mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 10:46:29 +03:00
Fix config resolution and interpolation
TODO: auto-interpolate in Thinc if config is dict (i.e. likely subsection)
This commit is contained in:
parent
02838a1d47
commit
2e9c9e74af
|
@ -97,7 +97,9 @@ def debug_data(
|
||||||
with show_validation_error(config_path):
|
with show_validation_error(config_path):
|
||||||
cfg = util.load_config(config_path, overrides=config_overrides)
|
cfg = util.load_config(config_path, overrides=config_overrides)
|
||||||
nlp = util.load_model_from_config(cfg)
|
nlp = util.load_model_from_config(cfg)
|
||||||
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
T = registry.resolve(
|
||||||
|
nlp.config.interpolate()["training"], schema=ConfigSchemaTraining
|
||||||
|
)
|
||||||
# Use original config here, not resolved version
|
# Use original config here, not resolved version
|
||||||
sourced_components = get_sourced_components(cfg)
|
sourced_components = get_sourced_components(cfg)
|
||||||
frozen_components = T["frozen_components"]
|
frozen_components = T["frozen_components"]
|
||||||
|
|
|
@ -63,7 +63,9 @@ def debug_model_cli(
|
||||||
set_gpu_allocator(allocator)
|
set_gpu_allocator(allocator)
|
||||||
with show_validation_error(config_path):
|
with show_validation_error(config_path):
|
||||||
nlp = util.load_model_from_config(raw_config)
|
nlp = util.load_model_from_config(raw_config)
|
||||||
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
T = registry.resolve(
|
||||||
|
nlp.config.interpolate()["training"], schema=ConfigSchemaTraining
|
||||||
|
)
|
||||||
seed = T["seed"]
|
seed = T["seed"]
|
||||||
if seed is not None:
|
if seed is not None:
|
||||||
msg.info(f"Fixing random seed: {seed}")
|
msg.info(f"Fixing random seed: {seed}")
|
||||||
|
|
|
@ -42,7 +42,9 @@ def test_readers():
|
||||||
dot_names = ["training.train_corpus", "training.dev_corpus"]
|
dot_names = ["training.train_corpus", "training.dev_corpus"]
|
||||||
train_corpus, dev_corpus = resolve_dot_names(nlp.config, dot_names)
|
train_corpus, dev_corpus = resolve_dot_names(nlp.config, dot_names)
|
||||||
assert isinstance(train_corpus, Callable)
|
assert isinstance(train_corpus, Callable)
|
||||||
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
T = registry.resolve(
|
||||||
|
nlp.config.interpolate()["training"], schema=ConfigSchemaTraining
|
||||||
|
)
|
||||||
optimizer = T["optimizer"]
|
optimizer = T["optimizer"]
|
||||||
# simulate a training loop
|
# simulate a training loop
|
||||||
nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
|
nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
|
||||||
|
@ -53,7 +55,8 @@ def test_readers():
|
||||||
# ensure the pipeline runs
|
# ensure the pipeline runs
|
||||||
doc = nlp("Quick test")
|
doc = nlp("Quick test")
|
||||||
assert doc.cats
|
assert doc.cats
|
||||||
extra_corpus = registry.resolve(nlp.config["corpora"])["extra"]
|
corpora = {"corpora": nlp.config.interpolate()["corpora"]}
|
||||||
|
extra_corpus = registry.resolve(corpora)["corpora"]["extra"]
|
||||||
assert isinstance(extra_corpus, Callable)
|
assert isinstance(extra_corpus, Callable)
|
||||||
|
|
||||||
|
|
||||||
|
@ -91,7 +94,9 @@ def test_cat_readers(reader, additional_config):
|
||||||
nlp = load_model_from_config(config, auto_fill=True)
|
nlp = load_model_from_config(config, auto_fill=True)
|
||||||
dot_names = ["training.train_corpus", "training.dev_corpus"]
|
dot_names = ["training.train_corpus", "training.dev_corpus"]
|
||||||
train_corpus, dev_corpus = resolve_dot_names(nlp.config, dot_names)
|
train_corpus, dev_corpus = resolve_dot_names(nlp.config, dot_names)
|
||||||
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
T = registry.resolve(
|
||||||
|
nlp.config["training"].interpolate(), schema=ConfigSchemaTraining
|
||||||
|
)
|
||||||
optimizer = T["optimizer"]
|
optimizer = T["optimizer"]
|
||||||
# simulate a training loop
|
# simulate a training loop
|
||||||
nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
|
nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
|
||||||
|
|
|
@ -33,8 +33,9 @@ def pretrain(
|
||||||
if use_gpu >= 0 and allocator:
|
if use_gpu >= 0 and allocator:
|
||||||
set_gpu_allocator(allocator)
|
set_gpu_allocator(allocator)
|
||||||
nlp = load_model_from_config(config)
|
nlp = load_model_from_config(config)
|
||||||
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
_config = nlp.config.interpolate()
|
||||||
P = registry.resolve(nlp.config["pretraining"], schema=ConfigSchemaPretrain)
|
T = registry.resolve(_config["training"], schema=ConfigSchemaTraining)
|
||||||
|
P = registry.resolve(_config["pretraining"], schema=ConfigSchemaPretrain)
|
||||||
corpus = dot_to_object(T, P["corpus"])
|
corpus = dot_to_object(T, P["corpus"])
|
||||||
batcher = P["batcher"]
|
batcher = P["batcher"]
|
||||||
model = create_pretraining_model(nlp, P)
|
model = create_pretraining_model(nlp, P)
|
||||||
|
|
|
@ -413,7 +413,12 @@ def resolve_dot_names(config: Config, dot_names: List[Optional[str]]) -> Tuple[A
|
||||||
section = ref.split(".")[0]
|
section = ref.split(".")[0]
|
||||||
# We want to avoid resolving the same thing twice
|
# We want to avoid resolving the same thing twice
|
||||||
if section not in resolved:
|
if section not in resolved:
|
||||||
resolved[section] = registry.resolve(config[section])
|
if registry.is_promise(config[section]):
|
||||||
|
# Otherwise we can't resolve [corpus] if it's a promise
|
||||||
|
result = registry.resolve({"config": config[section]})["config"]
|
||||||
|
else:
|
||||||
|
result = registry.resolve(config[section])
|
||||||
|
resolved[section] = result
|
||||||
try:
|
try:
|
||||||
objects.append(dot_to_object(resolved, ref))
|
objects.append(dot_to_object(resolved, ref))
|
||||||
except KeyError:
|
except KeyError:
|
||||||
|
|
Loading…
Reference in New Issue
Block a user