token_match=token_match,
|
token_match=token_match,
|
||||||
|
url_match=url_match,
|
||||||
)
|
)
|
||||||
|
|
||||||
pipe_names = ["tagger", "parser", "ner"]
|
pipe_names = ["tagger", "parser", "ner"]
|
||||||
token_match = TOKEN_MATCH
|
token_match = TOKEN_MATCH
|
||||||
|
url_match = URL_MATCH
|
||||||
prefixes = tuple(TOKENIZER_PREFIXES)
|
prefixes = tuple(TOKENIZER_PREFIXES)
|
||||||
suffixes = tuple(TOKENIZER_SUFFIXES)
|
suffixes = tuple(TOKENIZER_SUFFIXES)
|
||||||
infixes = tuple(TOKENIZER_INFIXES)
|
infixes = tuple(TOKENIZER_INFIXES)
|
||||||
|
@ -951,9 +954,7 @@ class Language(object):
|
||||||
serializers["tokenizer"] = lambda p: self.tokenizer.to_disk(
|
serializers["tokenizer"] = lambda p: self.tokenizer.to_disk(
|
||||||
p, exclude=["vocab"]
|
p, exclude=["vocab"]
|
||||||
)
|
)
|
||||||
serializers["meta.json"] = lambda p: p.open("w").write(
|
serializers["meta.json"] = lambda p: srsly.write_json(p, self.meta)
|
||||||
srsly.json_dumps(self.meta)
|
|
||||||
)
|
|
||||||
serializers["config.cfg"] = lambda p: self.config.to_disk(p)
|
serializers["config.cfg"] = lambda p: self.config.to_disk(p)
|
||||||
for name, proc in self.pipeline:
|
for name, proc in self.pipeline:
|
||||||
if not hasattr(proc, "name"):
|
if not hasattr(proc, "name"):
|
||||||
|
@ -977,17 +978,30 @@ class Language(object):
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/language#from_disk
|
DOCS: https://spacy.io/api/language#from_disk
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
def deserialize_meta(path):
|
||||||
|
if path.exists():
|
||||||
|
data = srsly.read_json(path)
|
||||||
|
self.meta.update(data)
|
||||||
|
# self.meta always overrides meta["vectors"] with the metadata
|
||||||
|
# from self.vocab.vectors, so set the name directly
|
||||||
|
self.vocab.vectors.name = data.get("vectors", {}).get("name")
|
||||||
|
|
||||||
|
def deserialize_vocab(path):
|
||||||
|
if path.exists():
|
||||||
|
self.vocab.from_disk(path)
|
||||||
|
_fix_pretrained_vectors_name(self)
|
||||||
|
|
||||||
if disable is not None:
|
if disable is not None:
|
||||||
warnings.warn(Warnings.W014, DeprecationWarning)
|
warnings.warn(Warnings.W014, DeprecationWarning)
|
||||||
exclude = disable
|
exclude = disable
|
||||||
path = util.ensure_path(path)
|
path = util.ensure_path(path)
|
||||||
|
|
||||||
deserializers = {}
|
deserializers = {}
|
||||||
if Path(path / "config.cfg").exists():
|
if Path(path / "config.cfg").exists():
|
||||||
deserializers["config.cfg"] = lambda p: self.config.from_disk(p)
|
deserializers["config.cfg"] = lambda p: self.config.from_disk(p)
|
||||||
deserializers["meta.json"] = lambda p: self.meta.update(srsly.read_json(p))
|
deserializers["meta.json"] = deserialize_meta
|
||||||
deserializers["vocab"] = lambda p: self.vocab.from_disk(
|
deserializers["vocab"] = deserialize_vocab
|
||||||
p
|
|
||||||
) and _fix_pretrained_vectors_name(self)
|
|
||||||
deserializers["tokenizer"] = lambda p: self.tokenizer.from_disk(
|
deserializers["tokenizer"] = lambda p: self.tokenizer.from_disk(
|
||||||
p, exclude=["vocab"]
|
p, exclude=["vocab"]
|
||||||
)
|
)
|
||||||
|
@ -1041,15 +1055,25 @@ class Language(object):
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/language#from_bytes
|
DOCS: https://spacy.io/api/language#from_bytes
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
def deserialize_meta(b):
|
||||||
|
data = srsly.json_loads(b)
|
||||||
|
self.meta.update(data)
|
||||||
|
# self.meta always overrides meta["vectors"] with the metadata
|
||||||
|
# from self.vocab.vectors, so set the name directly
|
||||||
|
self.vocab.vectors.name = data.get("vectors", {}).get("name")
|
||||||
|
|
||||||
|
def deserialize_vocab(b):
|
||||||
|
self.vocab.from_bytes(b)
|
||||||
|
_fix_pretrained_vectors_name(self)
|
||||||
|
|
||||||
if disable is not None:
|
if disable is not None:
|
||||||
warnings.warn(Warnings.W014, DeprecationWarning)
|
warnings.warn(Warnings.W014, DeprecationWarning)
|
||||||
exclude = disable
|
exclude = disable
|
||||||
deserializers = {}
|
deserializers = {}
|
||||||
deserializers["config.cfg"] = lambda b: self.config.from_bytes(b)
|
deserializers["config.cfg"] = lambda b: self.config.from_bytes(b)
|
||||||
deserializers["meta.json"] = lambda b: self.meta.update(srsly.json_loads(b))
|
deserializers["meta.json"] = deserialize_meta
|
||||||
deserializers["vocab"] = lambda b: self.vocab.from_bytes(
|
deserializers["vocab"] = deserialize_vocab
|
||||||
b
|
|
||||||
) and _fix_pretrained_vectors_name(self)
|
|
||||||
deserializers["tokenizer"] = lambda b: self.tokenizer.from_bytes(
|
deserializers["tokenizer"] = lambda b: self.tokenizer.from_bytes(
|
||||||
b, exclude=["vocab"]
|
b, exclude=["vocab"]
|
||||||
)
|
)
|
||||||
|
@ -1132,7 +1156,7 @@ class component(object):
|
||||||
def _fix_pretrained_vectors_name(nlp):
|
def _fix_pretrained_vectors_name(nlp):
|
||||||
# TODO: Replace this once we handle vectors consistently as static
|
# TODO: Replace this once we handle vectors consistently as static
|
||||||
# data
|
# data
|
||||||
if "vectors" in nlp.meta and nlp.meta["vectors"].get("name"):
|
if "vectors" in nlp.meta and "name" in nlp.meta["vectors"]:
|
||||||
nlp.vocab.vectors.name = nlp.meta["vectors"]["name"]
|
nlp.vocab.vectors.name = nlp.meta["vectors"]["name"]
|
||||||
elif not nlp.vocab.vectors.size:
|
elif not nlp.vocab.vectors.size:
|
||||||
nlp.vocab.vectors.name = None
|
nlp.vocab.vectors.name = None
|
||||||
|
@ -1142,7 +1166,7 @@ def _fix_pretrained_vectors_name(nlp):
|
||||||
else:
|
else:
|
||||||
raise ValueError(Errors.E092)
|
raise ValueError(Errors.E092)
|
||||||
if nlp.vocab.vectors.size != 0:
|
if nlp.vocab.vectors.size != 0:
|
||||||
link_vectors_to_models(nlp.vocab, skip_rank=True)
|
link_vectors_to_models(nlp.vocab)
|
||||||
for name, proc in nlp.pipeline:
|
for name, proc in nlp.pipeline:
|
||||||
if not hasattr(proc, "cfg"):
|
if not hasattr(proc, "cfg"):
|
||||||
continue
|
continue
|
||||||
|
|
|
@ -9,7 +9,6 @@ import numpy
|
||||||
from thinc.api import get_array_module
|
from thinc.api import get_array_module
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
from libc.stdint cimport UINT64_MAX
|
|
||||||
from .typedefs cimport attr_t, flags_t
|
from .typedefs cimport attr_t, flags_t
|
||||||
from .attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE
|
from .attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE
|
||||||
from .attrs cimport IS_TITLE, IS_UPPER, LIKE_URL, LIKE_NUM, LIKE_EMAIL, IS_STOP
|
from .attrs cimport IS_TITLE, IS_UPPER, LIKE_URL, LIKE_NUM, LIKE_EMAIL, IS_STOP
|
||||||
|
@ -20,7 +19,7 @@ from .attrs import intify_attrs
|
||||||
from .errors import Errors, Warnings
|
from .errors import Errors, Warnings
|
||||||
|
|
||||||
|
|
||||||
OOV_RANK = UINT64_MAX
|
OOV_RANK = 0xffffffffffffffff # UINT64_MAX
|
||||||
memset(&EMPTY_LEXEME, 0, sizeof(LexemeC))
|
memset(&EMPTY_LEXEME, 0, sizeof(LexemeC))
|
||||||
EMPTY_LEXEME.id = OOV_RANK
|
EMPTY_LEXEME.id = OOV_RANK
|
||||||
|
|
||||||
|
|
|
@ -328,7 +328,7 @@ def unpickle_matcher(vocab, docs, callbacks, attr):
|
||||||
matcher = PhraseMatcher(vocab, attr=attr)
|
matcher = PhraseMatcher(vocab, attr=attr)
|
||||||
for key, specs in docs.items():
|
for key, specs in docs.items():
|
||||||
callback = callbacks.get(key, None)
|
callback = callbacks.get(key, None)
|
||||||
matcher.add(key, callback, *specs)
|
matcher.add(key, specs, on_match=callback)
|
||||||
return matcher
|
return matcher
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -66,7 +66,10 @@ cdef class Morphology:
|
||||||
self.tags = PreshMap()
|
self.tags = PreshMap()
|
||||||
# Add special space symbol. We prefix with underscore, to make sure it
|
# Add special space symbol. We prefix with underscore, to make sure it
|
||||||
# always sorts to the end.
|
# always sorts to the end.
|
||||||
space_attrs = tag_map.get('SP', {POS: SPACE})
|
if '_SP' in tag_map:
|
||||||
|
space_attrs = tag_map.get('_SP')
|
||||||
|
else:
|
||||||
|
space_attrs = tag_map.get('SP', {POS: SPACE})
|
||||||
if '_SP' not in tag_map:
|
if '_SP' not in tag_map:
|
||||||
self.strings.add('_SP')
|
self.strings.add('_SP')
|
||||||
tag_map = dict(tag_map)
|
tag_map = dict(tag_map)
|
||||||
|
|
|
@ -216,7 +216,7 @@ class Pipe(object):
|
||||||
serialize = {}
|
serialize = {}
|
||||||
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
|
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
|
||||||
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
||||||
serialize["model"] = lambda p: p.open("wb").write(self.model.to_bytes())
|
serialize["model"] = lambda p: self.model.to_disk(p)
|
||||||
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
||||||
util.to_disk(path, serialize, exclude)
|
util.to_disk(path, serialize, exclude)
|
||||||
|
|
||||||
|
@ -384,6 +384,8 @@ class Tagger(Pipe):
|
||||||
lemma_tables = ["lemma_rules", "lemma_index", "lemma_exc", "lemma_lookup"]
|
lemma_tables = ["lemma_rules", "lemma_index", "lemma_exc", "lemma_lookup"]
|
||||||
if not any(table in self.vocab.lookups for table in lemma_tables):
|
if not any(table in self.vocab.lookups for table in lemma_tables):
|
||||||
warnings.warn(Warnings.W022)
|
warnings.warn(Warnings.W022)
|
||||||
|
if len(self.vocab.lookups.get_table("lexeme_norm", {})) == 0:
|
||||||
|
warnings.warn(Warnings.W033.format(model="part-of-speech tagger"))
|
||||||
orig_tag_map = dict(self.vocab.morphology.tag_map)
|
orig_tag_map = dict(self.vocab.morphology.tag_map)
|
||||||
new_tag_map = {}
|
new_tag_map = {}
|
||||||
for example in get_examples():
|
for example in get_examples():
|
||||||
|
@ -395,6 +397,8 @@ class Tagger(Pipe):
|
||||||
|
|
||||||
cdef Vocab vocab = self.vocab
|
cdef Vocab vocab = self.vocab
|
||||||
if new_tag_map:
|
if new_tag_map:
|
||||||
|
if "_SP" in orig_tag_map:
|
||||||
|
new_tag_map["_SP"] = orig_tag_map["_SP"]
|
||||||
vocab.morphology = Morphology(vocab.strings, new_tag_map,
|
vocab.morphology = Morphology(vocab.strings, new_tag_map,
|
||||||
vocab.morphology.lemmatizer,
|
vocab.morphology.lemmatizer,
|
||||||
exc=vocab.morphology.exc)
|
exc=vocab.morphology.exc)
|
||||||
|
@ -485,7 +489,7 @@ class Tagger(Pipe):
|
||||||
serialize = {
|
serialize = {
|
||||||
"vocab": lambda p: self.vocab.to_disk(p),
|
"vocab": lambda p: self.vocab.to_disk(p),
|
||||||
"tag_map": lambda p: srsly.write_msgpack(p, tag_map),
|
"tag_map": lambda p: srsly.write_msgpack(p, tag_map),
|
||||||
"model": lambda p: p.open("wb").write(self.model.to_bytes()),
|
"model": lambda p: self.model.to_disk(p),
|
||||||
"cfg": lambda p: srsly.write_json(p, self.cfg),
|
"cfg": lambda p: srsly.write_json(p, self.cfg),
|
||||||
}
|
}
|
||||||
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
||||||
|
@ -1129,6 +1133,8 @@ class EntityLinker(Pipe):
|
||||||
raise ValueError(Errors.E990.format(type=type(self.kb)))
|
raise ValueError(Errors.E990.format(type=type(self.kb)))
|
||||||
self.cfg = dict(cfg)
|
self.cfg = dict(cfg)
|
||||||
self.distance = CosineDistance(normalize=False)
|
self.distance = CosineDistance(normalize=False)
|
||||||
|
# how many neightbour sentences to take into account
|
||||||
|
self.n_sents = cfg.get("n_sents", 0)
|
||||||
|
|
||||||
def require_kb(self):
|
def require_kb(self):
|
||||||
# Raise an error if the knowledge base is not initialized.
|
# Raise an error if the knowledge base is not initialized.
|
||||||
|
@ -1161,6 +1167,9 @@ class EntityLinker(Pipe):
|
||||||
|
|
||||||
for doc, gold in zip(docs, golds):
|
for doc, gold in zip(docs, golds):
|
||||||
ents_by_offset = dict()
|
ents_by_offset = dict()
|
||||||
|
|
||||||
|
sentences = [s for s in doc.sents]
|
||||||
|
|
||||||
for ent in doc.ents:
|
for ent in doc.ents:
|
||||||
ents_by_offset[(ent.start_char, ent.end_char)] = ent
|
ents_by_offset[(ent.start_char, ent.end_char)] = ent
|
||||||
|
|
||||||
|
@ -1173,20 +1182,39 @@ class EntityLinker(Pipe):
|
||||||
# the gold annotations should link to proper entities - if this fails, the dataset is likely corrupt
|
# the gold annotations should link to proper entities - if this fails, the dataset is likely corrupt
|
||||||
if not (start, end) in ents_by_offset:
|
if not (start, end) in ents_by_offset:
|
||||||
raise RuntimeError(Errors.E188)
|
raise RuntimeError(Errors.E188)
|
||||||
|
|
||||||
ent = ents_by_offset[(start, end)]
|
ent = ents_by_offset[(start, end)]
|
||||||
|
|
||||||
for kb_id, value in kb_dict.items():
|
for kb_id, value in kb_dict.items():
|
||||||
# Currently only training on the positive instances - we assume there is at least 1 per doc/gold
|
# Currently only training on the positive instances - we assume there is at least 1 per doc/gold
|
||||||
if value:
|
if value:
|
||||||
try:
|
try:
|
||||||
sentence_docs.append(ent.sent.as_doc())
|
# find the sentence in the list of sentences.
|
||||||
|
sent_index = sentences.index(ent.sent)
|
||||||
|
|
||||||
except AttributeError:
|
except AttributeError:
|
||||||
# Catch the exception when ent.sent is None and provide a user-friendly warning
|
# Catch the exception when ent.sent is None and provide a user-friendly warning
|
||||||
raise RuntimeError(Errors.E030)
|
raise RuntimeError(Errors.E030)
|
||||||
|
|
||||||
|
# get n previous sentences, if there are any
|
||||||
|
start_sentence = max(0, sent_index - self.n_sents)
|
||||||
|
|
||||||
|
# get n posterior sentences, or as many < n as there are
|
||||||
|
end_sentence = min(len(sentences) -1, sent_index + self.n_sents)
|
||||||
|
|
||||||
|
# get token positions
|
||||||
|
start_token = sentences[start_sentence].start
|
||||||
|
end_token = sentences[end_sentence].end
|
||||||
|
|
||||||
|
# append that span as a doc to training
|
||||||
|
sent_doc = doc[start_token:end_token].as_doc()
|
||||||
|
sentence_docs.append(sent_doc)
|
||||||
|
|
||||||
set_dropout_rate(self.model, drop)
|
set_dropout_rate(self.model, drop)
|
||||||
sentence_encodings, bp_context = self.model.begin_update(sentence_docs)
|
sentence_encodings, bp_context = self.model.begin_update(sentence_docs)
|
||||||
loss, d_scores = self.get_similarity_loss(scores=sentence_encodings, golds=golds)
|
loss, d_scores = self.get_similarity_loss(scores=sentence_encodings, golds=golds)
|
||||||
bp_context(d_scores)
|
bp_context(d_scores)
|
||||||
|
|
||||||
if sgd is not None:
|
if sgd is not None:
|
||||||
self.model.finish_update(sgd)
|
self.model.finish_update(sgd)
|
||||||
|
|
||||||
|
@ -1268,68 +1296,78 @@ class EntityLinker(Pipe):
|
||||||
docs = [docs]
|
docs = [docs]
|
||||||
|
|
||||||
for i, doc in enumerate(docs):
|
for i, doc in enumerate(docs):
|
||||||
|
sentences = [s for s in doc.sents]
|
||||||
|
|
||||||
if len(doc) > 0:
|
if len(doc) > 0:
|
||||||
# Looping through each sentence and each entity
|
# Looping through each sentence and each entity
|
||||||
# This may go wrong if there are entities across sentences - which shouldn't happen normally.
|
# This may go wrong if there are entities across sentences - which shouldn't happen normally.
|
||||||
for sent in doc.sents:
|
for sent_index, sent in enumerate(sentences):
|
||||||
sent_doc = sent.as_doc()
|
if sent.ents:
|
||||||
# currently, the context is the same for each entity in a sentence (should be refined)
|
# get n_neightbour sentences, clipped to the length of the document
|
||||||
sentence_encoding = self.model.predict([sent_doc])[0]
|
start_sentence = max(0, sent_index - self.n_sents)
|
||||||
xp = get_array_module(sentence_encoding)
|
end_sentence = min(len(sentences) -1, sent_index + self.n_sents)
|
||||||
sentence_encoding_t = sentence_encoding.T
|
|
||||||
sentence_norm = xp.linalg.norm(sentence_encoding_t)
|
|
||||||
|
|
||||||
for ent in sent_doc.ents:
|
start_token = sentences[start_sentence].start
|
||||||
entity_count += 1
|
end_token = sentences[end_sentence].end
|
||||||
|
|
||||||
to_discard = self.cfg.get("labels_discard", [])
|
sent_doc = doc[start_token:end_token].as_doc()
|
||||||
if to_discard and ent.label_ in to_discard:
|
# currently, the context is the same for each entity in a sentence (should be refined)
|
||||||
# ignoring this entity - setting to NIL
|
sentence_encoding = self.model.predict([sent_doc])[0]
|
||||||
final_kb_ids.append(self.NIL)
|
xp = get_array_module(sentence_encoding)
|
||||||
final_tensors.append(sentence_encoding)
|
sentence_encoding_t = sentence_encoding.T
|
||||||
|
sentence_norm = xp.linalg.norm(sentence_encoding_t)
|
||||||
|
|
||||||
else:
|
for ent in sent.ents:
|
||||||
candidates = self.kb.get_candidates(ent.text)
|
entity_count += 1
|
||||||
if not candidates:
|
|
||||||
# no prediction possible for this entity - setting to NIL
|
to_discard = self.cfg.get("labels_discard", [])
|
||||||
|
if to_discard and ent.label_ in to_discard:
|
||||||
|
# ignoring this entity - setting to NIL
|
||||||
final_kb_ids.append(self.NIL)
|
final_kb_ids.append(self.NIL)
|
||||||
final_tensors.append(sentence_encoding)
|
final_tensors.append(sentence_encoding)
|
||||||
|
|
||||||
elif len(candidates) == 1:
|
|
||||||
# shortcut for efficiency reasons: take the 1 candidate
|
|
||||||
|
|
||||||
# TODO: thresholding
|
|
||||||
final_kb_ids.append(candidates[0].entity_)
|
|
||||||
final_tensors.append(sentence_encoding)
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
random.shuffle(candidates)
|
candidates = self.kb.get_candidates(ent.text)
|
||||||
|
if not candidates:
|
||||||
|
# no prediction possible for this entity - setting to NIL
|
||||||
|
final_kb_ids.append(self.NIL)
|
||||||
|
final_tensors.append(sentence_encoding)
|
||||||
|
|
||||||
# this will set all prior probabilities to 0 if they should be excluded from the model
|
elif len(candidates) == 1:
|
||||||
prior_probs = xp.asarray([c.prior_prob for c in candidates])
|
# shortcut for efficiency reasons: take the 1 candidate
|
||||||
if not self.cfg.get("incl_prior", True):
|
|
||||||
prior_probs = xp.asarray([0.0 for c in candidates])
|
|
||||||
scores = prior_probs
|
|
||||||
|
|
||||||
# add in similarity from the context
|
# TODO: thresholding
|
||||||
if self.cfg.get("incl_context", True):
|
final_kb_ids.append(candidates[0].entity_)
|
||||||
entity_encodings = xp.asarray([c.entity_vector for c in candidates])
|
final_tensors.append(sentence_encoding)
|
||||||
entity_norm = xp.linalg.norm(entity_encodings, axis=1)
|
|
||||||
|
|
||||||
if len(entity_encodings) != len(prior_probs):
|
else:
|
||||||
raise RuntimeError(Errors.E147.format(method="predict", msg="vectors not of equal length"))
|
random.shuffle(candidates)
|
||||||
|
|
||||||
# cosine similarity
|
# this will set all prior probabilities to 0 if they should be excluded from the model
|
||||||
sims = xp.dot(entity_encodings, sentence_encoding_t) / (sentence_norm * entity_norm)
|
prior_probs = xp.asarray([c.prior_prob for c in candidates])
|
||||||
if sims.shape != prior_probs.shape:
|
if not self.cfg.get("incl_prior", True):
|
||||||
raise ValueError(Errors.E161)
|
prior_probs = xp.asarray([0.0 for c in candidates])
|
||||||
scores = prior_probs + sims - (prior_probs*sims)
|
scores = prior_probs
|
||||||
|
|
||||||
# TODO: thresholding
|
# add in similarity from the context
|
||||||
best_index = scores.argmax().item()
|
if self.cfg.get("incl_context", True):
|
||||||
best_candidate = candidates[best_index]
|
entity_encodings = xp.asarray([c.entity_vector for c in candidates])
|
||||||
final_kb_ids.append(best_candidate.entity_)
|
entity_norm = xp.linalg.norm(entity_encodings, axis=1)
|
||||||
final_tensors.append(sentence_encoding)
|
|
||||||
|
if len(entity_encodings) != len(prior_probs):
|
||||||
|
raise RuntimeError(Errors.E147.format(method="predict", msg="vectors not of equal length"))
|
||||||
|
|
||||||
|
# cosine similarity
|
||||||
|
sims = xp.dot(entity_encodings, sentence_encoding_t) / (sentence_norm * entity_norm)
|
||||||
|
if sims.shape != prior_probs.shape:
|
||||||
|
raise ValueError(Errors.E161)
|
||||||
|
scores = prior_probs + sims - (prior_probs*sims)
|
||||||
|
|
||||||
|
# TODO: thresholding
|
||||||
|
best_index = scores.argmax().item()
|
||||||
|
best_candidate = candidates[best_index]
|
||||||
|
final_kb_ids.append(best_candidate.entity_)
|
||||||
|
final_tensors.append(sentence_encoding)
|
||||||
|
|
||||||
if not (len(final_tensors) == len(final_kb_ids) == entity_count):
|
if not (len(final_tensors) == len(final_kb_ids) == entity_count):
|
||||||
raise RuntimeError(Errors.E147.format(method="predict", msg="result variables not of equal length"))
|
raise RuntimeError(Errors.E147.format(method="predict", msg="result variables not of equal length"))
|
||||||
|
@ -1355,7 +1393,7 @@ class EntityLinker(Pipe):
|
||||||
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
|
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
|
||||||
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
||||||
serialize["kb"] = lambda p: self.kb.dump(p)
|
serialize["kb"] = lambda p: self.kb.dump(p)
|
||||||
serialize["model"] = lambda p: p.open("wb").write(self.model.to_bytes())
|
serialize["model"] = lambda p: self.model.to_disk(p)
|
||||||
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
||||||
util.to_disk(path, serialize, exclude)
|
util.to_disk(path, serialize, exclude)
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,7 @@
|
||||||
# cython: infer_types=True, cdivision=True, boundscheck=False
|
# cython: infer_types=True, cdivision=True, boundscheck=False
|
||||||
cimport cython.parallel
|
cimport cython.parallel
|
||||||
cimport numpy as np
|
cimport numpy as np
|
||||||
|
from itertools import islice
|
||||||
from cpython.ref cimport PyObject, Py_XDECREF
|
from cpython.ref cimport PyObject, Py_XDECREF
|
||||||
from cpython.exc cimport PyErr_CheckSignals, PyErr_SetFromErrno
|
from cpython.exc cimport PyErr_CheckSignals, PyErr_SetFromErrno
|
||||||
from libc.math cimport exp
|
from libc.math cimport exp
|
||||||
|
@ -607,6 +608,8 @@ cdef class Parser:
|
||||||
|
|
||||||
def begin_training(self, get_examples, pipeline=None, sgd=None, **kwargs):
|
def begin_training(self, get_examples, pipeline=None, sgd=None, **kwargs):
|
||||||
self.cfg.update(kwargs)
|
self.cfg.update(kwargs)
|
||||||
|
if len(self.vocab.lookups.get_table("lexeme_norm", {})) == 0:
|
||||||
|
warnings.warn(Warnings.W033.format(model="parser or NER"))
|
||||||
if not hasattr(get_examples, '__call__'):
|
if not hasattr(get_examples, '__call__'):
|
||||||
gold_tuples = get_examples
|
gold_tuples = get_examples
|
||||||
get_examples = lambda: gold_tuples
|
get_examples = lambda: gold_tuples
|
||||||
|
|
|
@ -137,7 +137,7 @@ def it_tokenizer():
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
@pytest.fixture(scope="session")
|
||||||
def ja_tokenizer():
|
def ja_tokenizer():
|
||||||
pytest.importorskip("fugashi")
|
pytest.importorskip("sudachipy")
|
||||||
return get_lang_class("ja").Defaults.create_tokenizer()
|
return get_lang_class("ja").Defaults.create_tokenizer()
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -429,3 +429,10 @@ def test_retokenize_skip_duplicates(en_vocab):
|
||||||
retokenizer.merge(doc[0:2])
|
retokenizer.merge(doc[0:2])
|
||||||
assert len(doc) == 2
|
assert len(doc) == 2
|
||||||
assert doc[0].text == "hello world"
|
assert doc[0].text == "hello world"
|
||||||
|
|
||||||
|
|
||||||
|
def test_retokenize_disallow_zero_length(en_vocab):
|
||||||
|
doc = Doc(en_vocab, words=["hello", "world", "!"])
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
with doc.retokenize() as retokenizer:
|
||||||
|
retokenizer.merge(doc[1:1])
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf-8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf-8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -43,7 +43,7 @@ def test_en_tokenizer_doesnt_split_apos_exc(en_tokenizer, text):
|
||||||
assert tokens[0].text == text
|
assert tokens[0].text == text
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("text", ["we'll", "You'll", "there'll"])
|
@pytest.mark.parametrize("text", ["we'll", "You'll", "there'll", "this'll", "those'll"])
|
||||||
def test_en_tokenizer_handles_ll_contraction(en_tokenizer, text):
|
def test_en_tokenizer_handles_ll_contraction(en_tokenizer, text):
|
||||||
tokens = en_tokenizer(text)
|
tokens = en_tokenizer(text)
|
||||||
assert len(tokens) == 2
|
assert len(tokens) == 2
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf-8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf-8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf-8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf-8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
from spacy.lang.hy.lex_attrs import like_num
|
from spacy.lang.hy.lex_attrs import like_num
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf-8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -3,7 +3,7 @@ import pytest
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize(
|
||||||
"word,lemma",
|
"word,lemma",
|
||||||
[("新しく", "新しい"), ("赤く", "赤い"), ("すごく", "凄い"), ("いただきました", "頂く"), ("なった", "成る")],
|
[("新しく", "新しい"), ("赤く", "赤い"), ("すごく", "すごい"), ("いただきました", "いただく"), ("なった", "なる")],
|
||||||
)
|
)
|
||||||
def test_ja_lemmatizer_assigns(ja_tokenizer, word, lemma):
|
def test_ja_lemmatizer_assigns(ja_tokenizer, word, lemma):
|
||||||
test_lemma = ja_tokenizer(word)[0].lemma_
|
test_lemma = ja_tokenizer(word)[0].lemma_
|
||||||
|
|
33
spacy/tests/lang/ja/test_serialize.py
Normal file
33
spacy/tests/lang/ja/test_serialize.py
Normal file
|
@ -0,0 +1,33 @@
|
||||||
|
from spacy.lang.ja import Japanese
|
||||||
|
from ...util import make_tempdir
|
||||||
|
|
||||||
|
|
||||||
|
def test_ja_tokenizer_serialize(ja_tokenizer):
|
||||||
|
tokenizer_bytes = ja_tokenizer.to_bytes()
|
||||||
|
nlp = Japanese()
|
||||||
|
nlp.tokenizer.from_bytes(tokenizer_bytes)
|
||||||
|
assert tokenizer_bytes == nlp.tokenizer.to_bytes()
|
||||||
|
assert nlp.tokenizer.split_mode is None
|
||||||
|
|
||||||
|
with make_tempdir() as d:
|
||||||
|
file_path = d / "tokenizer"
|
||||||
|
ja_tokenizer.to_disk(file_path)
|
||||||
|
nlp = Japanese()
|
||||||
|
nlp.tokenizer.from_disk(file_path)
|
||||||
|
assert tokenizer_bytes == nlp.tokenizer.to_bytes()
|
||||||
|
assert nlp.tokenizer.split_mode is None
|
||||||
|
|
||||||
|
# split mode is (de)serialized correctly
|
||||||
|
nlp = Japanese(meta={"tokenizer": {"config": {"split_mode": "B"}}})
|
||||||
|
nlp_r = Japanese()
|
||||||
|
nlp_bytes = nlp.to_bytes()
|
||||||
|
nlp_r.from_bytes(nlp_bytes)
|
||||||
|
assert nlp_bytes == nlp_r.to_bytes()
|
||||||
|
assert nlp_r.tokenizer.split_mode == "B"
|
||||||
|
|
||||||
|
with make_tempdir() as d:
|
||||||
|
nlp.to_disk(d)
|
||||||
|
nlp_r = Japanese()
|
||||||
|
nlp_r.from_disk(d)
|
||||||
|
assert nlp_bytes == nlp_r.to_bytes()
|
||||||
|
assert nlp_r.tokenizer.split_mode == "B"
|
|
@ -1,5 +1,7 @@
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
from ...tokenizer.test_naughty_strings import NAUGHTY_STRINGS
|
||||||
|
from spacy.lang.ja import Japanese
|
||||||
|
|
||||||
# fmt: off
|
# fmt: off
|
||||||
TOKENIZER_TESTS = [
|
TOKENIZER_TESTS = [
|
||||||
|
@ -11,20 +13,25 @@ TOKENIZER_TESTS = [
|
||||||
]
|
]
|
||||||
|
|
||||||
TAG_TESTS = [
|
TAG_TESTS = [
|
||||||
("日本語だよ", ['名詞,固有名詞,地名,国', '名詞,普通名詞,一般,*', '助動詞,*,*,*', '助詞,終助詞,*,*']),
|
("日本語だよ", ['名詞-固有名詞-地名-国', '名詞-普通名詞-一般', '助動詞', '助詞-終助詞']),
|
||||||
("東京タワーの近くに住んでいます。", ['名詞,固有名詞,地名,一般', '名詞,普通名詞,一般,*', '助詞,格助詞,*,*', '名詞,普通名詞,副詞可能,*', '助詞,格助詞,*,*', '動詞,一般,*,*', '助詞,接続助詞,*,*', '動詞,非自立可能,*,*', '助動詞,*,*,*', '補助記号,句点,*,*']),
|
("東京タワーの近くに住んでいます。", ['名詞-固有名詞-地名-一般', '名詞-普通名詞-一般', '助詞-格助詞', '名詞-普通名詞-副詞可能', '助詞-格助詞', '動詞-一般', '助詞-接続助詞', '動詞-非自立可能', '助動詞', '補助記号-句点']),
|
||||||
("吾輩は猫である。", ['代名詞,*,*,*', '助詞,係助詞,*,*', '名詞,普通名詞,一般,*', '助動詞,*,*,*', '動詞,非自立可能,*,*', '補助記号,句点,*,*']),
|
("吾輩は猫である。", ['代名詞', '助詞-係助詞', '名詞-普通名詞-一般', '助動詞', '動詞-非自立可能', '補助記号-句点']),
|
||||||
("月に代わって、お仕置きよ!", ['名詞,普通名詞,助数詞可能,*', '助詞,格助詞,*,*', '動詞,一般,*,*', '助詞,接続助詞,*,*', '補助記号,読点,*,*', '接頭辞,*,*,*', '名詞,普通名詞,一般,*', '助詞,終助詞,*,*', '補助記号,句点,*,*']),
|
("月に代わって、お仕置きよ!", ['名詞-普通名詞-助数詞可能', '助詞-格助詞', '動詞-一般', '助詞-接続助詞', '補助記号-読点', '接頭辞', '名詞-普通名詞-一般', '助詞-終助詞', '補助記号-句点']),
|
||||||
("すもももももももものうち", ['名詞,普通名詞,一般,*', '助詞,係助詞,*,*', '名詞,普通名詞,一般,*', '助詞,係助詞,*,*', '名詞,普通名詞,一般,*', '助詞,格助詞,*,*', '名詞,普通名詞,副詞可能,*'])
|
("すもももももももものうち", ['名詞-普通名詞-一般', '助詞-係助詞', '名詞-普通名詞-一般', '助詞-係助詞', '名詞-普通名詞-一般', '助詞-格助詞', '名詞-普通名詞-副詞可能'])
|
||||||
]
|
]
|
||||||
|
|
||||||
POS_TESTS = [
|
POS_TESTS = [
|
||||||
('日本語だよ', ['PROPN', 'NOUN', 'AUX', 'PART']),
|
('日本語だよ', ['fish', 'NOUN', 'AUX', 'PART']),
|
||||||
('東京タワーの近くに住んでいます。', ['PROPN', 'NOUN', 'ADP', 'NOUN', 'ADP', 'VERB', 'SCONJ', 'VERB', 'AUX', 'PUNCT']),
|
('東京タワーの近くに住んでいます。', ['PROPN', 'NOUN', 'ADP', 'NOUN', 'ADP', 'VERB', 'SCONJ', 'VERB', 'AUX', 'PUNCT']),
|
||||||
('吾輩は猫である。', ['PRON', 'ADP', 'NOUN', 'AUX', 'VERB', 'PUNCT']),
|
('吾輩は猫である。', ['PRON', 'ADP', 'NOUN', 'AUX', 'VERB', 'PUNCT']),
|
||||||
('月に代わって、お仕置きよ!', ['NOUN', 'ADP', 'VERB', 'SCONJ', 'PUNCT', 'NOUN', 'NOUN', 'PART', 'PUNCT']),
|
('月に代わって、お仕置きよ!', ['NOUN', 'ADP', 'VERB', 'SCONJ', 'PUNCT', 'NOUN', 'NOUN', 'PART', 'PUNCT']),
|
||||||
('すもももももももものうち', ['NOUN', 'ADP', 'NOUN', 'ADP', 'NOUN', 'ADP', 'NOUN'])
|
('すもももももももものうち', ['NOUN', 'ADP', 'NOUN', 'ADP', 'NOUN', 'ADP', 'NOUN'])
|
||||||
]
|
]
|
||||||
|
|
||||||
|
SENTENCE_TESTS = [
|
||||||
|
("あれ。これ。", ["あれ。", "これ。"]),
|
||||||
|
("「伝染るんです。」という漫画があります。", ["「伝染るんです。」という漫画があります。"]),
|
||||||
|
]
|
||||||
# fmt: on
|
# fmt: on
|
||||||
|
|
||||||
|
|
||||||
|
@ -40,14 +47,56 @@ def test_ja_tokenizer_tags(ja_tokenizer, text, expected_tags):
|
||||||
assert tags == expected_tags
|
assert tags == expected_tags
|
||||||
|
|
||||||
|
|
||||||
|
# XXX This isn't working? Always passes
|
||||||
@pytest.mark.parametrize("text,expected_pos", POS_TESTS)
|
@pytest.mark.parametrize("text,expected_pos", POS_TESTS)
|
||||||
def test_ja_tokenizer_pos(ja_tokenizer, text, expected_pos):
|
def test_ja_tokenizer_pos(ja_tokenizer, text, expected_pos):
|
||||||
pos = [token.pos_ for token in ja_tokenizer(text)]
|
pos = [token.pos_ for token in ja_tokenizer(text)]
|
||||||
assert pos == expected_pos
|
assert pos == expected_pos
|
||||||
|
|
||||||
|
|
||||||
def test_extra_spaces(ja_tokenizer):
|
@pytest.mark.skip(reason="sentence segmentation in tokenizer is buggy")
|
||||||
|
@pytest.mark.parametrize("text,expected_sents", SENTENCE_TESTS)
|
||||||
|
def test_ja_tokenizer_sents(ja_tokenizer, text, expected_sents):
|
||||||
|
sents = [str(sent) for sent in ja_tokenizer(text).sents]
|
||||||
|
assert sents == expected_sents
|
||||||
|
|
||||||
|
|
||||||
|
def test_ja_tokenizer_extra_spaces(ja_tokenizer):
|
||||||
# note: three spaces after "I"
|
# note: three spaces after "I"
|
||||||
tokens = ja_tokenizer("I like cheese.")
|
tokens = ja_tokenizer("I like cheese.")
|
||||||
assert tokens[1].orth_ == " "
|
assert tokens[1].orth_ == " "
|
||||||
assert tokens[2].orth_ == " "
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("text", NAUGHTY_STRINGS)
|
||||||
|
def test_ja_tokenizer_naughty_strings(ja_tokenizer, text):
|
||||||
|
tokens = ja_tokenizer(text)
|
||||||
|
assert tokens.text_with_ws == text
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"text,len_a,len_b,len_c",
|
||||||
|
[
|
||||||
|
("選挙管理委員会", 4, 3, 1),
|
||||||
|
("客室乗務員", 3, 2, 1),
|
||||||
|
("労働者協同組合", 4, 3, 1),
|
||||||
|
("機能性食品", 3, 2, 1),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def test_ja_tokenizer_split_modes(ja_tokenizer, text, len_a, len_b, len_c):
|
||||||
|
nlp_a = Japanese(meta={"tokenizer": {"config": {"split_mode": "A"}}})
|
||||||
|
nlp_b = Japanese(meta={"tokenizer": {"config": {"split_mode": "B"}}})
|
||||||
|
nlp_c = Japanese(meta={"tokenizer": {"config": {"split_mode": "C"}}})
|
||||||
|
|
||||||
|
assert len(ja_tokenizer(text)) == len_a
|
||||||
|
assert len(nlp_a(text)) == len_a
|
||||||
|
assert len(nlp_b(text)) == len_b
|
||||||
|
assert len(nlp_c(text)) == len_c
|
||||||
|
|
||||||
|
|
||||||
|
def test_ja_tokenizer_emptyish_texts(ja_tokenizer):
|
||||||
|
doc = ja_tokenizer("")
|
||||||
|
assert len(doc) == 0
|
||||||
|
doc = ja_tokenizer(" ")
|
||||||
|
assert len(doc) == 1
|
||||||
|
doc = ja_tokenizer("\n\n\n \t\t \n\n\n")
|
||||||
|
assert len(doc) == 1
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf-8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf-8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf-8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
from spacy.lang.sv.lex_attrs import like_num
|
from spacy.lang.sv.lex_attrs import like_num
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# coding: utf-8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
from spacy.lang.zh import Chinese
|
from spacy.lang.zh import Chinese
|
||||||
from ...util import make_tempdir
|
from ...util import make_tempdir
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
import pytest
|
import pytest
|
||||||
|
import srsly
|
||||||
from mock import Mock
|
from mock import Mock
|
||||||
from spacy.matcher import PhraseMatcher
|
from spacy.matcher import PhraseMatcher
|
||||||
from spacy.tokens import Doc
|
from spacy.tokens import Doc
|
||||||
|
@ -263,3 +264,26 @@ def test_phrase_matcher_basic_check(en_vocab):
|
||||||
pattern = Doc(en_vocab, words=["hello", "world"])
|
pattern = Doc(en_vocab, words=["hello", "world"])
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
matcher.add("TEST", pattern)
|
matcher.add("TEST", pattern)
|
||||||
|
|
||||||
|
|
||||||
|
def test_phrase_matcher_pickle(en_vocab):
|
||||||
|
matcher = PhraseMatcher(en_vocab)
|
||||||
|
mock = Mock()
|
||||||
|
matcher.add("TEST", [Doc(en_vocab, words=["test"])])
|
||||||
|
matcher.add("TEST2", [Doc(en_vocab, words=["test2"])], on_match=mock)
|
||||||
|
doc = Doc(en_vocab, words=["these", "are", "tests", ":", "test", "test2"])
|
||||||
|
assert len(matcher) == 2
|
||||||
|
|
||||||
|
b = srsly.pickle_dumps(matcher)
|
||||||
|
matcher_unpickled = srsly.pickle_loads(b)
|
||||||
|
|
||||||
|
# call after pickling to avoid recursion error related to mock
|
||||||
|
matches = matcher(doc)
|
||||||
|
matches_unpickled = matcher_unpickled(doc)
|
||||||
|
|
||||||
|
assert len(matcher) == len(matcher_unpickled)
|
||||||
|
assert matches == matches_unpickled
|
||||||
|
|
||||||
|
# clunky way to vaguely check that callback is unpickled
|
||||||
|
(vocab, docs, callbacks, attr) = matcher_unpickled.__reduce__()[1]
|
||||||
|
assert isinstance(callbacks.get("TEST2"), Mock)
|
||||||
|
|
|
@ -10,7 +10,13 @@ def test_build_dependencies():
|
||||||
"mock",
|
"mock",
|
||||||
"flake8",
|
"flake8",
|
||||||
]
|
]
|
||||||
libs_ignore_setup = ["fugashi", "natto-py", "pythainlp"]
|
libs_ignore_setup = [
|
||||||
|
"fugashi",
|
||||||
|
"natto-py",
|
||||||
|
"pythainlp",
|
||||||
|
"sudachipy",
|
||||||
|
"sudachidict_core",
|
||||||
|
]
|
||||||
|
|
||||||
# check requirements.txt
|
# check requirements.txt
|
||||||
req_dict = {}
|
req_dict = {}
|
||||||
|
|
|
@ -1,6 +1,9 @@
|
||||||
import pytest
|
import pytest
|
||||||
from spacy import util
|
from spacy import util
|
||||||
from spacy.lang.en import English
|
from spacy.lang.en import English
|
||||||
|
|
||||||
|
from spacy.language import Language
|
||||||
|
from spacy.lookups import Lookups
|
||||||
from spacy.pipeline.defaults import default_ner
|
from spacy.pipeline.defaults import default_ner
|
||||||
from spacy.pipeline import EntityRecognizer, EntityRuler
|
from spacy.pipeline import EntityRecognizer, EntityRuler
|
||||||
from spacy.vocab import Vocab
|
from spacy.vocab import Vocab
|
||||||
|
@ -349,6 +352,21 @@ def test_overfitting_IO():
|
||||||
assert ents2[0].label_ == "LOC"
|
assert ents2[0].label_ == "LOC"
|
||||||
|
|
||||||
|
|
||||||
|
def test_ner_warns_no_lookups():
|
||||||
|
nlp = Language()
|
||||||
|
nlp.vocab.lookups = Lookups()
|
||||||
|
assert not len(nlp.vocab.lookups)
|
||||||
|
ner = nlp.create_pipe("ner")
|
||||||
|
nlp.add_pipe(ner)
|
||||||
|
with pytest.warns(UserWarning):
|
||||||
|
nlp.begin_training()
|
||||||
|
nlp.vocab.lookups.add_table("lexeme_norm")
|
||||||
|
nlp.vocab.lookups.get_table("lexeme_norm")["a"] = "A"
|
||||||
|
with pytest.warns(None) as record:
|
||||||
|
nlp.begin_training()
|
||||||
|
assert not record.list
|
||||||
|
|
||||||
|
|
||||||
class BlockerComponent1(object):
|
class BlockerComponent1(object):
|
||||||
name = "my_blocker"
|
name = "my_blocker"
|
||||||
|
|
||||||
|
|
141
spacy/tests/regression/test_issue5230.py
Normal file
141
spacy/tests/regression/test_issue5230.py
Normal file
|
@ -0,0 +1,141 @@
|
||||||
|
import warnings
|
||||||
|
from unittest import TestCase
|
||||||
|
import pytest
|
||||||
|
import srsly
|
||||||
|
from numpy import zeros
|
||||||
|
from spacy.kb import KnowledgeBase, Writer
|
||||||
|
from spacy.vectors import Vectors
|
||||||
|
from spacy.language import Language
|
||||||
|
from spacy.pipeline import Pipe
|
||||||
|
|
||||||
|
|
||||||
|
from ..util import make_tempdir
|
||||||
|
|
||||||
|
|
||||||
|
def nlp():
|
||||||
|
return Language()
|
||||||
|
|
||||||
|
|
||||||
|
def vectors():
|
||||||
|
data = zeros((3, 1), dtype="f")
|
||||||
|
keys = ["cat", "dog", "rat"]
|
||||||
|
return Vectors(data=data, keys=keys)
|
||||||
|
|
||||||
|
|
||||||
|
def custom_pipe():
|
||||||
|
# create dummy pipe partially implementing interface -- only want to test to_disk
|
||||||
|
class SerializableDummy(object):
|
||||||
|
def __init__(self, **cfg):
|
||||||
|
if cfg:
|
||||||
|
self.cfg = cfg
|
||||||
|
else:
|
||||||
|
self.cfg = None
|
||||||
|
super(SerializableDummy, self).__init__()
|
||||||
|
|
||||||
|
def to_bytes(self, exclude=tuple(), disable=None, **kwargs):
|
||||||
|
return srsly.msgpack_dumps({"dummy": srsly.json_dumps(None)})
|
||||||
|
|
||||||
|
def from_bytes(self, bytes_data, exclude):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def to_disk(self, path, exclude=tuple(), **kwargs):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def from_disk(self, path, exclude=tuple(), **kwargs):
|
||||||
|
return self
|
||||||
|
|
||||||
|
class MyPipe(Pipe):
|
||||||
|
def __init__(self, vocab, model=True, **cfg):
|
||||||
|
if cfg:
|
||||||
|
self.cfg = cfg
|
||||||
|
else:
|
||||||
|
self.cfg = None
|
||||||
|
self.model = SerializableDummy()
|
||||||
|
self.vocab = SerializableDummy()
|
||||||
|
|
||||||
|
return MyPipe(None)
|
||||||
|
|
||||||
|
|
||||||
|
def tagger():
|
||||||
|
nlp = Language()
|
||||||
|
nlp.add_pipe(nlp.create_pipe("tagger"))
|
||||||
|
tagger = nlp.get_pipe("tagger")
|
||||||
|
# need to add model for two reasons:
|
||||||
|
# 1. no model leads to error in serialization,
|
||||||
|
# 2. the affected line is the one for model serialization
|
||||||
|
tagger.begin_training(pipeline=nlp.pipeline)
|
||||||
|
return tagger
|
||||||
|
|
||||||
|
|
||||||
|
def entity_linker():
|
||||||
|
nlp = Language()
|
||||||
|
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||||
|
kb.add_entity("test", 0.0, zeros((1, 1), dtype="f"))
|
||||||
|
nlp.add_pipe(nlp.create_pipe("entity_linker", {"kb": kb}))
|
||||||
|
entity_linker = nlp.get_pipe("entity_linker")
|
||||||
|
# need to add model for two reasons:
|
||||||
|
# 1. no model leads to error in serialization,
|
||||||
|
# 2. the affected line is the one for model serialization
|
||||||
|
entity_linker.begin_training(pipeline=nlp.pipeline)
|
||||||
|
return entity_linker
|
||||||
|
|
||||||
|
|
||||||
|
objects_to_test = (
|
||||||
|
[nlp(), vectors(), custom_pipe(), tagger(), entity_linker()],
|
||||||
|
["nlp", "vectors", "custom_pipe", "tagger", "entity_linker"],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def write_obj_and_catch_warnings(obj):
|
||||||
|
with make_tempdir() as d:
|
||||||
|
with warnings.catch_warnings(record=True) as warnings_list:
|
||||||
|
warnings.filterwarnings("always", category=ResourceWarning)
|
||||||
|
obj.to_disk(d)
|
||||||
|
# in python3.5 it seems that deprecation warnings are not filtered by filterwarnings
|
||||||
|
return list(filter(lambda x: isinstance(x, ResourceWarning), warnings_list))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("obj", objects_to_test[0], ids=objects_to_test[1])
|
||||||
|
def test_to_disk_resource_warning(obj):
|
||||||
|
warnings_list = write_obj_and_catch_warnings(obj)
|
||||||
|
assert len(warnings_list) == 0
|
||||||
|
|
||||||
|
|
||||||
|
def test_writer_with_path_py35():
|
||||||
|
writer = None
|
||||||
|
with make_tempdir() as d:
|
||||||
|
path = d / "test"
|
||||||
|
try:
|
||||||
|
writer = Writer(path)
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(str(e))
|
||||||
|
finally:
|
||||||
|
if writer:
|
||||||
|
writer.close()
|
||||||
|
|
||||||
|
|
||||||
|
def test_save_and_load_knowledge_base():
|
||||||
|
nlp = Language()
|
||||||
|
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||||
|
with make_tempdir() as d:
|
||||||
|
path = d / "kb"
|
||||||
|
try:
|
||||||
|
kb.dump(path)
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(str(e))
|
||||||
|
|
||||||
|
try:
|
||||||
|
kb_loaded = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||||
|
kb_loaded.load_bulk(path)
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(str(e))
|
||||||
|
|
||||||
|
|
||||||
|
class TestToDiskResourceWarningUnittest(TestCase):
|
||||||
|
def test_resource_warning(self):
|
||||||
|
scenarios = zip(*objects_to_test)
|
||||||
|
|
||||||
|
for scenario in scenarios:
|
||||||
|
with self.subTest(msg=scenario[1]):
|
||||||
|
warnings_list = write_obj_and_catch_warnings(scenario[0])
|
||||||
|
self.assertEqual(len(warnings_list), 0)
|
23
spacy/tests/regression/test_issue5458.py
Normal file
23
spacy/tests/regression/test_issue5458.py
Normal file
|
@ -0,0 +1,23 @@
|
||||||
|
from spacy.lang.en import English
|
||||||
|
from spacy.lang.en.syntax_iterators import noun_chunks
|
||||||
|
from spacy.tests.util import get_doc
|
||||||
|
from spacy.vocab import Vocab
|
||||||
|
|
||||||
|
|
||||||
|
def test_issue5458():
|
||||||
|
# Test that the noun chuncker does not generate overlapping spans
|
||||||
|
# fmt: off
|
||||||
|
words = ["In", "an", "era", "where", "markets", "have", "brought", "prosperity", "and", "empowerment", "."]
|
||||||
|
vocab = Vocab(strings=words)
|
||||||
|
dependencies = ["ROOT", "det", "pobj", "advmod", "nsubj", "aux", "relcl", "dobj", "cc", "conj", "punct"]
|
||||||
|
pos_tags = ["ADP", "DET", "NOUN", "ADV", "NOUN", "AUX", "VERB", "NOUN", "CCONJ", "NOUN", "PUNCT"]
|
||||||
|
heads = [0, 1, -2, 6, 2, 1, -4, -1, -1, -2, -10]
|
||||||
|
# fmt: on
|
||||||
|
|
||||||
|
en_doc = get_doc(vocab, words, pos_tags, heads, dependencies)
|
||||||
|
en_doc.noun_chunks_iterator = noun_chunks
|
||||||
|
|
||||||
|
# if there are overlapping spans, this will fail with an E102 error "Can't merge non-disjoint spans"
|
||||||
|
nlp = English()
|
||||||
|
merge_nps = nlp.create_pipe("merge_noun_chunks")
|
||||||
|
merge_nps(en_doc)
|
|
@ -30,7 +30,7 @@ def test_lemmatizer_reflects_lookups_changes():
|
||||||
assert Doc(new_nlp.vocab, words=["hello"])[0].lemma_ == "world"
|
assert Doc(new_nlp.vocab, words=["hello"])[0].lemma_ == "world"
|
||||||
|
|
||||||
|
|
||||||
def test_tagger_warns_no_lemma_lookups():
|
def test_tagger_warns_no_lookups():
|
||||||
nlp = Language()
|
nlp = Language()
|
||||||
nlp.vocab.lookups = Lookups()
|
nlp.vocab.lookups = Lookups()
|
||||||
assert not len(nlp.vocab.lookups)
|
assert not len(nlp.vocab.lookups)
|
||||||
|
@ -41,6 +41,8 @@ def test_tagger_warns_no_lemma_lookups():
|
||||||
with pytest.warns(UserWarning):
|
with pytest.warns(UserWarning):
|
||||||
nlp.begin_training()
|
nlp.begin_training()
|
||||||
nlp.vocab.lookups.add_table("lemma_lookup")
|
nlp.vocab.lookups.add_table("lemma_lookup")
|
||||||
|
nlp.vocab.lookups.add_table("lexeme_norm")
|
||||||
|
nlp.vocab.lookups.get_table("lexeme_norm")["a"] = "A"
|
||||||
with pytest.warns(None) as record:
|
with pytest.warns(None) as record:
|
||||||
nlp.begin_training()
|
nlp.begin_training()
|
||||||
assert not record.list
|
assert not record.list
|
||||||
|
|
|
@ -93,6 +93,17 @@ def test_ascii_filenames():
|
||||||
assert all(ord(c) < 128 for c in path.name), path.name
|
assert all(ord(c) < 128 for c in path.name), path.name
|
||||||
|
|
||||||
|
|
||||||
|
def test_load_model_blank_shortcut():
|
||||||
|
"""Test that using a model name like "blank:en" works as a shortcut for
|
||||||
|
spacy.blank("en").
|
||||||
|
"""
|
||||||
|
nlp = util.load_model("blank:en")
|
||||||
|
assert nlp.lang == "en"
|
||||||
|
assert nlp.pipeline == []
|
||||||
|
with pytest.raises(ImportError):
|
||||||
|
util.load_model("blank:fjsfijsdof")
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize(
|
||||||
"version,constraint,compatible",
|
"version,constraint,compatible",
|
||||||
[
|
[
|
||||||
|
|
|
@ -121,12 +121,12 @@ SUFFIXES = ['"', ":", ">"]
|
||||||
|
|
||||||
@pytest.mark.parametrize("url", URLS_SHOULD_MATCH)
|
@pytest.mark.parametrize("url", URLS_SHOULD_MATCH)
|
||||||
def test_should_match(en_tokenizer, url):
|
def test_should_match(en_tokenizer, url):
|
||||||
assert en_tokenizer.token_match(url) is not None
|
assert en_tokenizer.url_match(url) is not None
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("url", URLS_SHOULD_NOT_MATCH)
|
@pytest.mark.parametrize("url", URLS_SHOULD_NOT_MATCH)
|
||||||
def test_should_not_match(en_tokenizer, url):
|
def test_should_not_match(en_tokenizer, url):
|
||||||
assert en_tokenizer.token_match(url) is None
|
assert en_tokenizer.url_match(url) is None
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("url", URLS_BASIC)
|
@pytest.mark.parametrize("url", URLS_BASIC)
|
||||||
|
|
|
@ -17,6 +17,7 @@ cdef class Tokenizer:
|
||||||
cpdef readonly Vocab vocab
|
cpdef readonly Vocab vocab
|
||||||
|
|
||||||
cdef object _token_match
|
cdef object _token_match
|
||||||
|
cdef object _url_match
|
||||||
cdef object _prefix_search
|
cdef object _prefix_search
|
||||||
cdef object _suffix_search
|
cdef object _suffix_search
|
||||||
cdef object _infix_finditer
|
cdef object _infix_finditer
|
||||||
|
|
|
@ -31,7 +31,8 @@ cdef class Tokenizer:
|
||||||
DOCS: https://spacy.io/api/tokenizer
|
DOCS: https://spacy.io/api/tokenizer
|
||||||
"""
|
"""
|
||||||
def __init__(self, Vocab vocab, rules=None, prefix_search=None,
|
def __init__(self, Vocab vocab, rules=None, prefix_search=None,
|
||||||
suffix_search=None, infix_finditer=None, token_match=None):
|
suffix_search=None, infix_finditer=None, token_match=None,
|
||||||
|
url_match=None):
|
||||||
"""Create a `Tokenizer`, to create `Doc` objects given unicode text.
|
"""Create a `Tokenizer`, to create `Doc` objects given unicode text.
|
||||||
|
|
||||||
vocab (Vocab): A storage container for lexical types.
|
vocab (Vocab): A storage container for lexical types.
|
||||||
|
@ -44,6 +45,8 @@ cdef class Tokenizer:
|
||||||
`re.compile(string).finditer` to find infixes.
|
`re.compile(string).finditer` to find infixes.
|
||||||
token_match (callable): A boolean function matching strings to be
|
token_match (callable): A boolean function matching strings to be
|
||||||
recognised as tokens.
|
recognised as tokens.
|
||||||
|
url_match (callable): A boolean function matching strings to be
|
||||||
|
recognised as tokens after considering prefixes and suffixes.
|
||||||
RETURNS (Tokenizer): The newly constructed object.
|
RETURNS (Tokenizer): The newly constructed object.
|
||||||
|
|
||||||
EXAMPLE:
|
EXAMPLE:
|
||||||
|
@ -56,6 +59,7 @@ cdef class Tokenizer:
|
||||||
self._cache = PreshMap()
|
self._cache = PreshMap()
|
||||||
self._specials = PreshMap()
|
self._specials = PreshMap()
|
||||||
self.token_match = token_match
|
self.token_match = token_match
|
||||||
|
self.url_match = url_match
|
||||||
self.prefix_search = prefix_search
|
self.prefix_search = prefix_search
|
||||||
self.suffix_search = suffix_search
|
self.suffix_search = suffix_search
|
||||||
self.infix_finditer = infix_finditer
|
self.infix_finditer = infix_finditer
|
||||||
|
@ -76,6 +80,14 @@ cdef class Tokenizer:
|
||||||
if self._property_init_count <= self._property_init_max:
|
if self._property_init_count <= self._property_init_max:
|
||||||
self._property_init_count += 1
|
self._property_init_count += 1
|
||||||
|
|
||||||
|
property url_match:
|
||||||
|
def __get__(self):
|
||||||
|
return self._url_match
|
||||||
|
|
||||||
|
def __set__(self, url_match):
|
||||||
|
self._url_match = url_match
|
||||||
|
self._flush_cache()
|
||||||
|
|
||||||
property prefix_search:
|
property prefix_search:
|
||||||
def __get__(self):
|
def __get__(self):
|
||||||
return self._prefix_search
|
return self._prefix_search
|
||||||
|
@ -120,11 +132,12 @@ cdef class Tokenizer:
|
||||||
|
|
||||||
def __reduce__(self):
|
def __reduce__(self):
|
||||||
args = (self.vocab,
|
args = (self.vocab,
|
||||||
self._rules,
|
self.rules,
|
||||||
self.prefix_search,
|
self.prefix_search,
|
||||||
self.suffix_search,
|
self.suffix_search,
|
||||||
self.infix_finditer,
|
self.infix_finditer,
|
||||||
self.token_match)
|
self.token_match,
|
||||||
|
self.url_match)
|
||||||
return (self.__class__, args, None, None)
|
return (self.__class__, args, None, None)
|
||||||
|
|
||||||
cpdef Doc tokens_from_list(self, list strings):
|
cpdef Doc tokens_from_list(self, list strings):
|
||||||
|
@ -461,7 +474,9 @@ cdef class Tokenizer:
|
||||||
cache_hit = self._try_cache(hash_string(string), tokens)
|
cache_hit = self._try_cache(hash_string(string), tokens)
|
||||||
if specials_hit or cache_hit:
|
if specials_hit or cache_hit:
|
||||||
pass
|
pass
|
||||||
elif self.token_match and self.token_match(string):
|
elif (self.token_match and self.token_match(string)) or \
|
||||||
|
(self.url_match and \
|
||||||
|
self.url_match(string)):
|
||||||
# We're always saying 'no' to spaces here -- the caller will
|
# We're always saying 'no' to spaces here -- the caller will
|
||||||
# fix up the outermost one, with reference to the original.
|
# fix up the outermost one, with reference to the original.
|
||||||
# See Issue #859
|
# See Issue #859
|
||||||
|
@ -638,6 +653,11 @@ cdef class Tokenizer:
|
||||||
suffix_search = self.suffix_search
|
suffix_search = self.suffix_search
|
||||||
infix_finditer = self.infix_finditer
|
infix_finditer = self.infix_finditer
|
||||||
token_match = self.token_match
|
token_match = self.token_match
|
||||||
|
if token_match is None:
|
||||||
|
token_match = re.compile("a^").match
|
||||||
|
url_match = self.url_match
|
||||||
|
if url_match is None:
|
||||||
|
url_match = re.compile("a^").match
|
||||||
special_cases = {}
|
special_cases = {}
|
||||||
for orth, special_tokens in self.rules.items():
|
for orth, special_tokens in self.rules.items():
|
||||||
special_cases[orth] = [intify_attrs(special_token, strings_map=self.vocab.strings, _do_deprecated=True) for special_token in special_tokens]
|
special_cases[orth] = [intify_attrs(special_token, strings_map=self.vocab.strings, _do_deprecated=True) for special_token in special_tokens]
|
||||||
|
@ -646,6 +666,10 @@ cdef class Tokenizer:
|
||||||
suffixes = []
|
suffixes = []
|
||||||
while substring:
|
while substring:
|
||||||
while prefix_search(substring) or suffix_search(substring):
|
while prefix_search(substring) or suffix_search(substring):
|
||||||
|
if token_match(substring):
|
||||||
|
tokens.append(("TOKEN_MATCH", substring))
|
||||||
|
substring = ''
|
||||||
|
break
|
||||||
if substring in special_cases:
|
if substring in special_cases:
|
||||||
tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
|
tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
|
||||||
substring = ''
|
substring = ''
|
||||||
|
@ -666,12 +690,15 @@ cdef class Tokenizer:
|
||||||
break
|
break
|
||||||
suffixes.append(("SUFFIX", substring[split:]))
|
suffixes.append(("SUFFIX", substring[split:]))
|
||||||
substring = substring[:split]
|
substring = substring[:split]
|
||||||
if substring in special_cases:
|
if token_match(substring):
|
||||||
tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
|
|
||||||
substring = ''
|
|
||||||
elif token_match(substring):
|
|
||||||
tokens.append(("TOKEN_MATCH", substring))
|
tokens.append(("TOKEN_MATCH", substring))
|
||||||
substring = ''
|
substring = ''
|
||||||
|
elif url_match(substring):
|
||||||
|
tokens.append(("URL_MATCH", substring))
|
||||||
|
substring = ''
|
||||||
|
elif substring in special_cases:
|
||||||
|
tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
|
||||||
|
substring = ''
|
||||||
elif list(infix_finditer(substring)):
|
elif list(infix_finditer(substring)):
|
||||||
infixes = infix_finditer(substring)
|
infixes = infix_finditer(substring)
|
||||||
offset = 0
|
offset = 0
|
||||||
|
@ -733,6 +760,7 @@ cdef class Tokenizer:
|
||||||
"suffix_search": lambda: _get_regex_pattern(self.suffix_search),
|
"suffix_search": lambda: _get_regex_pattern(self.suffix_search),
|
||||||
"infix_finditer": lambda: _get_regex_pattern(self.infix_finditer),
|
"infix_finditer": lambda: _get_regex_pattern(self.infix_finditer),
|
||||||
"token_match": lambda: _get_regex_pattern(self.token_match),
|
"token_match": lambda: _get_regex_pattern(self.token_match),
|
||||||
|
"url_match": lambda: _get_regex_pattern(self.url_match),
|
||||||
"exceptions": lambda: dict(sorted(self._rules.items()))
|
"exceptions": lambda: dict(sorted(self._rules.items()))
|
||||||
}
|
}
|
||||||
exclude = util.get_serialization_exclude(serializers, exclude, kwargs)
|
exclude = util.get_serialization_exclude(serializers, exclude, kwargs)
|
||||||
|
@ -754,6 +782,7 @@ cdef class Tokenizer:
|
||||||
"suffix_search": lambda b: data.setdefault("suffix_search", b),
|
"suffix_search": lambda b: data.setdefault("suffix_search", b),
|
||||||
"infix_finditer": lambda b: data.setdefault("infix_finditer", b),
|
"infix_finditer": lambda b: data.setdefault("infix_finditer", b),
|
||||||
"token_match": lambda b: data.setdefault("token_match", b),
|
"token_match": lambda b: data.setdefault("token_match", b),
|
||||||
|
"url_match": lambda b: data.setdefault("url_match", b),
|
||||||
"exceptions": lambda b: data.setdefault("rules", b)
|
"exceptions": lambda b: data.setdefault("rules", b)
|
||||||
}
|
}
|
||||||
exclude = util.get_serialization_exclude(deserializers, exclude, kwargs)
|
exclude = util.get_serialization_exclude(deserializers, exclude, kwargs)
|
||||||
|
@ -766,6 +795,8 @@ cdef class Tokenizer:
|
||||||
self.infix_finditer = re.compile(data["infix_finditer"]).finditer
|
self.infix_finditer = re.compile(data["infix_finditer"]).finditer
|
||||||
if "token_match" in data and isinstance(data["token_match"], str):
|
if "token_match" in data and isinstance(data["token_match"], str):
|
||||||
self.token_match = re.compile(data["token_match"]).match
|
self.token_match = re.compile(data["token_match"]).match
|
||||||
|
if "url_match" in data and isinstance(data["url_match"], str):
|
||||||
|
self.url_match = re.compile(data["url_match"]).match
|
||||||
if "rules" in data and isinstance(data["rules"], dict):
|
if "rules" in data and isinstance(data["rules"], dict):
|
||||||
# make sure to hard reset the cache to remove data from the default exceptions
|
# make sure to hard reset the cache to remove data from the default exceptions
|
||||||
self._rules = {}
|
self._rules = {}
|
||||||
|
|
|
@ -50,6 +50,8 @@ cdef class Retokenizer:
|
||||||
"""
|
"""
|
||||||
if (span.start, span.end) in self._spans_to_merge:
|
if (span.start, span.end) in self._spans_to_merge:
|
||||||
return
|
return
|
||||||
|
if span.end - span.start <= 0:
|
||||||
|
raise ValueError(Errors.E199.format(start=span.start, end=span.end))
|
||||||
for token in span:
|
for token in span:
|
||||||
if token.i in self.tokens_to_merge:
|
if token.i in self.tokens_to_merge:
|
||||||
raise ValueError(Errors.E102.format(token=repr(token)))
|
raise ValueError(Errors.E102.format(token=repr(token)))
|
||||||
|
|
|
@ -45,12 +45,6 @@ cdef class MorphAnalysis:
|
||||||
"""The number of features in the analysis."""
|
"""The number of features in the analysis."""
|
||||||
return self.c.length
|
return self.c.length
|
||||||
|
|
||||||
def __str__(self):
|
|
||||||
return self.to_json()
|
|
||||||
|
|
||||||
def __repr__(self):
|
|
||||||
return self.to_json()
|
|
||||||
|
|
||||||
def __hash__(self):
|
def __hash__(self):
|
||||||
return self.key
|
return self.key
|
||||||
|
|
||||||
|
@ -79,3 +73,10 @@ cdef class MorphAnalysis:
|
||||||
"""Produce a dict representation.
|
"""Produce a dict representation.
|
||||||
"""
|
"""
|
||||||
return self.vocab.morphology.feats_to_dict(self.to_json())
|
return self.vocab.morphology.feats_to_dict(self.to_json())
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
return self.to_json()
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return self.to_json()
|
||||||
|
|
||||||
|
|
|
@ -141,6 +141,8 @@ def load_model(name, **overrides):
|
||||||
RETURNS (Language): `Language` class with the loaded model.
|
RETURNS (Language): `Language` class with the loaded model.
|
||||||
"""
|
"""
|
||||||
if isinstance(name, str): # name or string path
|
if isinstance(name, str): # name or string path
|
||||||
|
if name.startswith("blank:"): # shortcut for blank model
|
||||||
|
return get_lang_class(name.replace("blank:", ""))()
|
||||||
if is_package(name): # installed as package
|
if is_package(name): # installed as package
|
||||||
return load_model_from_package(name, **overrides)
|
return load_model_from_package(name, **overrides)
|
||||||
if Path(name).exists(): # path to model data directory
|
if Path(name).exists(): # path to model data directory
|
||||||
|
|
|
@ -376,8 +376,16 @@ cdef class Vectors:
|
||||||
save_array = lambda arr, file_: xp.save(file_, arr, allow_pickle=False)
|
save_array = lambda arr, file_: xp.save(file_, arr, allow_pickle=False)
|
||||||
else:
|
else:
|
||||||
save_array = lambda arr, file_: xp.save(file_, arr)
|
save_array = lambda arr, file_: xp.save(file_, arr)
|
||||||
|
|
||||||
|
def save_vectors(path):
|
||||||
|
# the source of numpy.save indicates that the file object is closed after use.
|
||||||
|
# but it seems that somehow this does not happen, as ResourceWarnings are raised here.
|
||||||
|
# in order to not rely on this, wrap in context manager.
|
||||||
|
with path.open("wb") as _file:
|
||||||
|
save_array(self.data, _file)
|
||||||
|
|
||||||
serializers = {
|
serializers = {
|
||||||
"vectors": lambda p: save_array(self.data, p.open("wb")),
|
"vectors": lambda p: save_vectors(p),
|
||||||
"key2row": lambda p: srsly.write_msgpack(p, self.key2row)
|
"key2row": lambda p: srsly.write_msgpack(p, self.key2row)
|
||||||
}
|
}
|
||||||
return util.to_disk(path, serializers, [])
|
return util.to_disk(path, serializers, [])
|
||||||
|
@ -410,10 +418,11 @@ cdef class Vectors:
|
||||||
self.data = ops.xp.load(str(path))
|
self.data = ops.xp.load(str(path))
|
||||||
|
|
||||||
serializers = {
|
serializers = {
|
||||||
"key2row": load_key2row,
|
|
||||||
"keys": load_keys,
|
|
||||||
"vectors": load_vectors,
|
"vectors": load_vectors,
|
||||||
|
"keys": load_keys,
|
||||||
|
"key2row": load_key2row,
|
||||||
}
|
}
|
||||||
|
|
||||||
util.from_disk(path, serializers, [])
|
util.from_disk(path, serializers, [])
|
||||||
self._sync_unset()
|
self._sync_unset()
|
||||||
return self
|
return self
|
||||||
|
|
|
@ -43,7 +43,8 @@ cdef class Vocab:
|
||||||
vice versa.
|
vice versa.
|
||||||
lookups (Lookups): Container for large lookup tables and dictionaries.
|
lookups (Lookups): Container for large lookup tables and dictionaries.
|
||||||
lookups_extra (Lookups): Container for optional lookup tables and dictionaries.
|
lookups_extra (Lookups): Container for optional lookup tables and dictionaries.
|
||||||
name (unicode): Optional name to identify the vectors table.
|
oov_prob (float): Default OOV probability.
|
||||||
|
vectors_name (unicode): Optional name to identify the vectors table.
|
||||||
RETURNS (Vocab): The newly constructed object.
|
RETURNS (Vocab): The newly constructed object.
|
||||||
"""
|
"""
|
||||||
lex_attr_getters = lex_attr_getters if lex_attr_getters is not None else {}
|
lex_attr_getters = lex_attr_getters if lex_attr_getters is not None else {}
|
||||||
|
|
|
@ -455,7 +455,7 @@ improvement.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
$ python -m spacy pretrain [texts_loc] [vectors_model] [output_dir]
|
$ python -m spacy pretrain [texts_loc] [vectors_model] [output_dir]
|
||||||
[--width] [--depth] [--cnn-window] [--cnn-pieces] [--use-chars] [--sa-depth]
|
[--width] [--conv-depth] [--cnn-window] [--cnn-pieces] [--use-chars] [--sa-depth]
|
||||||
[--embed-rows] [--loss_func] [--dropout] [--batch-size] [--max-length]
|
[--embed-rows] [--loss_func] [--dropout] [--batch-size] [--max-length]
|
||||||
[--min-length] [--seed] [--n-iter] [--use-vectors] [--n-save-every]
|
[--min-length] [--seed] [--n-iter] [--use-vectors] [--n-save-every]
|
||||||
[--init-tok2vec] [--epoch-start]
|
[--init-tok2vec] [--epoch-start]
|
||||||
|
@ -467,7 +467,7 @@ $ python -m spacy pretrain [texts_loc] [vectors_model] [output_dir]
|
||||||
| `vectors_model` | positional | Name or path to spaCy model with vectors to learn from. |
|
| `vectors_model` | positional | Name or path to spaCy model with vectors to learn from. |
|
||||||
| `output_dir` | positional | Directory to write models to on each epoch. |
|
| `output_dir` | positional | Directory to write models to on each epoch. |
|
||||||
| `--width`, `-cw` | option | Width of CNN layers. |
|
| `--width`, `-cw` | option | Width of CNN layers. |
|
||||||
| `--depth`, `-cd` | option | Depth of CNN layers. |
|
| `--conv-depth`, `-cd` | option | Depth of CNN layers. |
|
||||||
| `--cnn-window`, `-cW` <Tag variant="new">2.2.2</Tag> | option | Window size for CNN layers. |
|
| `--cnn-window`, `-cW` <Tag variant="new">2.2.2</Tag> | option | Window size for CNN layers. |
|
||||||
| `--cnn-pieces`, `-cP` <Tag variant="new">2.2.2</Tag> | option | Maxout size for CNN layers. `1` for [Mish](https://github.com/digantamisra98/Mish). |
|
| `--cnn-pieces`, `-cP` <Tag variant="new">2.2.2</Tag> | option | Maxout size for CNN layers. `1` for [Mish](https://github.com/digantamisra98/Mish). |
|
||||||
| `--use-chars`, `-chr` <Tag variant="new">2.2.2</Tag> | flag | Whether to use character-based embedding. |
|
| `--use-chars`, `-chr` <Tag variant="new">2.2.2</Tag> | flag | Whether to use character-based embedding. |
|
||||||
|
@ -541,16 +541,17 @@ $ python -m spacy init-model [lang] [output_dir] [--jsonl-loc] [--vectors-loc]
|
||||||
[--prune-vectors]
|
[--prune-vectors]
|
||||||
```
|
```
|
||||||
|
|
||||||
| Argument | Type | Description |
|
| Argument | Type | Description |
|
||||||
| ----------------------- | ---------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
| ----------------------------------------------------------- | ---------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||||
| `lang` | positional | Model language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes), e.g. `en`. |
|
| `lang` | positional | Model language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes), e.g. `en`. |
|
||||||
| `output_dir` | positional | Model output directory. Will be created if it doesn't exist. |
|
| `output_dir` | positional | Model output directory. Will be created if it doesn't exist. |
|
||||||
| `--jsonl-loc`, `-j` | option | Optional location of JSONL-formatted [vocabulary file](/api/annotation#vocab-jsonl) with lexical attributes. |
|
| `--jsonl-loc`, `-j` | option | Optional location of JSONL-formatted [vocabulary file](/api/annotation#vocab-jsonl) with lexical attributes. |
|
||||||
| `--vectors-loc`, `-v` | option | Optional location of vectors. Should be a file where the first row contains the dimensions of the vectors, followed by a space-separated Word2Vec table. File can be provided in `.txt` format or as a zipped text file in `.zip` or `.tar.gz` format. |
|
| `--vectors-loc`, `-v` | option | Optional location of vectors. Should be a file where the first row contains the dimensions of the vectors, followed by a space-separated Word2Vec table. File can be provided in `.txt` format or as a zipped text file in `.zip` or `.tar.gz` format. |
|
||||||
| `--truncate-vectors`, `-t` | option | Number of vectors to truncate to when reading in vectors file. Defaults to `0` for no truncation. |
|
| `--truncate-vectors`, `-t` <Tag variant="new">2.3</Tag> | option | Number of vectors to truncate to when reading in vectors file. Defaults to `0` for no truncation. |
|
||||||
| `--prune-vectors`, `-V` | option | Number of vectors to prune the vocabulary to. Defaults to `-1` for no pruning. |
|
| `--prune-vectors`, `-V` | option | Number of vectors to prune the vocabulary to. Defaults to `-1` for no pruning. |
|
||||||
| `--vectors-name`, `-vn` | option | Name to assign to the word vectors in the `meta.json`, e.g. `en_core_web_md.vectors`. |
|
| `--vectors-name`, `-vn` | option | Name to assign to the word vectors in the `meta.json`, e.g. `en_core_web_md.vectors`. |
|
||||||
| **CREATES** | model | A spaCy model containing the vocab and vectors. |
|
| `--omit-extra-lookups`, `-OEL` <Tag variant="new">2.3</Tag> | flag | Do not include any of the extra lookups tables (`cluster`/`prob`/`sentiment`) from `spacy-lookups-data` in the model. |
|
||||||
|
| **CREATES** | model | A spaCy model containing the vocab and vectors. |
|
||||||
|
|
||||||
## Evaluate {#evaluate new="2"}
|
## Evaluate {#evaluate new="2"}
|
||||||
|
|
||||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user