mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Precomputable hidden now working
This commit is contained in:
parent
10682d35ab
commit
2e2268a442
|
@ -138,8 +138,8 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
||||||
|
|
||||||
Xs, ys = organize_data(vocab, train_sents)
|
Xs, ys = organize_data(vocab, train_sents)
|
||||||
dev_Xs, dev_ys = organize_data(vocab, dev_sents)
|
dev_Xs, dev_ys = organize_data(vocab, dev_sents)
|
||||||
Xs = Xs[:100]
|
Xs = Xs[:1000]
|
||||||
ys = ys[:100]
|
ys = ys[:1000]
|
||||||
with encoder.model.begin_training(Xs[:100], ys[:100]) as (trainer, optimizer):
|
with encoder.model.begin_training(Xs[:100], ys[:100]) as (trainer, optimizer):
|
||||||
docs = list(Xs)
|
docs = list(Xs)
|
||||||
for doc in docs:
|
for doc in docs:
|
||||||
|
|
54
spacy/_ml.py
54
spacy/_ml.py
|
@ -5,9 +5,61 @@ from thinc.neural._classes.hash_embed import HashEmbed
|
||||||
from thinc.neural._classes.convolution import ExtractWindow
|
from thinc.neural._classes.convolution import ExtractWindow
|
||||||
from thinc.neural._classes.static_vectors import StaticVectors
|
from thinc.neural._classes.static_vectors import StaticVectors
|
||||||
from thinc.neural._classes.batchnorm import BatchNorm
|
from thinc.neural._classes.batchnorm import BatchNorm
|
||||||
|
from thinc import describe
|
||||||
|
from thinc.describe import Dimension, Synapses, Biases, Gradient
|
||||||
|
from thinc.neural._classes.affine import _set_dimensions_if_needed
|
||||||
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
|
||||||
|
@describe.on_data(_set_dimensions_if_needed)
|
||||||
|
@describe.attributes(
|
||||||
|
nI=Dimension("Input size"),
|
||||||
|
nF=Dimension("Number of features"),
|
||||||
|
nO=Dimension("Output size"),
|
||||||
|
W=Synapses("Weights matrix",
|
||||||
|
lambda obj: (obj.nO, obj.nF, obj.nI),
|
||||||
|
lambda W, ops: ops.xavier_uniform_init(W)),
|
||||||
|
b=Biases("Bias vector",
|
||||||
|
lambda obj: (obj.nO,)),
|
||||||
|
d_W=Gradient("W"),
|
||||||
|
d_b=Gradient("b")
|
||||||
|
)
|
||||||
|
class PrecomputableAffine(Model):
|
||||||
|
def __init__(self, nO=None, nI=None, nF=None, **kwargs):
|
||||||
|
Model.__init__(self, **kwargs)
|
||||||
|
self.nO = nO
|
||||||
|
self.nI = nI
|
||||||
|
self.nF = nF
|
||||||
|
|
||||||
|
def begin_update(self, X, drop=0.):
|
||||||
|
# X: (b, i)
|
||||||
|
# Xf: (b, f, i)
|
||||||
|
# dY: (b, o)
|
||||||
|
# dYf: (b, f, o)
|
||||||
|
#Yf = numpy.einsum('bi,ofi->bfo', X, self.W)
|
||||||
|
Yf = self.ops.xp.tensordot(
|
||||||
|
X, self.W, axes=[[1], [2]]).transpose((0, 2, 1))
|
||||||
|
Yf += self.b
|
||||||
|
def backward(dY_ids, sgd=None):
|
||||||
|
dY, ids = dY_ids
|
||||||
|
Xf = X[ids]
|
||||||
|
|
||||||
|
#dW = numpy.einsum('bo,bfi->ofi', dY, Xf)
|
||||||
|
dW = self.ops.xp.tensordot(dY, Xf, axes=[[0], [0]])
|
||||||
|
db = dY.sum(axis=0)
|
||||||
|
#dXf = numpy.einsum('bo,ofi->bfi', dY, self.W)
|
||||||
|
dXf = self.ops.xp.tensordot(dY, self.W, axes=[[1], [0]])
|
||||||
|
|
||||||
|
self.d_W += dW
|
||||||
|
self.d_b += db
|
||||||
|
|
||||||
|
if sgd is not None:
|
||||||
|
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||||
|
return dXf
|
||||||
|
return Yf, backward
|
||||||
|
|
||||||
|
|
||||||
def get_col(idx):
|
def get_col(idx):
|
||||||
def forward(X, drop=0.):
|
def forward(X, drop=0.):
|
||||||
|
|
|
@ -32,7 +32,7 @@ from preshed.maps cimport map_get
|
||||||
from thinc.api import layerize, chain
|
from thinc.api import layerize, chain
|
||||||
from thinc.neural import Model, Maxout
|
from thinc.neural import Model, Maxout
|
||||||
|
|
||||||
from .._ml import get_col
|
from .._ml import PrecomputableAffine
|
||||||
from . import _parse_features
|
from . import _parse_features
|
||||||
from ._parse_features cimport CONTEXT_SIZE
|
from ._parse_features cimport CONTEXT_SIZE
|
||||||
from ._parse_features cimport fill_context
|
from ._parse_features cimport fill_context
|
||||||
|
@ -58,21 +58,24 @@ def set_debug(val):
|
||||||
DEBUG = val
|
DEBUG = val
|
||||||
|
|
||||||
|
|
||||||
def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, upper_model, feat_maps):
|
def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, upper_model, lower_model):
|
||||||
cdef int[:, :] is_valid_
|
cdef int[:, :] is_valid_
|
||||||
cdef float[:, :] costs_
|
cdef float[:, :] costs_
|
||||||
lengths = [len(t) for t in tokvecs]
|
lengths = [len(t) for t in tokvecs]
|
||||||
tokvecs = upper_model.ops.flatten(tokvecs)
|
tokvecs = upper_model.ops.flatten(tokvecs)
|
||||||
is_valid = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='i')
|
is_valid = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='i')
|
||||||
costs = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='f')
|
costs = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='f')
|
||||||
token_ids = upper_model.ops.allocate((len(tokvecs), len(feat_maps)), dtype='i')
|
token_ids = upper_model.ops.allocate((len(tokvecs), lower_model.nF), dtype='i')
|
||||||
cached, backprops = zip(*[lyr.begin_update(tokvecs) for lyr in feat_maps])
|
|
||||||
|
cached, bp_features = lower_model.begin_update(tokvecs, drop=0.)
|
||||||
|
|
||||||
is_valid_ = is_valid
|
is_valid_ = is_valid
|
||||||
costs_ = costs
|
costs_ = costs
|
||||||
|
|
||||||
def forward(states_offsets, drop=0.):
|
def forward(states_offsets, drop=0.):
|
||||||
nonlocal is_valid, costs, token_ids, moves
|
nonlocal is_valid, costs, token_ids, moves
|
||||||
states, offsets = states_offsets
|
states, offsets = states_offsets
|
||||||
|
assert len(states) != 0
|
||||||
is_valid = is_valid[:len(states)]
|
is_valid = is_valid[:len(states)]
|
||||||
costs = costs[:len(states)]
|
costs = costs[:len(states)]
|
||||||
token_ids = token_ids[:len(states)]
|
token_ids = token_ids[:len(states)]
|
||||||
|
@ -90,12 +93,17 @@ def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, upper_model, fea
|
||||||
for i in range(len(states)):
|
for i in range(len(states)):
|
||||||
for j, tok_i in enumerate(adjusted_ids[i]):
|
for j, tok_i in enumerate(adjusted_ids[i]):
|
||||||
if tok_i >= 0:
|
if tok_i >= 0:
|
||||||
features[i] += cached[j][tok_i]
|
features[i] += cached[tok_i, j]
|
||||||
|
|
||||||
scores, bp_scores = upper_model.begin_update(features, drop=drop)
|
scores, bp_scores = upper_model.begin_update(features, drop=drop)
|
||||||
|
scores = upper_model.ops.relu(scores)
|
||||||
softmaxed = upper_model.ops.softmax(scores)
|
softmaxed = upper_model.ops.softmax(scores)
|
||||||
# Renormalize for invalid actions
|
# Renormalize for invalid actions
|
||||||
softmaxed *= is_valid
|
softmaxed *= is_valid
|
||||||
|
totals = softmaxed.sum(axis=1)
|
||||||
|
for total in totals:
|
||||||
|
assert total > 0, (totals, scores, softmaxed)
|
||||||
|
assert total <= 1.1, totals
|
||||||
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
|
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
|
||||||
|
|
||||||
def backward(golds, sgd=None):
|
def backward(golds, sgd=None):
|
||||||
|
@ -108,7 +116,9 @@ def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, upper_model, fea
|
||||||
d_scores.fill(0)
|
d_scores.fill(0)
|
||||||
set_log_loss(upper_model.ops, d_scores,
|
set_log_loss(upper_model.ops, d_scores,
|
||||||
scores, is_valid, costs)
|
scores, is_valid, costs)
|
||||||
d_tokens = bp_scores(d_scores, sgd)
|
upper_model.ops.backprop_relu(d_scores, scores, inplace=True)
|
||||||
|
d_features = bp_scores(d_scores, sgd)
|
||||||
|
d_tokens = bp_features((d_features, adjusted_ids), sgd)
|
||||||
return (token_ids, d_tokens)
|
return (token_ids, d_tokens)
|
||||||
|
|
||||||
return softmaxed, backward
|
return softmaxed, backward
|
||||||
|
@ -211,11 +221,9 @@ cdef class Parser:
|
||||||
def build_model(self, width=64, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
|
def build_model(self, width=64, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
|
||||||
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
||||||
|
|
||||||
model = chain(Maxout(width, width), Maxout(self.moves.n_moves, width))
|
upper = chain(Maxout(width, width), Maxout(self.moves.n_moves, width))
|
||||||
# TODO
|
lower = PrecomputableAffine(width, nF=nr_context_tokens, nI=width)
|
||||||
feature_maps = [Maxout(width, width)
|
return upper, lower
|
||||||
for i in range(nr_context_tokens)]
|
|
||||||
return model, feature_maps
|
|
||||||
|
|
||||||
def __call__(self, Doc tokens):
|
def __call__(self, Doc tokens):
|
||||||
"""
|
"""
|
||||||
|
|
Loading…
Reference in New Issue
Block a user