Fix pretrain script

This commit is contained in:
Matthew Honnibal 2018-11-15 23:34:35 +00:00
parent 09a0227656
commit 2ddd428834

View File

@ -25,7 +25,7 @@ from collections import Counter
import spacy import spacy
from spacy.attrs import ID from spacy.attrs import ID
from spacy.util import minibatch_by_words, use_gpu, compounding, ensure_path from spacy.util import minibatch, minibatch_by_words, use_gpu, compounding, ensure_path
from spacy._ml import Tok2Vec, flatten, chain, zero_init, create_default_optimizer from spacy._ml import Tok2Vec, flatten, chain, zero_init, create_default_optimizer
from thinc.v2v import Affine from thinc.v2v import Affine
@ -85,7 +85,8 @@ def get_vectors_loss(ops, docs, prediction):
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs]) ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
target = docs[0].vocab.vectors.data[ids] target = docs[0].vocab.vectors.data[ids]
d_scores = (prediction - target) / prediction.shape[0] d_scores = (prediction - target) / prediction.shape[0]
loss = (d_scores**2).sum() # Don't want to return a cupy object here
loss = float((d_scores**2).sum())
return loss, d_scores return loss, d_scores
@ -97,11 +98,16 @@ def create_pretraining_model(nlp, tok2vec):
''' '''
output_size = nlp.vocab.vectors.data.shape[1] output_size = nlp.vocab.vectors.data.shape[1]
output_layer = zero_init(Affine(output_size, drop_factor=0.0)) output_layer = zero_init(Affine(output_size, drop_factor=0.0))
# This is annoying, but the parser etc have the flatten step after
# the tok2vec. To load the weights in cleanly, we need to match
# the shape of the models' components exactly. So what we cann
# "tok2vec" has to be the same set of processes as what the components do.
tok2vec = chain(tok2vec, flatten)
model = chain( model = chain(
tok2vec, tok2vec,
flatten,
output_layer output_layer
) )
model.tok2vec = tok2vec
model.output_layer = output_layer model.output_layer = output_layer
model.begin_training([nlp.make_doc('Give it a doc to infer shapes')]) model.begin_training([nlp.make_doc('Give it a doc to infer shapes')])
return model return model
@ -144,7 +150,7 @@ class ProgressTracker(object):
nr_iter=("Number of iterations to pretrain", "option", "i", int), nr_iter=("Number of iterations to pretrain", "option", "i", int),
) )
def pretrain(texts_loc, vectors_model, output_dir, width=128, depth=4, def pretrain(texts_loc, vectors_model, output_dir, width=128, depth=4,
embed_rows=1000, dropout=0.2, nr_iter=1, seed=0): embed_rows=1000, dropout=0.2, nr_iter=10, seed=0):
""" """
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components, Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
using an approximate language-modelling objective. Specifically, we load using an approximate language-modelling objective. Specifically, we load
@ -170,29 +176,29 @@ def pretrain(texts_loc, vectors_model, output_dir, width=128, depth=4,
file_.write(json.dumps(config)) file_.write(json.dumps(config))
has_gpu = prefer_gpu() has_gpu = prefer_gpu()
nlp = spacy.load(vectors_model) nlp = spacy.load(vectors_model)
tok2vec = Tok2Vec(width, embed_rows, model = create_pretraining_model(nlp,
Tok2Vec(width, embed_rows,
conv_depth=depth, conv_depth=depth,
pretrained_vectors=nlp.vocab.vectors.name, pretrained_vectors=nlp.vocab.vectors.name,
bilstm_depth=0, # Requires PyTorch. Experimental. bilstm_depth=0, # Requires PyTorch. Experimental.
cnn_maxout_pieces=2, # You can try setting this higher cnn_maxout_pieces=2, # You can try setting this higher
subword_features=True) # Set to False for character models, e.g. Chinese subword_features=True)) # Set to False for character models, e.g. Chinese
model = create_pretraining_model(nlp, tok2vec)
optimizer = create_default_optimizer(model.ops) optimizer = create_default_optimizer(model.ops)
tracker = ProgressTracker() tracker = ProgressTracker()
print('Epoch', '#Words', 'Loss', 'w/s') print('Epoch', '#Words', 'Loss', 'w/s')
texts = stream_texts() if texts_loc == '-' else load_texts(texts_loc) texts = stream_texts() if texts_loc == '-' else load_texts(texts_loc)
for epoch in range(nr_iter): for epoch in range(nr_iter):
for batch in minibatch_by_words(texts, tuples=False, size=50000): for batch in minibatch(texts, size=64):
docs = [nlp.make_doc(text) for text in batch] docs = [nlp.make_doc(text) for text in batch]
loss = make_update(model, docs, optimizer, drop=dropout) loss = make_update(model, docs, optimizer, drop=dropout)
progress = tracker.update(epoch, loss, docs) progress = tracker.update(epoch, loss, docs)
if progress: if progress:
print(*progress) print(*progress)
if texts_loc == '-' and tracker.words_per_epoch[epoch] >= 10**7: if texts_loc == '-' and tracker.words_per_epoch[epoch] >= 10**6:
break break
with model.use_params(optimizer.averages): with model.use_params(optimizer.averages):
with (output_dir / ('model%d.bin' % epoch)).open('wb') as file_: with (output_dir / ('model%d.bin' % epoch)).open('wb') as file_:
file_.write(tok2vec.to_bytes()) file_.write(model.tok2vec.to_bytes())
with (output_dir / 'log.jsonl').open('a') as file_: with (output_dir / 'log.jsonl').open('a') as file_:
file_.write(json.dumps({'nr_word': tracker.nr_word, file_.write(json.dumps({'nr_word': tracker.nr_word,
'loss': tracker.loss, 'epoch': epoch})) 'loss': tracker.loss, 'epoch': epoch}))