mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-19 04:32:32 +03:00
Rename coref params
This commit is contained in:
parent
13481fbcc2
commit
2e8f0e9168
|
@ -14,14 +14,13 @@ from .coref_util import add_dummy
|
|||
@registry.architectures("spacy.Coref.v1")
|
||||
def build_wl_coref_model(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
embedding_size: int = 20,
|
||||
distance_embedding_size: int = 20,
|
||||
hidden_size: int = 1024,
|
||||
n_hidden_layers: int = 1, # TODO rename to "depth"?
|
||||
depth: int = 1,
|
||||
dropout: float = 0.3,
|
||||
# pairs to keep per mention after rough scoring
|
||||
rough_k: int = 50,
|
||||
# TODO is this not a training loop setting?
|
||||
a_scoring_batch_size: int = 512,
|
||||
antecedent_limit: int = 50,
|
||||
antecedent_batch_size: int = 512,
|
||||
):
|
||||
# TODO add model return types
|
||||
# TODO fix this
|
||||
|
@ -35,12 +34,12 @@ def build_wl_coref_model(
|
|||
coref_scorer = PyTorchWrapper(
|
||||
CorefScorer(
|
||||
dim,
|
||||
embedding_size,
|
||||
distance_embedding_size,
|
||||
hidden_size,
|
||||
n_hidden_layers,
|
||||
depth,
|
||||
dropout,
|
||||
rough_k,
|
||||
a_scoring_batch_size,
|
||||
antecedent_limit,
|
||||
antecedent_batch_size,
|
||||
),
|
||||
convert_inputs=convert_coref_scorer_inputs,
|
||||
convert_outputs=convert_coref_scorer_outputs,
|
||||
|
@ -99,7 +98,7 @@ class CorefScorer(torch.nn.Module):
|
|||
dist_emb_size: int,
|
||||
hidden_size: int,
|
||||
n_layers: int,
|
||||
dropout_rate: float,
|
||||
dropout: float,
|
||||
roughk: int,
|
||||
batch_size: int,
|
||||
):
|
||||
|
@ -109,31 +108,31 @@ class CorefScorer(torch.nn.Module):
|
|||
dist_emb_size: Size of the distance embeddings.
|
||||
hidden_size: Size of the coreference candidate embeddings.
|
||||
n_layers: Numbers of layers in the AnaphoricityScorer.
|
||||
dropout_rate: Dropout probability to apply across all modules.
|
||||
dropout: Dropout probability to apply across all modules.
|
||||
roughk: Number of candidates the RoughScorer returns.
|
||||
batch_size: Internal batch-size for the more expensive scorer.
|
||||
"""
|
||||
self.dropout = torch.nn.Dropout(dropout_rate)
|
||||
self.dropout = torch.nn.Dropout(dropout)
|
||||
self.batch_size = batch_size
|
||||
# Modules
|
||||
self.pw = DistancePairwiseEncoder(dist_emb_size, dropout_rate)
|
||||
self.pw = DistancePairwiseEncoder(dist_emb_size, dropout)
|
||||
pair_emb = dim * 3 + self.pw.shape
|
||||
self.a_scorer = AnaphoricityScorer(
|
||||
pair_emb,
|
||||
hidden_size,
|
||||
n_layers,
|
||||
dropout_rate
|
||||
dropout
|
||||
)
|
||||
self.lstm = torch.nn.LSTM(
|
||||
input_size=dim,
|
||||
hidden_size=dim,
|
||||
batch_first=True,
|
||||
)
|
||||
self.rough_scorer = RoughScorer(dim, dropout_rate, roughk)
|
||||
self.pw = DistancePairwiseEncoder(dist_emb_size, dropout_rate)
|
||||
self.rough_scorer = RoughScorer(dim, dropout, roughk)
|
||||
self.pw = DistancePairwiseEncoder(dist_emb_size, dropout)
|
||||
pair_emb = dim * 3 + self.pw.shape
|
||||
self.a_scorer = AnaphoricityScorer(
|
||||
pair_emb, hidden_size, n_layers, dropout_rate
|
||||
pair_emb, hidden_size, n_layers, dropout
|
||||
)
|
||||
|
||||
def forward(
|
||||
|
@ -190,18 +189,18 @@ class CorefScorer(torch.nn.Module):
|
|||
class AnaphoricityScorer(torch.nn.Module):
|
||||
"""Calculates anaphoricity scores by passing the inputs into a FFNN"""
|
||||
|
||||
def __init__(self, in_features: int, hidden_size, n_hidden_layers, dropout_rate):
|
||||
def __init__(self, in_features: int, hidden_size, depth, dropout):
|
||||
super().__init__()
|
||||
hidden_size = hidden_size
|
||||
if not n_hidden_layers:
|
||||
if not depth:
|
||||
hidden_size = in_features
|
||||
layers = []
|
||||
for i in range(n_hidden_layers):
|
||||
for i in range(depth):
|
||||
layers.extend(
|
||||
[
|
||||
torch.nn.Linear(hidden_size if i else in_features, hidden_size),
|
||||
torch.nn.LeakyReLU(),
|
||||
torch.nn.Dropout(dropout_rate),
|
||||
torch.nn.Dropout(dropout),
|
||||
]
|
||||
)
|
||||
self.hidden = torch.nn.Sequential(*layers)
|
||||
|
@ -243,7 +242,7 @@ class AnaphoricityScorer(torch.nn.Module):
|
|||
def _ffnn(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
x: tensor of shape (batch_size x roughk x n_features
|
||||
returns: tensor of shape (batch_size x rough_k)
|
||||
returns: tensor of shape (batch_size x antecedent_limit)
|
||||
"""
|
||||
x = self.out(self.hidden(x))
|
||||
return x.squeeze(2)
|
||||
|
@ -289,11 +288,11 @@ class RoughScorer(torch.nn.Module):
|
|||
steps to reduce computational cost.
|
||||
"""
|
||||
|
||||
def __init__(self, features: int, dropout_rate: float, rough_k: float):
|
||||
def __init__(self, features: int, dropout: float, antecedent_limit: int):
|
||||
super().__init__()
|
||||
self.dropout = torch.nn.Dropout(dropout_rate)
|
||||
self.dropout = torch.nn.Dropout(dropout)
|
||||
self.bilinear = torch.nn.Linear(features, features)
|
||||
self.k = rough_k
|
||||
self.k = antecedent_limit
|
||||
|
||||
def forward(
|
||||
self, # type: ignore # pylint: disable=arguments-differ #35566 in pytorch
|
||||
|
@ -317,7 +316,7 @@ class RoughScorer(torch.nn.Module):
|
|||
|
||||
|
||||
class DistancePairwiseEncoder(torch.nn.Module):
|
||||
def __init__(self, embedding_size, dropout_rate):
|
||||
def __init__(self, distance_embedding_size, dropout):
|
||||
"""
|
||||
Takes the top_indices indicating, which is a ranked
|
||||
list for each word and its most likely corresponding
|
||||
|
@ -325,15 +324,15 @@ class DistancePairwiseEncoder(torch.nn.Module):
|
|||
up a distance embedding from a table, where the distance
|
||||
corresponds to the log-distance.
|
||||
|
||||
embedding_size: int,
|
||||
distance_embedding_size: int,
|
||||
Dimensionality of the distance-embeddings table.
|
||||
dropout_rate: float,
|
||||
dropout: float,
|
||||
Dropout probability.
|
||||
"""
|
||||
super().__init__()
|
||||
emb_size = embedding_size
|
||||
emb_size = distance_embedding_size
|
||||
self.distance_emb = torch.nn.Embedding(9, emb_size)
|
||||
self.dropout = torch.nn.Dropout(dropout_rate)
|
||||
self.dropout = torch.nn.Dropout(dropout)
|
||||
self.shape = emb_size
|
||||
|
||||
def forward(
|
||||
|
|
|
@ -31,13 +31,12 @@ from ..coref_scorer import Evaluator, get_cluster_info, lea
|
|||
default_config = """
|
||||
[model]
|
||||
@architectures = "spacy.Coref.v1"
|
||||
embedding_size = 20
|
||||
distance_embedding_size = 20
|
||||
hidden_size = 1024
|
||||
n_hidden_layers = 1
|
||||
depth = 1
|
||||
dropout = 0.3
|
||||
rough_k = 50
|
||||
a_scoring_batch_size = 512
|
||||
sp_embedding_size = 64
|
||||
antecedent_limit = 50
|
||||
antecedent_batch_size = 512
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.Tok2Vec.v2"
|
||||
|
|
|
@ -939,12 +939,12 @@ performance if working with only token-level clusters is acceptable.
|
|||
>
|
||||
> [model]
|
||||
> @architectures = "spacy.Coref.v1"
|
||||
> embedding_size = 20
|
||||
> distance_embedding_size = 20
|
||||
> dropout = 0.3
|
||||
> hidden_size = 1024
|
||||
> n_hidden_layers = 2
|
||||
> rough_k = 50
|
||||
> a_scoring_batch_size = 512
|
||||
> depth = 2
|
||||
> antecedent_limit = 50
|
||||
> antecedent_batch_size = 512
|
||||
>
|
||||
> [model.tok2vec]
|
||||
> @architectures = "spacy-transformers.TransformerListener.v1"
|
||||
|
@ -956,14 +956,14 @@ performance if working with only token-level clusters is acceptable.
|
|||
The `Coref` model architecture is a Thinc `Model`.
|
||||
|
||||
| Name | Description |
|
||||
| ---------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
|
||||
| `embedding_size` | ~~int~~ |
|
||||
| `distance_embedding_size` | A representation of the distance between candidates. ~~int~~ |
|
||||
| `dropout` | The dropout to use internally. Unlike some Thinc models, this has separate dropout for the internal PyTorch layers. ~~float~~ |
|
||||
| `hidden_size` | Size of the main internal layers. ~~int~~ |
|
||||
| `n_hidden_layers` | Depth of the internal network. ~~int~~ |
|
||||
| `rough_k` | How many candidate antecedents to keep after rough scoring. This has a significant effect on memory usage. Typical values would be 50 to 200, or higher for very long documents. ~~int~~ |
|
||||
| `a_scoring_batch_size` | Internal batch size. ~~int~~ |
|
||||
| `depth` | Depth of the internal network. ~~int~~ |
|
||||
| `antecedent_limit` | How many candidate antecedents to keep after rough scoring. This has a significant effect on memory usage. Typical values would be 50 to 200, or higher for very long documents. ~~int~~ |
|
||||
| `antecedent_batch_size` | Internal batch size. ~~int~~ |
|
||||
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
|
||||
|
||||
### spacy.SpanPredictor.v1 {#SpanPredictor}
|
||||
|
@ -985,3 +985,14 @@ The `Coref` model architecture is a Thinc `Model`.
|
|||
> ```
|
||||
|
||||
The `SpanPredictor` model architecture is a Thinc `Model`.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
|
||||
| `distance_embedding_size` | A representation of the distance between two candidates. ~~int~~ |
|
||||
| `dropout` | The dropout to use internally. Unlike some Thinc models, this has separate dropout for the internal PyTorch layers. ~~float~~ |
|
||||
| `hidden_size` | Size of the main internal layers. ~~int~~ |
|
||||
| `depth` | Depth of the internal network. ~~int~~ |
|
||||
| `antecedent_limit` | How many candidate antecedents to keep after rough scoring. This has a significant effect on memory usage. Typical values would be 50 to 200, or higher for very long documents. ~~int~~ |
|
||||
| `antecedent_batch_size` | Internal batch size. ~~int~~ |
|
||||
| **CREATES** | The model using the architecture. ~~Model[List[Doc], TupleFloats2d]~~ |
|
||||
|
|
Loading…
Reference in New Issue
Block a user