mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Fix config resolution and interpolation
TODO: auto-interpolate in Thinc if config is dict (i.e. likely subsection)
This commit is contained in:
parent
02838a1d47
commit
2e9c9e74af
|
@ -97,7 +97,9 @@ def debug_data(
|
|||
with show_validation_error(config_path):
|
||||
cfg = util.load_config(config_path, overrides=config_overrides)
|
||||
nlp = util.load_model_from_config(cfg)
|
||||
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
||||
T = registry.resolve(
|
||||
nlp.config.interpolate()["training"], schema=ConfigSchemaTraining
|
||||
)
|
||||
# Use original config here, not resolved version
|
||||
sourced_components = get_sourced_components(cfg)
|
||||
frozen_components = T["frozen_components"]
|
||||
|
|
|
@ -63,7 +63,9 @@ def debug_model_cli(
|
|||
set_gpu_allocator(allocator)
|
||||
with show_validation_error(config_path):
|
||||
nlp = util.load_model_from_config(raw_config)
|
||||
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
||||
T = registry.resolve(
|
||||
nlp.config.interpolate()["training"], schema=ConfigSchemaTraining
|
||||
)
|
||||
seed = T["seed"]
|
||||
if seed is not None:
|
||||
msg.info(f"Fixing random seed: {seed}")
|
||||
|
|
|
@ -42,7 +42,9 @@ def test_readers():
|
|||
dot_names = ["training.train_corpus", "training.dev_corpus"]
|
||||
train_corpus, dev_corpus = resolve_dot_names(nlp.config, dot_names)
|
||||
assert isinstance(train_corpus, Callable)
|
||||
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
||||
T = registry.resolve(
|
||||
nlp.config.interpolate()["training"], schema=ConfigSchemaTraining
|
||||
)
|
||||
optimizer = T["optimizer"]
|
||||
# simulate a training loop
|
||||
nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
|
||||
|
@ -53,7 +55,8 @@ def test_readers():
|
|||
# ensure the pipeline runs
|
||||
doc = nlp("Quick test")
|
||||
assert doc.cats
|
||||
extra_corpus = registry.resolve(nlp.config["corpora"])["extra"]
|
||||
corpora = {"corpora": nlp.config.interpolate()["corpora"]}
|
||||
extra_corpus = registry.resolve(corpora)["corpora"]["extra"]
|
||||
assert isinstance(extra_corpus, Callable)
|
||||
|
||||
|
||||
|
@ -91,7 +94,9 @@ def test_cat_readers(reader, additional_config):
|
|||
nlp = load_model_from_config(config, auto_fill=True)
|
||||
dot_names = ["training.train_corpus", "training.dev_corpus"]
|
||||
train_corpus, dev_corpus = resolve_dot_names(nlp.config, dot_names)
|
||||
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
||||
T = registry.resolve(
|
||||
nlp.config["training"].interpolate(), schema=ConfigSchemaTraining
|
||||
)
|
||||
optimizer = T["optimizer"]
|
||||
# simulate a training loop
|
||||
nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
|
||||
|
|
|
@ -33,8 +33,9 @@ def pretrain(
|
|||
if use_gpu >= 0 and allocator:
|
||||
set_gpu_allocator(allocator)
|
||||
nlp = load_model_from_config(config)
|
||||
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
||||
P = registry.resolve(nlp.config["pretraining"], schema=ConfigSchemaPretrain)
|
||||
_config = nlp.config.interpolate()
|
||||
T = registry.resolve(_config["training"], schema=ConfigSchemaTraining)
|
||||
P = registry.resolve(_config["pretraining"], schema=ConfigSchemaPretrain)
|
||||
corpus = dot_to_object(T, P["corpus"])
|
||||
batcher = P["batcher"]
|
||||
model = create_pretraining_model(nlp, P)
|
||||
|
|
|
@ -413,7 +413,12 @@ def resolve_dot_names(config: Config, dot_names: List[Optional[str]]) -> Tuple[A
|
|||
section = ref.split(".")[0]
|
||||
# We want to avoid resolving the same thing twice
|
||||
if section not in resolved:
|
||||
resolved[section] = registry.resolve(config[section])
|
||||
if registry.is_promise(config[section]):
|
||||
# Otherwise we can't resolve [corpus] if it's a promise
|
||||
result = registry.resolve({"config": config[section]})["config"]
|
||||
else:
|
||||
result = registry.resolve(config[section])
|
||||
resolved[section] = result
|
||||
try:
|
||||
objects.append(dot_to_object(resolved, ref))
|
||||
except KeyError:
|
||||
|
|
Loading…
Reference in New Issue
Block a user