Merge remote-tracking branch 'upstream/master' into merge-master-v4-20220609

This commit is contained in:
Daniël de Kok 2022-06-09 10:08:20 +02:00
commit 2f05c6824c
79 changed files with 3321 additions and 574 deletions

View File

@ -23,5 +23,5 @@ jobs:
env: env:
INPUT_TOKEN: ${{ secrets.EXPLOSIONBOT_TOKEN }} INPUT_TOKEN: ${{ secrets.EXPLOSIONBOT_TOKEN }}
INPUT_BK_TOKEN: ${{ secrets.BUILDKITE_SECRET }} INPUT_BK_TOKEN: ${{ secrets.BUILDKITE_SECRET }}
ENABLED_COMMANDS: "test_gpu,test_slow" ENABLED_COMMANDS: "test_gpu,test_slow,test_slow_gpu"
ALLOWED_TEAMS: "spaCy" ALLOWED_TEAMS: "spaCy"

View File

@ -10,6 +10,7 @@ jobs:
fail-fast: false fail-fast: false
matrix: matrix:
branch: [master, v4] branch: [master, v4]
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- name: Trigger buildkite build - name: Trigger buildkite build

View File

@ -10,6 +10,7 @@ jobs:
fail-fast: false fail-fast: false
matrix: matrix:
branch: [master, v4] branch: [master, v4]
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- name: Checkout - name: Checkout

View File

@ -1,4 +1,4 @@
recursive-include spacy *.pyi *.pyx *.pxd *.txt *.cfg *.jinja *.toml recursive-include spacy *.pyi *.pyx *.pxd *.txt *.cfg *.jinja *.toml *.hh
include LICENSE include LICENSE
include README.md include README.md
include pyproject.toml include pyproject.toml

View File

@ -16,7 +16,7 @@ production-ready [**training system**](https://spacy.io/usage/training) and easy
model packaging, deployment and workflow management. spaCy is commercial model packaging, deployment and workflow management. spaCy is commercial
open-source software, released under the MIT license. open-source software, released under the MIT license.
💫 **Version 3.2 out now!** 💫 **Version 3.3.1 out now!**
[Check out the release notes here.](https://github.com/explosion/spaCy/releases) [Check out the release notes here.](https://github.com/explosion/spaCy/releases)
[![Azure Pipelines](https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8) [![Azure Pipelines](https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8)

View File

@ -5,8 +5,7 @@ requires = [
"cymem>=2.0.2,<2.1.0", "cymem>=2.0.2,<2.1.0",
"preshed>=3.0.2,<3.1.0", "preshed>=3.0.2,<3.1.0",
"murmurhash>=0.28.0,<1.1.0", "murmurhash>=0.28.0,<1.1.0",
"thinc>=8.0.14,<8.1.0", "thinc>=8.1.0.dev0,<8.2.0",
"blis>=0.4.0,<0.8.0",
"pathy", "pathy",
"numpy>=1.15.0", "numpy>=1.15.0",
] ]

View File

@ -3,8 +3,7 @@ spacy-legacy>=3.0.9,<3.1.0
spacy-loggers>=1.0.0,<2.0.0 spacy-loggers>=1.0.0,<2.0.0
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
thinc>=8.0.14,<8.1.0 thinc>=8.1.0.dev0,<8.2.0
blis>=0.4.0,<0.8.0
ml_datasets>=0.2.0,<0.3.0 ml_datasets>=0.2.0,<0.3.0
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
wasabi>=0.9.1,<1.1.0 wasabi>=0.9.1,<1.1.0
@ -16,13 +15,13 @@ pathy>=0.3.5
numpy>=1.15.0 numpy>=1.15.0
requests>=2.13.0,<3.0.0 requests>=2.13.0,<3.0.0
tqdm>=4.38.0,<5.0.0 tqdm>=4.38.0,<5.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.9.0 pydantic>=1.7.4,!=1.8,!=1.8.1,<1.10.0
jinja2 jinja2
langcodes>=3.2.0,<4.0.0 langcodes>=3.2.0,<4.0.0
# Official Python utilities # Official Python utilities
setuptools setuptools
packaging>=20.0 packaging>=20.0
typing_extensions>=3.7.4.1,<4.0.0.0; python_version < "3.8" typing_extensions>=3.7.4.1,<4.2.0; python_version < "3.8"
# Development dependencies # Development dependencies
pre-commit>=2.13.0 pre-commit>=2.13.0
cython>=0.25,<3.0 cython>=0.25,<3.0
@ -31,7 +30,7 @@ pytest-timeout>=1.3.0,<2.0.0
mock>=2.0.0,<3.0.0 mock>=2.0.0,<3.0.0
flake8>=3.8.0,<3.10.0 flake8>=3.8.0,<3.10.0
hypothesis>=3.27.0,<7.0.0 hypothesis>=3.27.0,<7.0.0
mypy==0.910 mypy>=0.910,<=0.960
types-dataclasses>=0.1.3; python_version < "3.7" types-dataclasses>=0.1.3; python_version < "3.7"
types-mock>=0.1.1 types-mock>=0.1.1
types-requests types-requests

View File

@ -38,7 +38,7 @@ setup_requires =
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
thinc>=8.0.14,<8.1.0 thinc>=8.1.0.dev0,<8.2.0
install_requires = install_requires =
# Our libraries # Our libraries
spacy-legacy>=3.0.9,<3.1.0 spacy-legacy>=3.0.9,<3.1.0
@ -46,8 +46,7 @@ install_requires =
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
thinc>=8.0.14,<8.1.0 thinc>=8.1.0.dev0,<8.2.0
blis>=0.4.0,<0.8.0
wasabi>=0.9.1,<1.1.0 wasabi>=0.9.1,<1.1.0
srsly>=2.4.3,<3.0.0 srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0 catalogue>=2.0.6,<2.1.0
@ -57,12 +56,12 @@ install_requires =
tqdm>=4.38.0,<5.0.0 tqdm>=4.38.0,<5.0.0
numpy>=1.15.0 numpy>=1.15.0
requests>=2.13.0,<3.0.0 requests>=2.13.0,<3.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.9.0 pydantic>=1.7.4,!=1.8,!=1.8.1,<1.10.0
jinja2 jinja2
# Official Python utilities # Official Python utilities
setuptools setuptools
packaging>=20.0 packaging>=20.0
typing_extensions>=3.7.4,<4.0.0.0; python_version < "3.8" typing_extensions>=3.7.4,<4.2.0; python_version < "3.8"
langcodes>=3.2.0,<4.0.0 langcodes>=3.2.0,<4.0.0
[options.entry_points] [options.entry_points]

View File

@ -12,7 +12,7 @@ from click.parser import split_arg_string
from typer.main import get_command from typer.main import get_command
from contextlib import contextmanager from contextlib import contextmanager
from thinc.api import Config, ConfigValidationError, require_gpu from thinc.api import Config, ConfigValidationError, require_gpu
from thinc.util import has_cupy, gpu_is_available from thinc.util import gpu_is_available
from configparser import InterpolationError from configparser import InterpolationError
import os import os
@ -554,5 +554,5 @@ def setup_gpu(use_gpu: int, silent=None) -> None:
require_gpu(use_gpu) require_gpu(use_gpu)
else: else:
local_msg.info("Using CPU") local_msg.info("Using CPU")
if has_cupy and gpu_is_available(): if gpu_is_available():
local_msg.info("To switch to GPU 0, use the option: --gpu-id 0") local_msg.info("To switch to GPU 0, use the option: --gpu-id 0")

View File

@ -6,6 +6,7 @@ import sys
import srsly import srsly
from wasabi import Printer, MESSAGES, msg from wasabi import Printer, MESSAGES, msg
import typer import typer
import math
from ._util import app, Arg, Opt, show_validation_error, parse_config_overrides from ._util import app, Arg, Opt, show_validation_error, parse_config_overrides
from ._util import import_code, debug_cli from ._util import import_code, debug_cli
@ -30,6 +31,12 @@ DEP_LABEL_THRESHOLD = 20
# Minimum number of expected examples to train a new pipeline # Minimum number of expected examples to train a new pipeline
BLANK_MODEL_MIN_THRESHOLD = 100 BLANK_MODEL_MIN_THRESHOLD = 100
BLANK_MODEL_THRESHOLD = 2000 BLANK_MODEL_THRESHOLD = 2000
# Arbitrary threshold where SpanCat performs well
SPAN_DISTINCT_THRESHOLD = 1
# Arbitrary threshold where SpanCat performs well
BOUNDARY_DISTINCT_THRESHOLD = 1
# Arbitrary threshold for filtering span lengths during reporting (percentage)
SPAN_LENGTH_THRESHOLD_PERCENTAGE = 90
@debug_cli.command( @debug_cli.command(
@ -247,6 +254,69 @@ def debug_data(
msg.warn(f"No examples for texts WITHOUT new label '{label}'") msg.warn(f"No examples for texts WITHOUT new label '{label}'")
has_no_neg_warning = True has_no_neg_warning = True
with msg.loading("Obtaining span characteristics..."):
span_characteristics = _get_span_characteristics(
train_dataset, gold_train_data, spans_key
)
msg.info(f"Span characteristics for spans_key '{spans_key}'")
msg.info("SD = Span Distinctiveness, BD = Boundary Distinctiveness")
_print_span_characteristics(span_characteristics)
_span_freqs = _get_spans_length_freq_dist(
gold_train_data["spans_length"][spans_key]
)
_filtered_span_freqs = _filter_spans_length_freq_dist(
_span_freqs, threshold=SPAN_LENGTH_THRESHOLD_PERCENTAGE
)
msg.info(
f"Over {SPAN_LENGTH_THRESHOLD_PERCENTAGE}% of spans have lengths of 1 -- "
f"{max(_filtered_span_freqs.keys())} "
f"(min={span_characteristics['min_length']}, max={span_characteristics['max_length']}). "
f"The most common span lengths are: {_format_freqs(_filtered_span_freqs)}. "
"If you are using the n-gram suggester, note that omitting "
"infrequent n-gram lengths can greatly improve speed and "
"memory usage."
)
msg.text(
f"Full distribution of span lengths: {_format_freqs(_span_freqs)}",
show=verbose,
)
# Add report regarding span characteristics
if span_characteristics["avg_sd"] < SPAN_DISTINCT_THRESHOLD:
msg.warn("Spans may not be distinct from the rest of the corpus")
else:
msg.good("Spans are distinct from the rest of the corpus")
p_spans = span_characteristics["p_spans"].values()
all_span_tokens: Counter = sum(p_spans, Counter())
most_common_spans = [w for w, _ in all_span_tokens.most_common(10)]
msg.text(
"10 most common span tokens: {}".format(
_format_labels(most_common_spans)
),
show=verbose,
)
# Add report regarding span boundary characteristics
if span_characteristics["avg_bd"] < BOUNDARY_DISTINCT_THRESHOLD:
msg.warn("Boundary tokens are not distinct from the rest of the corpus")
else:
msg.good("Boundary tokens are distinct from the rest of the corpus")
p_bounds = span_characteristics["p_bounds"].values()
all_span_bound_tokens: Counter = sum(p_bounds, Counter())
most_common_bounds = [w for w, _ in all_span_bound_tokens.most_common(10)]
msg.text(
"10 most common span boundary tokens: {}".format(
_format_labels(most_common_bounds)
),
show=verbose,
)
if has_low_data_warning: if has_low_data_warning:
msg.text( msg.text(
f"To train a new span type, your data should include at " f"To train a new span type, your data should include at "
@ -647,6 +717,9 @@ def _compile_gold(
"words": Counter(), "words": Counter(),
"roots": Counter(), "roots": Counter(),
"spancat": dict(), "spancat": dict(),
"spans_length": dict(),
"spans_per_type": dict(),
"sb_per_type": dict(),
"ws_ents": 0, "ws_ents": 0,
"boundary_cross_ents": 0, "boundary_cross_ents": 0,
"n_words": 0, "n_words": 0,
@ -692,14 +765,59 @@ def _compile_gold(
elif label == "-": elif label == "-":
data["ner"]["-"] += 1 data["ner"]["-"] += 1
if "spancat" in factory_names: if "spancat" in factory_names:
for span_key in list(eg.reference.spans.keys()): for spans_key in list(eg.reference.spans.keys()):
if span_key not in data["spancat"]: # Obtain the span frequency
data["spancat"][span_key] = Counter() if spans_key not in data["spancat"]:
for i, span in enumerate(eg.reference.spans[span_key]): data["spancat"][spans_key] = Counter()
for i, span in enumerate(eg.reference.spans[spans_key]):
if span.label_ is None: if span.label_ is None:
continue continue
else: else:
data["spancat"][span_key][span.label_] += 1 data["spancat"][spans_key][span.label_] += 1
# Obtain the span length
if spans_key not in data["spans_length"]:
data["spans_length"][spans_key] = dict()
for span in gold.spans[spans_key]:
if span.label_ is None:
continue
if span.label_ not in data["spans_length"][spans_key]:
data["spans_length"][spans_key][span.label_] = []
data["spans_length"][spans_key][span.label_].append(len(span))
# Obtain spans per span type
if spans_key not in data["spans_per_type"]:
data["spans_per_type"][spans_key] = dict()
for span in gold.spans[spans_key]:
if span.label_ not in data["spans_per_type"][spans_key]:
data["spans_per_type"][spans_key][span.label_] = []
data["spans_per_type"][spans_key][span.label_].append(span)
# Obtain boundary tokens per span type
window_size = 1
if spans_key not in data["sb_per_type"]:
data["sb_per_type"][spans_key] = dict()
for span in gold.spans[spans_key]:
if span.label_ not in data["sb_per_type"][spans_key]:
# Creating a data structure that holds the start and
# end tokens for each span type
data["sb_per_type"][spans_key][span.label_] = {
"start": [],
"end": [],
}
for offset in range(window_size):
sb_start_idx = span.start - (offset + 1)
if sb_start_idx >= 0:
data["sb_per_type"][spans_key][span.label_]["start"].append(
gold[sb_start_idx : sb_start_idx + 1]
)
sb_end_idx = span.end + (offset + 1)
if sb_end_idx <= len(gold):
data["sb_per_type"][spans_key][span.label_]["end"].append(
gold[sb_end_idx - 1 : sb_end_idx]
)
if "textcat" in factory_names or "textcat_multilabel" in factory_names: if "textcat" in factory_names or "textcat_multilabel" in factory_names:
data["cats"].update(gold.cats) data["cats"].update(gold.cats)
if any(val not in (0, 1) for val in gold.cats.values()): if any(val not in (0, 1) for val in gold.cats.values()):
@ -770,6 +888,16 @@ def _format_labels(
return ", ".join([f"'{l}'" for l in cast(Iterable[str], labels)]) return ", ".join([f"'{l}'" for l in cast(Iterable[str], labels)])
def _format_freqs(freqs: Dict[int, float], sort: bool = True) -> str:
if sort:
freqs = dict(sorted(freqs.items()))
_freqs = [(str(k), v) for k, v in freqs.items()]
return ", ".join(
[f"{l} ({c}%)" for l, c in cast(Iterable[Tuple[str, float]], _freqs)]
)
def _get_examples_without_label( def _get_examples_without_label(
data: Sequence[Example], data: Sequence[Example],
label: str, label: str,
@ -824,3 +952,158 @@ def _get_labels_from_spancat(nlp: Language) -> Dict[str, Set[str]]:
labels[pipe.key] = set() labels[pipe.key] = set()
labels[pipe.key].update(pipe.labels) labels[pipe.key].update(pipe.labels)
return labels return labels
def _gmean(l: List) -> float:
"""Compute geometric mean of a list"""
return math.exp(math.fsum(math.log(i) for i in l) / len(l))
def _wgt_average(metric: Dict[str, float], frequencies: Counter) -> float:
total = sum(value * frequencies[span_type] for span_type, value in metric.items())
return total / sum(frequencies.values())
def _get_distribution(docs, normalize: bool = True) -> Counter:
"""Get the frequency distribution given a set of Docs"""
word_counts: Counter = Counter()
for doc in docs:
for token in doc:
# Normalize the text
t = token.text.lower().replace("``", '"').replace("''", '"')
word_counts[t] += 1
if normalize:
total = sum(word_counts.values(), 0.0)
word_counts = Counter({k: v / total for k, v in word_counts.items()})
return word_counts
def _get_kl_divergence(p: Counter, q: Counter) -> float:
"""Compute the Kullback-Leibler divergence from two frequency distributions"""
total = 0.0
for word, p_word in p.items():
total += p_word * math.log(p_word / q[word])
return total
def _format_span_row(span_data: List[Dict], labels: List[str]) -> List[Any]:
"""Compile into one list for easier reporting"""
d = {
label: [label] + list(round(d[label], 2) for d in span_data) for label in labels
}
return list(d.values())
def _get_span_characteristics(
examples: List[Example], compiled_gold: Dict[str, Any], spans_key: str
) -> Dict[str, Any]:
"""Obtain all span characteristics"""
data_labels = compiled_gold["spancat"][spans_key]
# Get lengths
span_length = {
label: _gmean(l)
for label, l in compiled_gold["spans_length"][spans_key].items()
}
min_lengths = [min(l) for l in compiled_gold["spans_length"][spans_key].values()]
max_lengths = [max(l) for l in compiled_gold["spans_length"][spans_key].values()]
# Get relevant distributions: corpus, spans, span boundaries
p_corpus = _get_distribution([eg.reference for eg in examples], normalize=True)
p_spans = {
label: _get_distribution(spans, normalize=True)
for label, spans in compiled_gold["spans_per_type"][spans_key].items()
}
p_bounds = {
label: _get_distribution(sb["start"] + sb["end"], normalize=True)
for label, sb in compiled_gold["sb_per_type"][spans_key].items()
}
# Compute for actual span characteristics
span_distinctiveness = {
label: _get_kl_divergence(freq_dist, p_corpus)
for label, freq_dist in p_spans.items()
}
sb_distinctiveness = {
label: _get_kl_divergence(freq_dist, p_corpus)
for label, freq_dist in p_bounds.items()
}
return {
"sd": span_distinctiveness,
"bd": sb_distinctiveness,
"lengths": span_length,
"min_length": min(min_lengths),
"max_length": max(max_lengths),
"avg_sd": _wgt_average(span_distinctiveness, data_labels),
"avg_bd": _wgt_average(sb_distinctiveness, data_labels),
"avg_length": _wgt_average(span_length, data_labels),
"labels": list(data_labels.keys()),
"p_spans": p_spans,
"p_bounds": p_bounds,
}
def _print_span_characteristics(span_characteristics: Dict[str, Any]):
"""Print all span characteristics into a table"""
headers = ("Span Type", "Length", "SD", "BD")
# Prepare table data with all span characteristics
table_data = [
span_characteristics["lengths"],
span_characteristics["sd"],
span_characteristics["bd"],
]
table = _format_span_row(
span_data=table_data, labels=span_characteristics["labels"]
)
# Prepare table footer with weighted averages
footer_data = [
span_characteristics["avg_length"],
span_characteristics["avg_sd"],
span_characteristics["avg_bd"],
]
footer = ["Wgt. Average"] + [str(round(f, 2)) for f in footer_data]
msg.table(table, footer=footer, header=headers, divider=True)
def _get_spans_length_freq_dist(
length_dict: Dict, threshold=SPAN_LENGTH_THRESHOLD_PERCENTAGE
) -> Dict[int, float]:
"""Get frequency distribution of spans length under a certain threshold"""
all_span_lengths = []
for _, lengths in length_dict.items():
all_span_lengths.extend(lengths)
freq_dist: Counter = Counter()
for i in all_span_lengths:
if freq_dist.get(i):
freq_dist[i] += 1
else:
freq_dist[i] = 1
# We will be working with percentages instead of raw counts
freq_dist_percentage = {}
for span_length, count in freq_dist.most_common():
percentage = (count / len(all_span_lengths)) * 100.0
percentage = round(percentage, 2)
freq_dist_percentage[span_length] = percentage
return freq_dist_percentage
def _filter_spans_length_freq_dist(
freq_dist: Dict[int, float], threshold: int
) -> Dict[int, float]:
"""Filter frequency distribution with respect to a threshold
We're going to filter all the span lengths that fall
around a percentage threshold when summed.
"""
total = 0.0
filtered_freq_dist = {}
for span_length, dist in freq_dist.items():
if total >= threshold:
break
else:
filtered_freq_dist[span_length] = dist
total += dist
return filtered_freq_dist

View File

@ -1,4 +1,5 @@
import warnings import warnings
from .compat import Literal
class ErrorsWithCodes(type): class ErrorsWithCodes(type):
@ -26,7 +27,10 @@ def setup_default_warnings():
filter_warning("once", error_msg="[W114]") filter_warning("once", error_msg="[W114]")
def filter_warning(action: str, error_msg: str): def filter_warning(
action: Literal["default", "error", "ignore", "always", "module", "once"],
error_msg: str,
):
"""Customize how spaCy should handle a certain warning. """Customize how spaCy should handle a certain warning.
error_msg (str): e.g. "W006", or a full error message error_msg (str): e.g. "W006", or a full error message
@ -200,6 +204,11 @@ class Warnings(metaclass=ErrorsWithCodes):
"for the corpora used to train the language. Please check " "for the corpora used to train the language. Please check "
"`nlp.meta[\"sources\"]` for any relevant links.") "`nlp.meta[\"sources\"]` for any relevant links.")
W119 = ("Overriding pipe name in `config` is not supported. Ignoring override '{name_in_config}'.") W119 = ("Overriding pipe name in `config` is not supported. Ignoring override '{name_in_config}'.")
W120 = ("Unable to load all spans in Doc.spans: more than one span group "
"with the name '{group_name}' was found in the saved spans data. "
"Only the last span group will be loaded under "
"Doc.spans['{group_name}']. Skipping span group with values: "
"{group_values}")
class Errors(metaclass=ErrorsWithCodes): class Errors(metaclass=ErrorsWithCodes):
@ -445,10 +454,10 @@ class Errors(metaclass=ErrorsWithCodes):
"same, but found '{nlp}' and '{vocab}' respectively.") "same, but found '{nlp}' and '{vocab}' respectively.")
E152 = ("The attribute {attr} is not supported for token patterns. " E152 = ("The attribute {attr} is not supported for token patterns. "
"Please use the option `validate=True` with the Matcher, PhraseMatcher, " "Please use the option `validate=True` with the Matcher, PhraseMatcher, "
"or EntityRuler for more details.") "EntityRuler or AttributeRuler for more details.")
E153 = ("The value type {vtype} is not supported for token patterns. " E153 = ("The value type {vtype} is not supported for token patterns. "
"Please use the option validate=True with Matcher, PhraseMatcher, " "Please use the option validate=True with Matcher, PhraseMatcher, "
"or EntityRuler for more details.") "EntityRuler or AttributeRuler for more details.")
E154 = ("One of the attributes or values is not supported for token " E154 = ("One of the attributes or values is not supported for token "
"patterns. Please use the option `validate=True` with the Matcher, " "patterns. Please use the option `validate=True` with the Matcher, "
"PhraseMatcher, or EntityRuler for more details.") "PhraseMatcher, or EntityRuler for more details.")
@ -528,6 +537,8 @@ class Errors(metaclass=ErrorsWithCodes):
E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.") E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.")
# New errors added in v3.x # New errors added in v3.x
E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not "
"permit overlapping spans.")
E855 = ("Invalid {obj}: {obj} is not from the same doc.") E855 = ("Invalid {obj}: {obj} is not from the same doc.")
E856 = ("Error accessing span at position {i}: out of bounds in span group " E856 = ("Error accessing span at position {i}: out of bounds in span group "
"of length {length}.") "of length {length}.")
@ -899,8 +910,8 @@ class Errors(metaclass=ErrorsWithCodes):
E1022 = ("Words must be of type str or int, but input is of type '{wtype}'") E1022 = ("Words must be of type str or int, but input is of type '{wtype}'")
E1023 = ("Couldn't read EntityRuler from the {path}. This file doesn't " E1023 = ("Couldn't read EntityRuler from the {path}. This file doesn't "
"exist.") "exist.")
E1024 = ("A pattern with ID \"{ent_id}\" is not present in EntityRuler " E1024 = ("A pattern with {attr_type} '{label}' is not present in "
"patterns.") "'{component}' patterns.")
E1025 = ("Cannot intify the value '{value}' as an IOB string. The only " E1025 = ("Cannot intify the value '{value}' as an IOB string. The only "
"supported values are: 'I', 'O', 'B' and ''") "supported values are: 'I', 'O', 'B' and ''")
E1026 = ("Edit tree has an invalid format:\n{errors}") E1026 = ("Edit tree has an invalid format:\n{errors}")
@ -914,6 +925,13 @@ class Errors(metaclass=ErrorsWithCodes):
E1034 = ("Node index {i} out of bounds ({length})") E1034 = ("Node index {i} out of bounds ({length})")
E1035 = ("Token index {i} out of bounds ({length})") E1035 = ("Token index {i} out of bounds ({length})")
E1036 = ("Cannot index into NoneNode") E1036 = ("Cannot index into NoneNode")
E1037 = ("Invalid attribute value '{attr}'.")
E1038 = ("Invalid JSON input: {message}")
E1039 = ("The {obj} start or end annotations (start: {start}, end: {end}) "
"could not be aligned to token boundaries.")
E1040 = ("Doc.from_json requires all tokens to have the same attributes. "
"Some tokens do not contain annotation for: {partial_attrs}")
E1041 = ("Expected a string, Doc, or bytes as input, but got: {type}")
# Deprecated model shortcuts, only used in errors and warnings # Deprecated model shortcuts, only used in errors and warnings

View File

@ -273,6 +273,7 @@ GLOSSARY = {
"relcl": "relative clause modifier", "relcl": "relative clause modifier",
"reparandum": "overridden disfluency", "reparandum": "overridden disfluency",
"root": "root", "root": "root",
"ROOT": "root",
"vocative": "vocative", "vocative": "vocative",
"xcomp": "open clausal complement", "xcomp": "open clausal complement",
# Dependency labels (German) # Dependency labels (German)

View File

@ -35,7 +35,7 @@ for pron in ["i"]:
_exc[orth + "m"] = [ _exc[orth + "m"] = [
{ORTH: orth, NORM: pron}, {ORTH: orth, NORM: pron},
{ORTH: "m", "tenspect": 1, "number": 1}, {ORTH: "m"},
] ]
_exc[orth + "'ma"] = [ _exc[orth + "'ma"] = [
@ -139,26 +139,27 @@ for pron in ["he", "she", "it"]:
# W-words, relative pronouns, prepositions etc. # W-words, relative pronouns, prepositions etc.
for word in [ for word, morph in [
"who", ("who", None),
"what", ("what", None),
"when", ("when", None),
"where", ("where", None),
"why", ("why", None),
"how", ("how", None),
"there", ("there", None),
"that", ("that", "Number=Sing|Person=3"),
"this", ("this", "Number=Sing|Person=3"),
"these", ("these", "Number=Plur|Person=3"),
"those", ("those", "Number=Plur|Person=3"),
]: ]:
for orth in [word, word.title()]: for orth in [word, word.title()]:
_exc[orth + "'s"] = [ if morph != "Number=Plur|Person=3":
{ORTH: orth, NORM: word}, _exc[orth + "'s"] = [
{ORTH: "'s", NORM: "'s"}, {ORTH: orth, NORM: word},
] {ORTH: "'s", NORM: "'s"},
]
_exc[orth + "s"] = [{ORTH: orth, NORM: word}, {ORTH: "s"}] _exc[orth + "s"] = [{ORTH: orth, NORM: word}, {ORTH: "s"}]
_exc[orth + "'ll"] = [ _exc[orth + "'ll"] = [
{ORTH: orth, NORM: word}, {ORTH: orth, NORM: word},
@ -182,25 +183,26 @@ for word in [
{ORTH: "ve", NORM: "have"}, {ORTH: "ve", NORM: "have"},
] ]
_exc[orth + "'re"] = [ if morph != "Number=Sing|Person=3":
{ORTH: orth, NORM: word}, _exc[orth + "'re"] = [
{ORTH: "'re", NORM: "are"}, {ORTH: orth, NORM: word},
] {ORTH: "'re", NORM: "are"},
]
_exc[orth + "re"] = [ _exc[orth + "re"] = [
{ORTH: orth, NORM: word}, {ORTH: orth, NORM: word},
{ORTH: "re", NORM: "are"}, {ORTH: "re", NORM: "are"},
] ]
_exc[orth + "'ve"] = [ _exc[orth + "'ve"] = [
{ORTH: orth, NORM: word}, {ORTH: orth, NORM: word},
{ORTH: "'ve"}, {ORTH: "'ve"},
] ]
_exc[orth + "ve"] = [ _exc[orth + "ve"] = [
{ORTH: orth}, {ORTH: orth},
{ORTH: "ve", NORM: "have"}, {ORTH: "ve", NORM: "have"},
] ]
_exc[orth + "'d"] = [ _exc[orth + "'d"] = [
{ORTH: orth, NORM: word}, {ORTH: orth, NORM: word},

View File

@ -1090,16 +1090,21 @@ class Language:
) )
return self.tokenizer(text) return self.tokenizer(text)
def _ensure_doc(self, doc_like: Union[str, Doc]) -> Doc: def _ensure_doc(self, doc_like: Union[str, Doc, bytes]) -> Doc:
"""Create a Doc if need be, or raise an error if the input is not a Doc or a string.""" """Create a Doc if need be, or raise an error if the input is not
a Doc, string, or a byte array (generated by Doc.to_bytes())."""
if isinstance(doc_like, Doc): if isinstance(doc_like, Doc):
return doc_like return doc_like
if isinstance(doc_like, str): if isinstance(doc_like, str):
return self.make_doc(doc_like) return self.make_doc(doc_like)
raise ValueError(Errors.E866.format(type=type(doc_like))) if isinstance(doc_like, bytes):
return Doc(self.vocab).from_bytes(doc_like)
raise ValueError(Errors.E1041.format(type=type(doc_like)))
def _ensure_doc_with_context(self, doc_like: Union[str, Doc], context: Any) -> Doc: def _ensure_doc_with_context(
"""Create a Doc if need be and add as_tuples context, or raise an error if the input is not a Doc or a string.""" self, doc_like: Union[str, Doc, bytes], context: _AnyContext
) -> Doc:
"""Call _ensure_doc to generate a Doc and set its context object."""
doc = self._ensure_doc(doc_like) doc = self._ensure_doc(doc_like)
doc._context = context doc._context = context
return doc return doc
@ -1519,7 +1524,6 @@ class Language:
DOCS: https://spacy.io/api/language#pipe DOCS: https://spacy.io/api/language#pipe
""" """
# Handle texts with context as tuples
if as_tuples: if as_tuples:
texts = cast(Iterable[Tuple[Union[str, Doc], _AnyContext]], texts) texts = cast(Iterable[Tuple[Union[str, Doc], _AnyContext]], texts)
docs_with_contexts = ( docs_with_contexts = (
@ -1597,8 +1601,21 @@ class Language:
n_process: int, n_process: int,
batch_size: int, batch_size: int,
) -> Iterator[Doc]: ) -> Iterator[Doc]:
def prepare_input(
texts: Iterable[Union[str, Doc]]
) -> Iterable[Tuple[Union[str, bytes], _AnyContext]]:
# Serialize Doc inputs to bytes to avoid incurring pickling
# overhead when they are passed to child processes. Also yield
# any context objects they might have separately (as they are not serialized).
for doc_like in texts:
if isinstance(doc_like, Doc):
yield (doc_like.to_bytes(), cast(_AnyContext, doc_like._context))
else:
yield (doc_like, cast(_AnyContext, None))
serialized_texts_with_ctx = prepare_input(texts) # type: ignore
# raw_texts is used later to stop iteration. # raw_texts is used later to stop iteration.
texts, raw_texts = itertools.tee(texts) texts, raw_texts = itertools.tee(serialized_texts_with_ctx) # type: ignore
# for sending texts to worker # for sending texts to worker
texts_q: List[mp.Queue] = [mp.Queue() for _ in range(n_process)] texts_q: List[mp.Queue] = [mp.Queue() for _ in range(n_process)]
# for receiving byte-encoded docs from worker # for receiving byte-encoded docs from worker
@ -1618,7 +1635,13 @@ class Language:
procs = [ procs = [
mp.Process( mp.Process(
target=_apply_pipes, target=_apply_pipes,
args=(self._ensure_doc, pipes, rch, sch, Underscore.get_state()), args=(
self._ensure_doc_with_context,
pipes,
rch,
sch,
Underscore.get_state(),
),
) )
for rch, sch in zip(texts_q, bytedocs_send_ch) for rch, sch in zip(texts_q, bytedocs_send_ch)
] ]
@ -1631,12 +1654,12 @@ class Language:
recv.recv() for recv in cycle(bytedocs_recv_ch) recv.recv() for recv in cycle(bytedocs_recv_ch)
) )
try: try:
for i, (_, (byte_doc, byte_context, byte_error)) in enumerate( for i, (_, (byte_doc, context, byte_error)) in enumerate(
zip(raw_texts, byte_tuples), 1 zip(raw_texts, byte_tuples), 1
): ):
if byte_doc is not None: if byte_doc is not None:
doc = Doc(self.vocab).from_bytes(byte_doc) doc = Doc(self.vocab).from_bytes(byte_doc)
doc._context = byte_context doc._context = context
yield doc yield doc
elif byte_error is not None: elif byte_error is not None:
error = srsly.msgpack_loads(byte_error) error = srsly.msgpack_loads(byte_error)
@ -2163,7 +2186,7 @@ def _copy_examples(examples: Iterable[Example]) -> List[Example]:
def _apply_pipes( def _apply_pipes(
ensure_doc: Callable[[Union[str, Doc]], Doc], ensure_doc: Callable[[Union[str, Doc, bytes], _AnyContext], Doc],
pipes: Iterable[Callable[..., Iterator[Doc]]], pipes: Iterable[Callable[..., Iterator[Doc]]],
receiver, receiver,
sender, sender,
@ -2184,17 +2207,19 @@ def _apply_pipes(
Underscore.load_state(underscore_state) Underscore.load_state(underscore_state)
while True: while True:
try: try:
texts = receiver.get() texts_with_ctx = receiver.get()
docs = (ensure_doc(text) for text in texts) docs = (
ensure_doc(doc_like, context) for doc_like, context in texts_with_ctx
)
for pipe in pipes: for pipe in pipes:
docs = pipe(docs) # type: ignore[arg-type, assignment] docs = pipe(docs) # type: ignore[arg-type, assignment]
# Connection does not accept unpickable objects, so send list. # Connection does not accept unpickable objects, so send list.
byte_docs = [(doc.to_bytes(), doc._context, None) for doc in docs] byte_docs = [(doc.to_bytes(), doc._context, None) for doc in docs]
padding = [(None, None, None)] * (len(texts) - len(byte_docs)) padding = [(None, None, None)] * (len(texts_with_ctx) - len(byte_docs))
sender.send(byte_docs + padding) # type: ignore[operator] sender.send(byte_docs + padding) # type: ignore[operator]
except Exception: except Exception:
error_msg = [(None, None, srsly.msgpack_dumps(traceback.format_exc()))] error_msg = [(None, None, srsly.msgpack_dumps(traceback.format_exc()))]
padding = [(None, None, None)] * (len(texts) - 1) padding = [(None, None, None)] * (len(texts_with_ctx) - 1)
sender.send(error_msg + padding) sender.send(error_msg + padding)

View File

@ -85,7 +85,7 @@ class Table(OrderedDict):
value: The value to set. value: The value to set.
""" """
key = get_string_id(key) key = get_string_id(key)
OrderedDict.__setitem__(self, key, value) OrderedDict.__setitem__(self, key, value) # type:ignore[assignment]
self.bloom.add(key) self.bloom.add(key)
def set(self, key: Union[str, int], value: Any) -> None: def set(self, key: Union[str, int], value: Any) -> None:
@ -104,7 +104,7 @@ class Table(OrderedDict):
RETURNS: The value. RETURNS: The value.
""" """
key = get_string_id(key) key = get_string_id(key)
return OrderedDict.__getitem__(self, key) return OrderedDict.__getitem__(self, key) # type:ignore[index]
def get(self, key: Union[str, int], default: Optional[Any] = None) -> Any: def get(self, key: Union[str, int], default: Optional[Any] = None) -> Any:
"""Get the value for a given key. String keys will be hashed. """Get the value for a given key. String keys will be hashed.
@ -114,7 +114,7 @@ class Table(OrderedDict):
RETURNS: The value. RETURNS: The value.
""" """
key = get_string_id(key) key = get_string_id(key)
return OrderedDict.get(self, key, default) return OrderedDict.get(self, key, default) # type:ignore[arg-type]
def __contains__(self, key: Union[str, int]) -> bool: # type: ignore[override] def __contains__(self, key: Union[str, int]) -> bool: # type: ignore[override]
"""Check whether a key is in the table. String keys will be hashed. """Check whether a key is in the table. String keys will be hashed.

View File

@ -787,6 +787,7 @@ def _preprocess_pattern(token_specs, vocab, extensions_table, extra_predicates):
def _get_attr_values(spec, string_store): def _get_attr_values(spec, string_store):
attr_values = [] attr_values = []
for attr, value in spec.items(): for attr, value in spec.items():
input_attr = attr
if isinstance(attr, str): if isinstance(attr, str):
attr = attr.upper() attr = attr.upper()
if attr == '_': if attr == '_':
@ -815,7 +816,7 @@ def _get_attr_values(spec, string_store):
attr_values.append((attr, value)) attr_values.append((attr, value))
else: else:
# should be caught in validation # should be caught in validation
raise ValueError(Errors.E152.format(attr=attr)) raise ValueError(Errors.E152.format(attr=input_attr))
return attr_values return attr_values

View File

@ -23,7 +23,7 @@ def build_nel_encoder(
((tok2vec >> list2ragged()) & build_span_maker()) ((tok2vec >> list2ragged()) & build_span_maker())
>> extract_spans() >> extract_spans()
>> reduce_mean() >> reduce_mean()
>> residual(Maxout(nO=token_width, nI=token_width, nP=2, dropout=0.0)) # type: ignore[arg-type] >> residual(Maxout(nO=token_width, nI=token_width, nP=2, dropout=0.0)) # type: ignore
>> output_layer >> output_layer
) )
model.set_ref("output_layer", output_layer) model.set_ref("output_layer", output_layer)

View File

@ -72,7 +72,7 @@ def build_tb_parser_model(
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
tok2vec = chain( tok2vec = chain(
tok2vec, tok2vec,
cast(Model[List["Floats2d"], Floats2d], list2array()), list2array(),
Linear(hidden_width, t2v_width), Linear(hidden_width, t2v_width),
) )
tok2vec.set_dim("nO", hidden_width) tok2vec.set_dim("nO", hidden_width)

View File

@ -1,5 +1,5 @@
from typing import Optional, List, cast
from functools import partial from functools import partial
from typing import Optional, List
from thinc.types import Floats2d from thinc.types import Floats2d
from thinc.api import Model, reduce_mean, Linear, list2ragged, Logistic from thinc.api import Model, reduce_mean, Linear, list2ragged, Logistic
@ -59,7 +59,8 @@ def build_simple_cnn_text_classifier(
resizable_layer=resizable_layer, resizable_layer=resizable_layer,
) )
model.set_ref("tok2vec", tok2vec) model.set_ref("tok2vec", tok2vec)
model.set_dim("nO", nO) # type: ignore # TODO: remove type ignore once Thinc has been updated if nO is not None:
model.set_dim("nO", cast(int, nO))
model.attrs["multi_label"] = not exclusive_classes model.attrs["multi_label"] = not exclusive_classes
return model return model
@ -85,7 +86,7 @@ def build_bow_text_classifier(
if not no_output_layer: if not no_output_layer:
fill_defaults["b"] = NEG_VALUE fill_defaults["b"] = NEG_VALUE
output_layer = softmax_activation() if exclusive_classes else Logistic() output_layer = softmax_activation() if exclusive_classes else Logistic()
resizable_layer = resizable( # type: ignore[var-annotated] resizable_layer: Model[Floats2d, Floats2d] = resizable(
sparse_linear, sparse_linear,
resize_layer=partial(resize_linear_weighted, fill_defaults=fill_defaults), resize_layer=partial(resize_linear_weighted, fill_defaults=fill_defaults),
) )
@ -93,7 +94,8 @@ def build_bow_text_classifier(
model = with_cpu(model, model.ops) model = with_cpu(model, model.ops)
if output_layer: if output_layer:
model = model >> with_cpu(output_layer, output_layer.ops) model = model >> with_cpu(output_layer, output_layer.ops)
model.set_dim("nO", nO) # type: ignore[arg-type] if nO is not None:
model.set_dim("nO", cast(int, nO))
model.set_ref("output_layer", sparse_linear) model.set_ref("output_layer", sparse_linear)
model.attrs["multi_label"] = not exclusive_classes model.attrs["multi_label"] = not exclusive_classes
model.attrs["resize_output"] = partial( model.attrs["resize_output"] = partial(
@ -129,8 +131,8 @@ def build_text_classifier_v2(
output_layer = Linear(nO=nO, nI=nO_double) >> Logistic() output_layer = Linear(nO=nO, nI=nO_double) >> Logistic()
model = (linear_model | cnn_model) >> output_layer model = (linear_model | cnn_model) >> output_layer
model.set_ref("tok2vec", tok2vec) model.set_ref("tok2vec", tok2vec)
if model.has_dim("nO") is not False: if model.has_dim("nO") is not False and nO is not None:
model.set_dim("nO", nO) # type: ignore[arg-type] model.set_dim("nO", cast(int, nO))
model.set_ref("output_layer", linear_model.get_ref("output_layer")) model.set_ref("output_layer", linear_model.get_ref("output_layer"))
model.set_ref("attention_layer", attention_layer) model.set_ref("attention_layer", attention_layer)
model.set_ref("maxout_layer", maxout_layer) model.set_ref("maxout_layer", maxout_layer)
@ -164,7 +166,7 @@ def build_text_classifier_lowdata(
>> list2ragged() >> list2ragged()
>> ParametricAttention(width) >> ParametricAttention(width)
>> reduce_sum() >> reduce_sum()
>> residual(Relu(width, width)) ** 2 # type: ignore[arg-type] >> residual(Relu(width, width)) ** 2
>> Linear(nO, width) >> Linear(nO, width)
) )
if dropout: if dropout:

View File

@ -1,5 +1,5 @@
from typing import Optional, List, Union, cast from typing import Optional, List, Union, cast
from thinc.types import Floats2d, Ints2d, Ragged from thinc.types import Floats2d, Ints2d, Ragged, Ints1d
from thinc.api import chain, clone, concatenate, with_array, with_padded from thinc.api import chain, clone, concatenate, with_array, with_padded
from thinc.api import Model, noop, list2ragged, ragged2list, HashEmbed from thinc.api import Model, noop, list2ragged, ragged2list, HashEmbed
from thinc.api import expand_window, residual, Maxout, Mish, PyTorchLSTM from thinc.api import expand_window, residual, Maxout, Mish, PyTorchLSTM
@ -159,7 +159,7 @@ def MultiHashEmbed(
embeddings = [make_hash_embed(i) for i in range(len(attrs))] embeddings = [make_hash_embed(i) for i in range(len(attrs))]
concat_size = width * (len(embeddings) + include_static_vectors) concat_size = width * (len(embeddings) + include_static_vectors)
max_out: Model[Ragged, Ragged] = with_array( max_out: Model[Ragged, Ragged] = with_array(
Maxout(width, concat_size, nP=3, dropout=0.0, normalize=True) # type: ignore Maxout(width, concat_size, nP=3, dropout=0.0, normalize=True)
) )
if include_static_vectors: if include_static_vectors:
feature_extractor: Model[List[Doc], Ragged] = chain( feature_extractor: Model[List[Doc], Ragged] = chain(
@ -173,7 +173,7 @@ def MultiHashEmbed(
StaticVectors(width, dropout=0.0), StaticVectors(width, dropout=0.0),
), ),
max_out, max_out,
cast(Model[Ragged, List[Floats2d]], ragged2list()), ragged2list(),
) )
else: else:
model = chain( model = chain(
@ -181,7 +181,7 @@ def MultiHashEmbed(
cast(Model[List[Ints2d], Ragged], list2ragged()), cast(Model[List[Ints2d], Ragged], list2ragged()),
with_array(concatenate(*embeddings)), with_array(concatenate(*embeddings)),
max_out, max_out,
cast(Model[Ragged, List[Floats2d]], ragged2list()), ragged2list(),
) )
return model return model
@ -232,12 +232,12 @@ def CharacterEmbed(
feature_extractor: Model[List[Doc], Ragged] = chain( feature_extractor: Model[List[Doc], Ragged] = chain(
FeatureExtractor([feature]), FeatureExtractor([feature]),
cast(Model[List[Ints2d], Ragged], list2ragged()), cast(Model[List[Ints2d], Ragged], list2ragged()),
with_array(HashEmbed(nO=width, nV=rows, column=0, seed=5)), # type: ignore with_array(HashEmbed(nO=width, nV=rows, column=0, seed=5)), # type: ignore[misc]
) )
max_out: Model[Ragged, Ragged] max_out: Model[Ragged, Ragged]
if include_static_vectors: if include_static_vectors:
max_out = with_array( max_out = with_array(
Maxout(width, nM * nC + (2 * width), nP=3, normalize=True, dropout=0.0) # type: ignore Maxout(width, nM * nC + (2 * width), nP=3, normalize=True, dropout=0.0)
) )
model = chain( model = chain(
concatenate( concatenate(
@ -246,11 +246,11 @@ def CharacterEmbed(
StaticVectors(width, dropout=0.0), StaticVectors(width, dropout=0.0),
), ),
max_out, max_out,
cast(Model[Ragged, List[Floats2d]], ragged2list()), ragged2list(),
) )
else: else:
max_out = with_array( max_out = with_array(
Maxout(width, nM * nC + width, nP=3, normalize=True, dropout=0.0) # type: ignore Maxout(width, nM * nC + width, nP=3, normalize=True, dropout=0.0)
) )
model = chain( model = chain(
concatenate( concatenate(
@ -258,7 +258,7 @@ def CharacterEmbed(
feature_extractor, feature_extractor,
), ),
max_out, max_out,
cast(Model[Ragged, List[Floats2d]], ragged2list()), ragged2list(),
) )
return model return model
@ -289,10 +289,10 @@ def MaxoutWindowEncoder(
normalize=True, normalize=True,
), ),
) )
model = clone(residual(cnn), depth) # type: ignore[arg-type] model = clone(residual(cnn), depth)
model.set_dim("nO", width) model.set_dim("nO", width)
receptive_field = window_size * depth receptive_field = window_size * depth
return with_array(model, pad=receptive_field) # type: ignore[arg-type] return with_array(model, pad=receptive_field)
@registry.architectures("spacy.MishWindowEncoder.v2") @registry.architectures("spacy.MishWindowEncoder.v2")
@ -313,9 +313,9 @@ def MishWindowEncoder(
expand_window(window_size=window_size), expand_window(window_size=window_size),
Mish(nO=width, nI=width * ((window_size * 2) + 1), dropout=0.0, normalize=True), Mish(nO=width, nI=width * ((window_size * 2) + 1), dropout=0.0, normalize=True),
) )
model = clone(residual(cnn), depth) # type: ignore[arg-type] model = clone(residual(cnn), depth)
model.set_dim("nO", width) model.set_dim("nO", width)
return with_array(model) # type: ignore[arg-type] return with_array(model)
@registry.architectures("spacy.TorchBiLSTMEncoder.v1") @registry.architectures("spacy.TorchBiLSTMEncoder.v1")

View File

@ -1,4 +1,5 @@
from libc.string cimport memset, memcpy from libc.string cimport memset, memcpy
from thinc.backends.cblas cimport CBlas
from ..typedefs cimport weight_t, hash_t from ..typedefs cimport weight_t, hash_t
from ..pipeline._parser_internals._state cimport StateC from ..pipeline._parser_internals._state cimport StateC
@ -38,7 +39,7 @@ cdef ActivationsC alloc_activations(SizesC n) nogil
cdef void free_activations(const ActivationsC* A) nogil cdef void free_activations(const ActivationsC* A) nogil
cdef void predict_states(ActivationsC* A, StateC** states, cdef void predict_states(CBlas cblas, ActivationsC* A, StateC** states,
const WeightsC* W, SizesC n) nogil const WeightsC* W, SizesC n) nogil
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil

View File

@ -4,11 +4,10 @@ from libc.math cimport exp
from libc.string cimport memset, memcpy from libc.string cimport memset, memcpy
from libc.stdlib cimport calloc, free, realloc from libc.stdlib cimport calloc, free, realloc
from thinc.backends.linalg cimport Vec, VecVec from thinc.backends.linalg cimport Vec, VecVec
cimport blis.cy
import numpy import numpy
import numpy.random import numpy.random
from thinc.api import Model, CupyOps, NumpyOps from thinc.api import Model, CupyOps, NumpyOps, get_ops
from .. import util from .. import util
from ..errors import Errors from ..errors import Errors
@ -91,7 +90,7 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
A._curr_size = n.states A._curr_size = n.states
cdef void predict_states(ActivationsC* A, StateC** states, cdef void predict_states(CBlas cblas, ActivationsC* A, StateC** states,
const WeightsC* W, SizesC n) nogil: const WeightsC* W, SizesC n) nogil:
cdef double one = 1.0 cdef double one = 1.0
resize_activations(A, n) resize_activations(A, n)
@ -99,7 +98,7 @@ cdef void predict_states(ActivationsC* A, StateC** states,
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats) states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float)) memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float)) memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float))
sum_state_features(A.unmaxed, sum_state_features(cblas, A.unmaxed,
W.feat_weights, A.token_ids, n.states, n.feats, n.hiddens * n.pieces) W.feat_weights, A.token_ids, n.states, n.feats, n.hiddens * n.pieces)
for i in range(n.states): for i in range(n.states):
VecVec.add_i(&A.unmaxed[i*n.hiddens*n.pieces], VecVec.add_i(&A.unmaxed[i*n.hiddens*n.pieces],
@ -113,12 +112,10 @@ cdef void predict_states(ActivationsC* A, StateC** states,
memcpy(A.scores, A.hiddens, n.states * n.classes * sizeof(float)) memcpy(A.scores, A.hiddens, n.states * n.classes * sizeof(float))
else: else:
# Compute hidden-to-output # Compute hidden-to-output
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.TRANSPOSE, cblas.sgemm()(False, True, n.states, n.classes, n.hiddens,
n.states, n.classes, n.hiddens, one, 1.0, <const float *>A.hiddens, n.hiddens,
<float*>A.hiddens, n.hiddens, 1, <const float *>W.hidden_weights, n.hiddens,
<float*>W.hidden_weights, n.hiddens, 1, 0.0, A.scores, n.classes)
one,
<float*>A.scores, n.classes, 1)
# Add bias # Add bias
for i in range(n.states): for i in range(n.states):
VecVec.add_i(&A.scores[i*n.classes], VecVec.add_i(&A.scores[i*n.classes],
@ -135,7 +132,7 @@ cdef void predict_states(ActivationsC* A, StateC** states,
A.scores[i*n.classes+j] = min_ A.scores[i*n.classes+j] = min_
cdef void sum_state_features(float* output, cdef void sum_state_features(CBlas cblas, float* output,
const float* cached, const int* token_ids, int B, int F, int O) nogil: const float* cached, const int* token_ids, int B, int F, int O) nogil:
cdef int idx, b, f, i cdef int idx, b, f, i
cdef const float* feature cdef const float* feature
@ -150,9 +147,7 @@ cdef void sum_state_features(float* output,
else: else:
idx = token_ids[f] * id_stride + f*O idx = token_ids[f] * id_stride + f*O
feature = &cached[idx] feature = &cached[idx]
blis.cy.axpyv(blis.cy.NO_CONJUGATE, O, one, cblas.saxpy()(O, one, <const float*>feature, 1, &output[b*O], 1)
<float*>feature, 1,
&output[b*O], 1)
token_ids += F token_ids += F
@ -443,9 +438,15 @@ cdef class precompute_hiddens:
# - Output from backward on GPU # - Output from backward on GPU
bp_hiddens = self._bp_hiddens bp_hiddens = self._bp_hiddens
cdef CBlas cblas
if isinstance(self.ops, CupyOps):
cblas = get_ops("cpu").cblas()
else:
cblas = self.ops.cblas()
feat_weights = self.get_feat_weights() feat_weights = self.get_feat_weights()
cdef int[:, ::1] ids = token_ids cdef int[:, ::1] ids = token_ids
sum_state_features(<float*>state_vector.data, sum_state_features(cblas, <float*>state_vector.data,
feat_weights, &ids[0,0], feat_weights, &ids[0,0],
token_ids.shape[0], self.nF, self.nO*self.nP) token_ids.shape[0], self.nF, self.nO*self.nP)
state_vector += self.bias state_vector += self.bias

View File

@ -40,17 +40,15 @@ def forward(
if not token_count: if not token_count:
return _handle_empty(model.ops, model.get_dim("nO")) return _handle_empty(model.ops, model.get_dim("nO"))
key_attr: int = model.attrs["key_attr"] key_attr: int = model.attrs["key_attr"]
keys: Ints1d = model.ops.flatten( keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs])
cast(Sequence, [doc.to_array(key_attr) for doc in docs])
)
vocab: Vocab = docs[0].vocab vocab: Vocab = docs[0].vocab
W = cast(Floats2d, model.ops.as_contig(model.get_param("W"))) W = cast(Floats2d, model.ops.as_contig(model.get_param("W")))
if vocab.vectors.mode == Mode.default: if vocab.vectors.mode == Mode.default:
V = cast(Floats2d, model.ops.asarray(vocab.vectors.data)) V = model.ops.asarray(vocab.vectors.data)
rows = vocab.vectors.find(keys=keys) rows = vocab.vectors.find(keys=keys)
V = model.ops.as_contig(V[rows]) V = model.ops.as_contig(V[rows])
elif vocab.vectors.mode == Mode.floret: elif vocab.vectors.mode == Mode.floret:
V = cast(Floats2d, vocab.vectors.get_batch(keys)) V = vocab.vectors.get_batch(keys)
V = model.ops.as_contig(V) V = model.ops.as_contig(V)
else: else:
raise RuntimeError(Errors.E896) raise RuntimeError(Errors.E896)
@ -62,9 +60,7 @@ def forward(
# Convert negative indices to 0-vectors # Convert negative indices to 0-vectors
# TODO: more options for UNK tokens # TODO: more options for UNK tokens
vectors_data[rows < 0] = 0 vectors_data[rows < 0] = 0
output = Ragged( output = Ragged(vectors_data, model.ops.asarray1i([len(doc) for doc in docs]))
vectors_data, model.ops.asarray([len(doc) for doc in docs], dtype="i") # type: ignore
)
mask = None mask = None
if is_train: if is_train:
mask = _get_drop_mask(model.ops, W.shape[0], model.attrs.get("dropout_rate")) mask = _get_drop_mask(model.ops, W.shape[0], model.attrs.get("dropout_rate"))
@ -77,7 +73,9 @@ def forward(
model.inc_grad( model.inc_grad(
"W", "W",
model.ops.gemm( model.ops.gemm(
cast(Floats2d, d_output.data), model.ops.as_contig(V), trans1=True cast(Floats2d, d_output.data),
cast(Floats2d, model.ops.as_contig(V)),
trans1=True,
), ),
) )
return [] return []

View File

@ -13,6 +13,7 @@ from .sentencizer import Sentencizer
from .tagger import Tagger from .tagger import Tagger
from .textcat import TextCategorizer from .textcat import TextCategorizer
from .spancat import SpanCategorizer from .spancat import SpanCategorizer
from .span_ruler import SpanRuler
from .textcat_multilabel import MultiLabel_TextCategorizer from .textcat_multilabel import MultiLabel_TextCategorizer
from .tok2vec import Tok2Vec from .tok2vec import Tok2Vec
from .functions import merge_entities, merge_noun_chunks, merge_subtokens from .functions import merge_entities, merge_noun_chunks, merge_subtokens
@ -30,6 +31,7 @@ __all__ = [
"SentenceRecognizer", "SentenceRecognizer",
"Sentencizer", "Sentencizer",
"SpanCategorizer", "SpanCategorizer",
"SpanRuler",
"Tagger", "Tagger",
"TextCategorizer", "TextCategorizer",
"Tok2Vec", "Tok2Vec",

View File

@ -0,0 +1,11 @@
#ifndef NONPROJ_HH
#define NONPROJ_HH
#include <stdexcept>
#include <string>
void raise_domain_error(std::string const &msg) {
throw std::domain_error(msg);
}
#endif // NONPROJ_HH

View File

@ -0,0 +1,4 @@
from libcpp.string cimport string
cdef extern from "nonproj.hh":
cdef void raise_domain_error(const string& msg) nogil except +

View File

@ -4,10 +4,13 @@ for doing pseudo-projective parsing implementation uses the HEAD decoration
scheme. scheme.
""" """
from copy import copy from copy import copy
from cython.operator cimport preincrement as incr, dereference as deref
from libc.limits cimport INT_MAX from libc.limits cimport INT_MAX
from libc.stdlib cimport abs from libc.stdlib cimport abs
from libcpp cimport bool from libcpp cimport bool
from libcpp.string cimport string, to_string
from libcpp.vector cimport vector from libcpp.vector cimport vector
from libcpp.unordered_set cimport unordered_set
from ...tokens.doc cimport Doc, set_children_from_heads from ...tokens.doc cimport Doc, set_children_from_heads
@ -49,7 +52,7 @@ def is_nonproj_arc(tokenid, heads):
return _is_nonproj_arc(tokenid, c_heads) return _is_nonproj_arc(tokenid, c_heads)
cdef bool _is_nonproj_arc(int tokenid, const vector[int]& heads) nogil: cdef bool _is_nonproj_arc(int tokenid, const vector[int]& heads) nogil except *:
# definition (e.g. Havelka 2007): an arc h -> d, h < d is non-projective # definition (e.g. Havelka 2007): an arc h -> d, h < d is non-projective
# if there is a token k, h < k < d such that h is not # if there is a token k, h < k < d such that h is not
# an ancestor of k. Same for h -> d, h > d # an ancestor of k. Same for h -> d, h > d
@ -65,25 +68,49 @@ cdef bool _is_nonproj_arc(int tokenid, const vector[int]& heads) nogil:
else: else:
start, end = (tokenid+1, head) start, end = (tokenid+1, head)
for k in range(start, end): for k in range(start, end):
if _has_head_as_ancestor(k, head, heads): if not _has_head_as_ancestor(k, head, heads):
continue
else: # head not in ancestors: d -> h is non-projective
return True return True
return False return False
cdef bool _has_head_as_ancestor(int tokenid, int head, const vector[int]& heads) nogil: cdef bool _has_head_as_ancestor(int tokenid, int head, const vector[int]& heads) nogil except *:
ancestor = tokenid ancestor = tokenid
cnt = 0 cdef unordered_set[int] seen_tokens
while cnt < heads.size(): seen_tokens.insert(ancestor)
while True:
# Reached the head or a disconnected node
if heads[ancestor] == head or heads[ancestor] < 0: if heads[ancestor] == head or heads[ancestor] < 0:
return True return True
# Reached the root
if heads[ancestor] == ancestor:
return False
ancestor = heads[ancestor] ancestor = heads[ancestor]
cnt += 1 result = seen_tokens.insert(ancestor)
# Found cycle
if not result.second:
raise_domain_error(heads_to_string(heads))
return False return False
cdef string heads_to_string(const vector[int]& heads) nogil:
cdef vector[int].const_iterator citer
cdef string cycle_str
cycle_str.append("Found cycle in dependency graph: [")
# FIXME: Rewrite using ostringstream when available in Cython.
citer = heads.const_begin()
while citer != heads.const_end():
if citer != heads.const_begin():
cycle_str.append(", ")
cycle_str.append(to_string(deref(citer)))
incr(citer)
cycle_str.append("]")
return cycle_str
def is_nonproj_tree(heads): def is_nonproj_tree(heads):
cdef vector[int] c_heads = _heads_to_c(heads) cdef vector[int] c_heads = _heads_to_c(heads)
# a tree is non-projective if at least one arc is non-projective # a tree is non-projective if at least one arc is non-projective
@ -176,11 +203,12 @@ def get_smallest_nonproj_arc_slow(heads):
return _get_smallest_nonproj_arc(c_heads) return _get_smallest_nonproj_arc(c_heads)
cdef int _get_smallest_nonproj_arc(const vector[int]& heads) nogil: cdef int _get_smallest_nonproj_arc(const vector[int]& heads) nogil except -2:
# return the smallest non-proj arc or None # return the smallest non-proj arc or None
# where size is defined as the distance between dep and head # where size is defined as the distance between dep and head
# and ties are broken left to right # and ties are broken left to right
cdef int smallest_size = INT_MAX cdef int smallest_size = INT_MAX
# -1 means its already projective.
cdef int smallest_np_arc = -1 cdef int smallest_np_arc = -1
cdef int size cdef int size
cdef int tokenid cdef int tokenid

View File

@ -138,7 +138,7 @@ class EditTreeLemmatizer(TrainablePipe):
truths.append(eg_truths) truths.append(eg_truths)
d_scores, loss = loss_func(scores, truths) # type: ignore d_scores, loss = loss_func(scores, truths)
if self.model.ops.xp.isnan(loss): if self.model.ops.xp.isnan(loss):
raise ValueError(Errors.E910.format(name=self.name)) raise ValueError(Errors.E910.format(name=self.name))

View File

@ -234,10 +234,11 @@ class EntityLinker(TrainablePipe):
nO = self.kb.entity_vector_length nO = self.kb.entity_vector_length
doc_sample = [] doc_sample = []
vector_sample = [] vector_sample = []
for example in islice(get_examples(), 10): for eg in islice(get_examples(), 10):
doc = example.x doc = eg.x
if self.use_gold_ents: if self.use_gold_ents:
doc.ents = example.y.ents ents, _ = eg.get_aligned_ents_and_ner()
doc.ents = ents
doc_sample.append(doc) doc_sample.append(doc)
vector_sample.append(self.model.ops.alloc1f(nO)) vector_sample.append(self.model.ops.alloc1f(nO))
assert len(doc_sample) > 0, Errors.E923.format(name=self.name) assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
@ -312,7 +313,8 @@ class EntityLinker(TrainablePipe):
for doc, ex in zip(docs, examples): for doc, ex in zip(docs, examples):
if self.use_gold_ents: if self.use_gold_ents:
doc.ents = ex.reference.ents ents, _ = ex.get_aligned_ents_and_ner()
doc.ents = ents
else: else:
# only keep matching ents # only keep matching ents
doc.ents = ex.get_matching_ents() doc.ents = ex.get_matching_ents()
@ -345,7 +347,7 @@ class EntityLinker(TrainablePipe):
for eg in examples: for eg in examples:
kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True) kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
for ent in eg.reference.ents: for ent in eg.get_matching_ents():
kb_id = kb_ids[ent.start] kb_id = kb_ids[ent.start]
if kb_id: if kb_id:
entity_encoding = self.kb.get_vector(kb_id) entity_encoding = self.kb.get_vector(kb_id)
@ -353,22 +355,25 @@ class EntityLinker(TrainablePipe):
keep_ents.append(eidx) keep_ents.append(eidx)
eidx += 1 eidx += 1
entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32") entity_encodings = self.model.ops.asarray2f(entity_encodings, dtype="float32")
selected_encodings = sentence_encodings[keep_ents] selected_encodings = sentence_encodings[keep_ents]
# If the entity encodings list is empty, then # if there are no matches, short circuit
if not keep_ents:
out = self.model.ops.alloc2f(*sentence_encodings.shape)
return 0, out
if selected_encodings.shape != entity_encodings.shape: if selected_encodings.shape != entity_encodings.shape:
err = Errors.E147.format( err = Errors.E147.format(
method="get_loss", msg="gold entities do not match up" method="get_loss", msg="gold entities do not match up"
) )
raise RuntimeError(err) raise RuntimeError(err)
# TODO: fix typing issue here gradients = self.distance.get_grad(selected_encodings, entity_encodings)
gradients = self.distance.get_grad(selected_encodings, entity_encodings) # type: ignore
# to match the input size, we need to give a zero gradient for items not in the kb # to match the input size, we need to give a zero gradient for items not in the kb
out = self.model.ops.alloc2f(*sentence_encodings.shape) out = self.model.ops.alloc2f(*sentence_encodings.shape)
out[keep_ents] = gradients out[keep_ents] = gradients
loss = self.distance.get_loss(selected_encodings, entity_encodings) # type: ignore loss = self.distance.get_loss(selected_encodings, entity_encodings)
loss = loss / len(entity_encodings) loss = loss / len(entity_encodings)
return float(loss), out return float(loss), out
@ -385,18 +390,21 @@ class EntityLinker(TrainablePipe):
self.validate_kb() self.validate_kb()
entity_count = 0 entity_count = 0
final_kb_ids: List[str] = [] final_kb_ids: List[str] = []
xp = self.model.ops.xp
if not docs: if not docs:
return final_kb_ids return final_kb_ids
if isinstance(docs, Doc): if isinstance(docs, Doc):
docs = [docs] docs = [docs]
for i, doc in enumerate(docs): for i, doc in enumerate(docs):
if len(doc) == 0:
continue
sentences = [s for s in doc.sents] sentences = [s for s in doc.sents]
if len(doc) > 0: # Looping through each entity (TODO: rewrite)
# Looping through each entity (TODO: rewrite) for ent in doc.ents:
for ent in doc.ents: sent_index = sentences.index(ent.sent)
sent = ent.sent assert sent_index >= 0
sent_index = sentences.index(sent)
assert sent_index >= 0 if self.incl_context:
# get n_neighbour sentences, clipped to the length of the document # get n_neighbour sentences, clipped to the length of the document
start_sentence = max(0, sent_index - self.n_sents) start_sentence = max(0, sent_index - self.n_sents)
end_sentence = min(len(sentences) - 1, sent_index + self.n_sents) end_sentence = min(len(sentences) - 1, sent_index + self.n_sents)
@ -404,55 +412,53 @@ class EntityLinker(TrainablePipe):
end_token = sentences[end_sentence].end end_token = sentences[end_sentence].end
sent_doc = doc[start_token:end_token].as_doc() sent_doc = doc[start_token:end_token].as_doc()
# currently, the context is the same for each entity in a sentence (should be refined) # currently, the context is the same for each entity in a sentence (should be refined)
xp = self.model.ops.xp sentence_encoding = self.model.predict([sent_doc])[0]
if self.incl_context: sentence_encoding_t = sentence_encoding.T
sentence_encoding = self.model.predict([sent_doc])[0] sentence_norm = xp.linalg.norm(sentence_encoding_t)
sentence_encoding_t = sentence_encoding.T entity_count += 1
sentence_norm = xp.linalg.norm(sentence_encoding_t) if ent.label_ in self.labels_discard:
entity_count += 1 # ignoring this entity - setting to NIL
if ent.label_ in self.labels_discard: final_kb_ids.append(self.NIL)
# ignoring this entity - setting to NIL else:
candidates = list(self.get_candidates(self.kb, ent))
if not candidates:
# no prediction possible for this entity - setting to NIL
final_kb_ids.append(self.NIL) final_kb_ids.append(self.NIL)
elif len(candidates) == 1:
# shortcut for efficiency reasons: take the 1 candidate
# TODO: thresholding
final_kb_ids.append(candidates[0].entity_)
else: else:
candidates = list(self.get_candidates(self.kb, ent)) random.shuffle(candidates)
if not candidates: # set all prior probabilities to 0 if incl_prior=False
# no prediction possible for this entity - setting to NIL prior_probs = xp.asarray([c.prior_prob for c in candidates])
final_kb_ids.append(self.NIL) if not self.incl_prior:
elif len(candidates) == 1: prior_probs = xp.asarray([0.0 for _ in candidates])
# shortcut for efficiency reasons: take the 1 candidate scores = prior_probs
# TODO: thresholding # add in similarity from the context
final_kb_ids.append(candidates[0].entity_) if self.incl_context:
else: entity_encodings = xp.asarray(
random.shuffle(candidates) [c.entity_vector for c in candidates]
# set all prior probabilities to 0 if incl_prior=False )
prior_probs = xp.asarray([c.prior_prob for c in candidates]) entity_norm = xp.linalg.norm(entity_encodings, axis=1)
if not self.incl_prior: if len(entity_encodings) != len(prior_probs):
prior_probs = xp.asarray([0.0 for _ in candidates]) raise RuntimeError(
scores = prior_probs Errors.E147.format(
# add in similarity from the context method="predict",
if self.incl_context: msg="vectors not of equal length",
entity_encodings = xp.asarray(
[c.entity_vector for c in candidates]
)
entity_norm = xp.linalg.norm(entity_encodings, axis=1)
if len(entity_encodings) != len(prior_probs):
raise RuntimeError(
Errors.E147.format(
method="predict",
msg="vectors not of equal length",
)
) )
# cosine similarity
sims = xp.dot(entity_encodings, sentence_encoding_t) / (
sentence_norm * entity_norm
) )
if sims.shape != prior_probs.shape: # cosine similarity
raise ValueError(Errors.E161) sims = xp.dot(entity_encodings, sentence_encoding_t) / (
scores = prior_probs + sims - (prior_probs * sims) sentence_norm * entity_norm
# TODO: thresholding )
best_index = scores.argmax().item() if sims.shape != prior_probs.shape:
best_candidate = candidates[best_index] raise ValueError(Errors.E161)
final_kb_ids.append(best_candidate.entity_) scores = prior_probs + sims - (prior_probs * sims)
# TODO: thresholding
best_index = scores.argmax().item()
best_candidate = candidates[best_index]
final_kb_ids.append(best_candidate.entity_)
if not (len(final_kb_ids) == entity_count): if not (len(final_kb_ids) == entity_count):
err = Errors.E147.format( err = Errors.E147.format(
method="predict", msg="result variables not of equal length" method="predict", msg="result variables not of equal length"

View File

@ -159,10 +159,8 @@ class EntityRuler(Pipe):
self._require_patterns() self._require_patterns()
with warnings.catch_warnings(): with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="\\[W036") warnings.filterwarnings("ignore", message="\\[W036")
matches = cast( matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc))
List[Tuple[int, int, int]],
list(self.matcher(doc)) + list(self.phrase_matcher(doc)),
)
final_matches = set( final_matches = set(
[(m_id, start, end) for m_id, start, end in matches if start != end] [(m_id, start, end) for m_id, start, end in matches if start != end]
) )
@ -182,10 +180,7 @@ class EntityRuler(Pipe):
if start not in seen_tokens and end - 1 not in seen_tokens: if start not in seen_tokens and end - 1 not in seen_tokens:
if match_id in self._ent_ids: if match_id in self._ent_ids:
label, ent_id = self._ent_ids[match_id] label, ent_id = self._ent_ids[match_id]
span = Span(doc, start, end, label=label) span = Span(doc, start, end, label=label, span_id=ent_id)
if ent_id:
for token in span:
token.ent_id_ = ent_id
else: else:
span = Span(doc, start, end, label=match_id) span = Span(doc, start, end, label=match_id)
new_entities.append(span) new_entities.append(span)
@ -359,7 +354,9 @@ class EntityRuler(Pipe):
(label, eid) for (label, eid) in self._ent_ids.values() if eid == ent_id (label, eid) for (label, eid) in self._ent_ids.values() if eid == ent_id
] ]
if not label_id_pairs: if not label_id_pairs:
raise ValueError(Errors.E1024.format(ent_id=ent_id)) raise ValueError(
Errors.E1024.format(attr_type="ID", label=ent_id, component=self.name)
)
created_labels = [ created_labels = [
self._create_label(label, eid) for (label, eid) in label_id_pairs self._create_label(label, eid) for (label, eid) in label_id_pairs
] ]

View File

@ -213,15 +213,14 @@ class EntityLinker_v1(TrainablePipe):
if kb_id: if kb_id:
entity_encoding = self.kb.get_vector(kb_id) entity_encoding = self.kb.get_vector(kb_id)
entity_encodings.append(entity_encoding) entity_encodings.append(entity_encoding)
entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32") entity_encodings = self.model.ops.asarray2f(entity_encodings)
if sentence_encodings.shape != entity_encodings.shape: if sentence_encodings.shape != entity_encodings.shape:
err = Errors.E147.format( err = Errors.E147.format(
method="get_loss", msg="gold entities do not match up" method="get_loss", msg="gold entities do not match up"
) )
raise RuntimeError(err) raise RuntimeError(err)
# TODO: fix typing issue here gradients = self.distance.get_grad(sentence_encodings, entity_encodings)
gradients = self.distance.get_grad(sentence_encodings, entity_encodings) # type: ignore loss = self.distance.get_loss(sentence_encodings, entity_encodings)
loss = self.distance.get_loss(sentence_encodings, entity_encodings) # type: ignore
loss = loss / len(entity_encodings) loss = loss / len(entity_encodings)
return float(loss), gradients return float(loss), gradients

View File

@ -31,7 +31,7 @@ cdef class Pipe:
and returned. This usually happens under the hood when the nlp object and returned. This usually happens under the hood when the nlp object
is called on a text and all components are applied to the Doc. is called on a text and all components are applied to the Doc.
docs (Doc): The Doc to process. doc (Doc): The Doc to process.
RETURNS (Doc): The processed Doc. RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/pipe#call DOCS: https://spacy.io/api/pipe#call

View File

@ -0,0 +1,569 @@
from typing import Optional, Union, List, Dict, Tuple, Iterable, Any, Callable
from typing import Sequence, Set, cast
import warnings
from functools import partial
from pathlib import Path
import srsly
from .pipe import Pipe
from ..training import Example
from ..language import Language
from ..errors import Errors, Warnings
from ..util import ensure_path, SimpleFrozenList, registry
from ..tokens import Doc, Span
from ..scorer import Scorer
from ..matcher import Matcher, PhraseMatcher
from .. import util
PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
DEFAULT_SPANS_KEY = "ruler"
@Language.factory(
"future_entity_ruler",
assigns=["doc.ents"],
default_config={
"phrase_matcher_attr": None,
"validate": False,
"overwrite_ents": False,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
"ent_id_sep": "__unused__",
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)
def make_entity_ruler(
nlp: Language,
name: str,
phrase_matcher_attr: Optional[Union[int, str]],
validate: bool,
overwrite_ents: bool,
scorer: Optional[Callable],
ent_id_sep: str,
):
if overwrite_ents:
ents_filter = prioritize_new_ents_filter
else:
ents_filter = prioritize_existing_ents_filter
return SpanRuler(
nlp,
name,
spans_key=None,
spans_filter=None,
annotate_ents=True,
ents_filter=ents_filter,
phrase_matcher_attr=phrase_matcher_attr,
validate=validate,
overwrite=False,
scorer=scorer,
)
@Language.factory(
"span_ruler",
assigns=["doc.spans"],
default_config={
"spans_key": DEFAULT_SPANS_KEY,
"spans_filter": None,
"annotate_ents": False,
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
"phrase_matcher_attr": None,
"validate": False,
"overwrite": True,
"scorer": {
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
"spans_key": DEFAULT_SPANS_KEY,
},
},
default_score_weights={
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_per_type": None,
},
)
def make_span_ruler(
nlp: Language,
name: str,
spans_key: Optional[str],
spans_filter: Optional[Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]],
annotate_ents: bool,
ents_filter: Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]],
phrase_matcher_attr: Optional[Union[int, str]],
validate: bool,
overwrite: bool,
scorer: Optional[Callable],
):
return SpanRuler(
nlp,
name,
spans_key=spans_key,
spans_filter=spans_filter,
annotate_ents=annotate_ents,
ents_filter=ents_filter,
phrase_matcher_attr=phrase_matcher_attr,
validate=validate,
overwrite=overwrite,
scorer=scorer,
)
def prioritize_new_ents_filter(
entities: Iterable[Span], spans: Iterable[Span]
) -> List[Span]:
"""Merge entities and spans into one list without overlaps by allowing
spans to overwrite any entities that they overlap with. Intended to
replicate the overwrite_ents=True behavior from the EntityRuler.
entities (Iterable[Span]): The entities, already filtered for overlaps.
spans (Iterable[Span]): The spans to merge, may contain overlaps.
RETURNS (List[Span]): Filtered list of non-overlapping spans.
"""
get_sort_key = lambda span: (span.end - span.start, -span.start)
spans = sorted(spans, key=get_sort_key, reverse=True)
entities = list(entities)
new_entities = []
seen_tokens: Set[int] = set()
for span in spans:
start = span.start
end = span.end
if all(token.i not in seen_tokens for token in span):
new_entities.append(span)
entities = [e for e in entities if not (e.start < end and e.end > start)]
seen_tokens.update(range(start, end))
return entities + new_entities
@registry.misc("spacy.prioritize_new_ents_filter.v1")
def make_prioritize_new_ents_filter():
return prioritize_new_ents_filter
def prioritize_existing_ents_filter(
entities: Iterable[Span], spans: Iterable[Span]
) -> List[Span]:
"""Merge entities and spans into one list without overlaps by prioritizing
existing entities. Intended to replicate the overwrite_ents=False behavior
from the EntityRuler.
entities (Iterable[Span]): The entities, already filtered for overlaps.
spans (Iterable[Span]): The spans to merge, may contain overlaps.
RETURNS (List[Span]): Filtered list of non-overlapping spans.
"""
get_sort_key = lambda span: (span.end - span.start, -span.start)
spans = sorted(spans, key=get_sort_key, reverse=True)
entities = list(entities)
new_entities = []
seen_tokens: Set[int] = set()
seen_tokens.update(*(range(ent.start, ent.end) for ent in entities))
for span in spans:
start = span.start
end = span.end
if all(token.i not in seen_tokens for token in span):
new_entities.append(span)
seen_tokens.update(range(start, end))
return entities + new_entities
@registry.misc("spacy.prioritize_existing_ents_filter.v1")
def make_preverse_existing_ents_filter():
return prioritize_existing_ents_filter
def overlapping_labeled_spans_score(
examples: Iterable[Example], *, spans_key=DEFAULT_SPANS_KEY, **kwargs
) -> Dict[str, Any]:
kwargs = dict(kwargs)
attr_prefix = f"spans_"
kwargs.setdefault("attr", f"{attr_prefix}{spans_key}")
kwargs.setdefault("allow_overlap", True)
kwargs.setdefault("labeled", True)
kwargs.setdefault(
"getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], [])
)
kwargs.setdefault("has_annotation", lambda doc: spans_key in doc.spans)
return Scorer.score_spans(examples, **kwargs)
@registry.scorers("spacy.overlapping_labeled_spans_scorer.v1")
def make_overlapping_labeled_spans_scorer(spans_key: str = DEFAULT_SPANS_KEY):
return partial(overlapping_labeled_spans_score, spans_key=spans_key)
class SpanRuler(Pipe):
"""The SpanRuler lets you add spans to the `Doc.spans` using token-based
rules or exact phrase matches.
DOCS: https://spacy.io/api/spanruler
USAGE: https://spacy.io/usage/rule-based-matching#spanruler
"""
def __init__(
self,
nlp: Language,
name: str = "span_ruler",
*,
spans_key: Optional[str] = DEFAULT_SPANS_KEY,
spans_filter: Optional[
Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]
] = None,
annotate_ents: bool = False,
ents_filter: Callable[
[Iterable[Span], Iterable[Span]], Iterable[Span]
] = util.filter_chain_spans,
phrase_matcher_attr: Optional[Union[int, str]] = None,
validate: bool = False,
overwrite: bool = False,
scorer: Optional[Callable] = partial(
overlapping_labeled_spans_score, spans_key=DEFAULT_SPANS_KEY
),
) -> None:
"""Initialize the span ruler. If patterns are supplied here, they
need to be a list of dictionaries with a `"label"` and `"pattern"`
key. A pattern can either be a token pattern (list) or a phrase pattern
(string). For example: `{'label': 'ORG', 'pattern': 'Apple'}`.
nlp (Language): The shared nlp object to pass the vocab to the matchers
and process phrase patterns.
name (str): Instance name of the current pipeline component. Typically
passed in automatically from the factory when the component is
added. Used to disable the current span ruler while creating
phrase patterns with the nlp object.
spans_key (Optional[str]): The spans key to save the spans under. If
`None`, no spans are saved. Defaults to "ruler".
spans_filter (Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]):
The optional method to filter spans before they are assigned to
doc.spans. Defaults to `None`.
annotate_ents (bool): Whether to save spans to doc.ents. Defaults to
`False`.
ents_filter (Callable[[Iterable[Span], Iterable[Span]], List[Span]]):
The method to filter spans before they are assigned to doc.ents.
Defaults to `util.filter_chain_spans`.
phrase_matcher_attr (Optional[Union[int, str]]): Token attribute to
match on, passed to the internal PhraseMatcher as `attr`. Defaults
to `None`.
validate (bool): Whether patterns should be validated, passed to
Matcher and PhraseMatcher as `validate`.
overwrite (bool): Whether to remove any existing spans under this spans
key if `spans_key` is set, and/or to remove any ents under `doc.ents` if
`annotate_ents` is set. Defaults to `True`.
scorer (Optional[Callable]): The scoring method. Defaults to
spacy.pipeline.span_ruler.overlapping_labeled_spans_score.
DOCS: https://spacy.io/api/spanruler#init
"""
self.nlp = nlp
self.name = name
self.spans_key = spans_key
self.annotate_ents = annotate_ents
self.phrase_matcher_attr = phrase_matcher_attr
self.validate = validate
self.overwrite = overwrite
self.spans_filter = spans_filter
self.ents_filter = ents_filter
self.scorer = scorer
self._match_label_id_map: Dict[int, Dict[str, str]] = {}
self.clear()
def __len__(self) -> int:
"""The number of all labels added to the span ruler."""
return len(self._patterns)
def __contains__(self, label: str) -> bool:
"""Whether a label is present in the patterns."""
for label_id in self._match_label_id_map.values():
if label_id["label"] == label:
return True
return False
@property
def key(self) -> Optional[str]:
"""Key of the doc.spans dict to save the spans under."""
return self.spans_key
def __call__(self, doc: Doc) -> Doc:
"""Find matches in document and add them as entities.
doc (Doc): The Doc object in the pipeline.
RETURNS (Doc): The Doc with added entities, if available.
DOCS: https://spacy.io/api/spanruler#call
"""
error_handler = self.get_error_handler()
try:
matches = self.match(doc)
self.set_annotations(doc, matches)
return doc
except Exception as e:
return error_handler(self.name, self, [doc], e)
def match(self, doc: Doc):
self._require_patterns()
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="\\[W036")
matches = cast(
List[Tuple[int, int, int]],
list(self.matcher(doc)) + list(self.phrase_matcher(doc)),
)
deduplicated_matches = set(
Span(
doc,
start,
end,
label=self._match_label_id_map[m_id]["label"],
span_id=self._match_label_id_map[m_id]["id"],
)
for m_id, start, end in matches
if start != end
)
return sorted(list(deduplicated_matches))
def set_annotations(self, doc, matches):
"""Modify the document in place"""
# set doc.spans if spans_key is set
if self.key:
spans = []
if self.key in doc.spans and not self.overwrite:
spans = doc.spans[self.key]
spans.extend(
self.spans_filter(spans, matches) if self.spans_filter else matches
)
doc.spans[self.key] = spans
# set doc.ents if annotate_ents is set
if self.annotate_ents:
spans = []
if not self.overwrite:
spans = list(doc.ents)
spans = self.ents_filter(spans, matches)
try:
doc.ents = sorted(spans)
except ValueError:
raise ValueError(Errors.E854)
@property
def labels(self) -> Tuple[str, ...]:
"""All labels present in the match patterns.
RETURNS (set): The string labels.
DOCS: https://spacy.io/api/spanruler#labels
"""
return tuple(sorted(set([cast(str, p["label"]) for p in self._patterns])))
@property
def ids(self) -> Tuple[str, ...]:
"""All IDs present in the match patterns.
RETURNS (set): The string IDs.
DOCS: https://spacy.io/api/spanruler#ids
"""
return tuple(
sorted(set([cast(str, p.get("id")) for p in self._patterns]) - set([None]))
)
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
patterns: Optional[Sequence[PatternType]] = None,
):
"""Initialize the pipe for training.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of.
patterns (Optional[Iterable[PatternType]]): The list of patterns.
DOCS: https://spacy.io/api/spanruler#initialize
"""
self.clear()
if patterns:
self.add_patterns(patterns) # type: ignore[arg-type]
@property
def patterns(self) -> List[PatternType]:
"""Get all patterns that were added to the span ruler.
RETURNS (list): The original patterns, one dictionary per pattern.
DOCS: https://spacy.io/api/spanruler#patterns
"""
return self._patterns
def add_patterns(self, patterns: List[PatternType]) -> None:
"""Add patterns to the span ruler. A pattern can either be a token
pattern (list of dicts) or a phrase pattern (string). For example:
{'label': 'ORG', 'pattern': 'Apple'}
{'label': 'ORG', 'pattern': 'Apple', 'id': 'apple'}
{'label': 'GPE', 'pattern': [{'lower': 'san'}, {'lower': 'francisco'}]}
patterns (list): The patterns to add.
DOCS: https://spacy.io/api/spanruler#add_patterns
"""
# disable the nlp components after this one in case they haven't been
# initialized / deserialized yet
try:
current_index = -1
for i, (name, pipe) in enumerate(self.nlp.pipeline):
if self == pipe:
current_index = i
break
subsequent_pipes = [pipe for pipe in self.nlp.pipe_names[current_index:]]
except ValueError:
subsequent_pipes = []
with self.nlp.select_pipes(disable=subsequent_pipes):
phrase_pattern_labels = []
phrase_pattern_texts = []
for entry in patterns:
p_label = cast(str, entry["label"])
p_id = cast(str, entry.get("id", ""))
label = repr((p_label, p_id))
self._match_label_id_map[self.nlp.vocab.strings.as_int(label)] = {
"label": p_label,
"id": p_id,
}
if isinstance(entry["pattern"], str):
phrase_pattern_labels.append(label)
phrase_pattern_texts.append(entry["pattern"])
elif isinstance(entry["pattern"], list):
self.matcher.add(label, [entry["pattern"]])
else:
raise ValueError(Errors.E097.format(pattern=entry["pattern"]))
self._patterns.append(entry)
for label, pattern in zip(
phrase_pattern_labels,
self.nlp.pipe(phrase_pattern_texts),
):
self.phrase_matcher.add(label, [pattern])
def clear(self) -> None:
"""Reset all patterns.
RETURNS: None
DOCS: https://spacy.io/api/spanruler#clear
"""
self._patterns: List[PatternType] = []
self.matcher: Matcher = Matcher(self.nlp.vocab, validate=self.validate)
self.phrase_matcher: PhraseMatcher = PhraseMatcher(
self.nlp.vocab,
attr=self.phrase_matcher_attr,
validate=self.validate,
)
def remove(self, label: str) -> None:
"""Remove a pattern by its label.
label (str): Label of the pattern to be removed.
RETURNS: None
DOCS: https://spacy.io/api/spanruler#remove
"""
if label not in self:
raise ValueError(
Errors.E1024.format(attr_type="label", label=label, component=self.name)
)
self._patterns = [p for p in self._patterns if p["label"] != label]
for m_label in self._match_label_id_map:
if self._match_label_id_map[m_label]["label"] == label:
m_label_str = self.nlp.vocab.strings.as_string(m_label)
if m_label_str in self.phrase_matcher:
self.phrase_matcher.remove(m_label_str)
if m_label_str in self.matcher:
self.matcher.remove(m_label_str)
def remove_by_id(self, pattern_id: str) -> None:
"""Remove a pattern by its pattern ID.
pattern_id (str): ID of the pattern to be removed.
RETURNS: None
DOCS: https://spacy.io/api/spanruler#remove_by_id
"""
orig_len = len(self)
self._patterns = [p for p in self._patterns if p.get("id") != pattern_id]
if orig_len == len(self):
raise ValueError(
Errors.E1024.format(
attr_type="ID", label=pattern_id, component=self.name
)
)
for m_label in self._match_label_id_map:
if self._match_label_id_map[m_label]["id"] == pattern_id:
m_label_str = self.nlp.vocab.strings.as_string(m_label)
if m_label_str in self.phrase_matcher:
self.phrase_matcher.remove(m_label_str)
if m_label_str in self.matcher:
self.matcher.remove(m_label_str)
def _require_patterns(self) -> None:
"""Raise a warning if this component has no patterns defined."""
if len(self) == 0:
warnings.warn(Warnings.W036.format(name=self.name))
def from_bytes(
self, bytes_data: bytes, *, exclude: Iterable[str] = SimpleFrozenList()
) -> "SpanRuler":
"""Load the span ruler from a bytestring.
bytes_data (bytes): The bytestring to load.
RETURNS (SpanRuler): The loaded span ruler.
DOCS: https://spacy.io/api/spanruler#from_bytes
"""
self.clear()
deserializers = {
"patterns": lambda b: self.add_patterns(srsly.json_loads(b)),
}
util.from_bytes(bytes_data, deserializers, exclude)
return self
def to_bytes(self, *, exclude: Iterable[str] = SimpleFrozenList()) -> bytes:
"""Serialize the span ruler to a bytestring.
RETURNS (bytes): The serialized patterns.
DOCS: https://spacy.io/api/spanruler#to_bytes
"""
serializers = {
"patterns": lambda: srsly.json_dumps(self.patterns),
}
return util.to_bytes(serializers, exclude)
def from_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> "SpanRuler":
"""Load the span ruler from a directory.
path (Union[str, Path]): A path to a directory.
RETURNS (SpanRuler): The loaded span ruler.
DOCS: https://spacy.io/api/spanruler#from_disk
"""
self.clear()
path = ensure_path(path)
deserializers = {
"patterns": lambda p: self.add_patterns(srsly.read_jsonl(p)),
}
util.from_disk(path, deserializers, {})
return self
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> None:
"""Save the span ruler patterns to a directory.
path (Union[str, Path]): A path to a directory.
DOCS: https://spacy.io/api/spanruler#to_disk
"""
path = ensure_path(path)
serializers = {
"patterns": lambda p: srsly.write_jsonl(p, self.patterns),
}
util.to_disk(path, serializers, {})

View File

@ -75,7 +75,7 @@ def build_ngram_suggester(sizes: List[int]) -> Suggester:
if spans: if spans:
assert spans[-1].ndim == 2, spans[-1].shape assert spans[-1].ndim == 2, spans[-1].shape
lengths.append(length) lengths.append(length)
lengths_array = cast(Ints1d, ops.asarray(lengths, dtype="i")) lengths_array = ops.asarray1i(lengths)
if len(spans) > 0: if len(spans) > 0:
output = Ragged(ops.xp.vstack(spans), lengths_array) output = Ragged(ops.xp.vstack(spans), lengths_array)
else: else:

View File

@ -1,4 +1,5 @@
from cymem.cymem cimport Pool from cymem.cymem cimport Pool
from thinc.backends.cblas cimport CBlas
from ..vocab cimport Vocab from ..vocab cimport Vocab
from .trainable_pipe cimport TrainablePipe from .trainable_pipe cimport TrainablePipe
@ -12,7 +13,7 @@ cdef class Parser(TrainablePipe):
cdef readonly TransitionSystem moves cdef readonly TransitionSystem moves
cdef public object _multitasks cdef public object _multitasks
cdef void _parseC(self, StateC** states, cdef void _parseC(self, CBlas cblas, StateC** states,
WeightsC weights, SizesC sizes) nogil WeightsC weights, SizesC sizes) nogil
cdef void c_transition_batch(self, StateC** states, const float* scores, cdef void c_transition_batch(self, StateC** states, const float* scores,

View File

@ -9,7 +9,7 @@ from libc.stdlib cimport calloc, free
import random import random
import srsly import srsly
from thinc.api import set_dropout_rate, CupyOps from thinc.api import get_ops, set_dropout_rate, CupyOps
from thinc.extra.search cimport Beam from thinc.extra.search cimport Beam
import numpy.random import numpy.random
import numpy import numpy
@ -259,6 +259,12 @@ cdef class Parser(TrainablePipe):
def greedy_parse(self, docs, drop=0.): def greedy_parse(self, docs, drop=0.):
cdef vector[StateC*] states cdef vector[StateC*] states
cdef StateClass state cdef StateClass state
ops = self.model.ops
cdef CBlas cblas
if isinstance(ops, CupyOps):
cblas = get_ops("cpu").cblas()
else:
cblas = ops.cblas()
self._ensure_labels_are_added(docs) self._ensure_labels_are_added(docs)
set_dropout_rate(self.model, drop) set_dropout_rate(self.model, drop)
batch = self.moves.init_batch(docs) batch = self.moves.init_batch(docs)
@ -269,8 +275,7 @@ cdef class Parser(TrainablePipe):
states.push_back(state.c) states.push_back(state.c)
sizes = get_c_sizes(model, states.size()) sizes = get_c_sizes(model, states.size())
with nogil: with nogil:
self._parseC(&states[0], self._parseC(cblas, &states[0], weights, sizes)
weights, sizes)
model.clear_memory() model.clear_memory()
del model del model
return batch return batch
@ -297,14 +302,13 @@ cdef class Parser(TrainablePipe):
del model del model
return list(batch) return list(batch)
cdef void _parseC(self, StateC** states, cdef void _parseC(self, CBlas cblas, StateC** states,
WeightsC weights, SizesC sizes) nogil: WeightsC weights, SizesC sizes) nogil:
cdef int i, j cdef int i, j
cdef vector[StateC*] unfinished cdef vector[StateC*] unfinished
cdef ActivationsC activations = alloc_activations(sizes) cdef ActivationsC activations = alloc_activations(sizes)
while sizes.states >= 1: while sizes.states >= 1:
predict_states(&activations, predict_states(cblas, &activations, states, &weights, sizes)
states, &weights, sizes)
# Validate actions, argmax, take action. # Validate actions, argmax, take action.
self.c_transition_batch(states, self.c_transition_batch(states,
activations.scores, sizes.classes, sizes.states) activations.scores, sizes.classes, sizes.states)

View File

@ -104,7 +104,7 @@ def get_arg_model(
sig_args[param.name] = (annotation, default) sig_args[param.name] = (annotation, default)
is_strict = strict and not has_variable is_strict = strict and not has_variable
sig_args["__config__"] = ArgSchemaConfig if is_strict else ArgSchemaConfigExtra # type: ignore[assignment] sig_args["__config__"] = ArgSchemaConfig if is_strict else ArgSchemaConfigExtra # type: ignore[assignment]
return create_model(name, **sig_args) # type: ignore[arg-type, return-value] return create_model(name, **sig_args) # type: ignore[call-overload, arg-type, return-value]
def validate_init_settings( def validate_init_settings(
@ -485,3 +485,29 @@ class RecommendationSchema(BaseModel):
word_vectors: Optional[str] = None word_vectors: Optional[str] = None
transformer: Optional[RecommendationTrf] = None transformer: Optional[RecommendationTrf] = None
has_letters: bool = True has_letters: bool = True
class DocJSONSchema(BaseModel):
"""
JSON/dict format for JSON representation of Doc objects.
"""
cats: Optional[Dict[StrictStr, StrictFloat]] = Field(
None, title="Categories with corresponding probabilities"
)
ents: Optional[List[Dict[StrictStr, Union[StrictInt, StrictStr]]]] = Field(
None, title="Information on entities"
)
sents: Optional[List[Dict[StrictStr, StrictInt]]] = Field(
None, title="Indices of sentences' start and end indices"
)
text: StrictStr = Field(..., title="Document text")
spans: Dict[StrictStr, List[Dict[StrictStr, Union[StrictStr, StrictInt]]]] = Field(
None, title="Span information - end/start indices, label, KB ID"
)
tokens: List[Dict[StrictStr, Union[StrictStr, StrictInt]]] = Field(
..., title="Token information - ID, start, annotations"
)
_: Optional[Dict[StrictStr, Any]] = Field(
None, title="Any custom data stored in the document's _ attribute"
)

View File

@ -0,0 +1,191 @@
import pytest
import spacy
from spacy import schemas
from spacy.tokens import Doc, Span
@pytest.fixture()
def doc(en_vocab):
words = ["c", "d", "e"]
pos = ["VERB", "NOUN", "NOUN"]
tags = ["VBP", "NN", "NN"]
heads = [0, 0, 1]
deps = ["ROOT", "dobj", "dobj"]
ents = ["O", "B-ORG", "O"]
morphs = ["Feat1=A", "Feat1=B", "Feat1=A|Feat2=D"]
return Doc(
en_vocab,
words=words,
pos=pos,
tags=tags,
heads=heads,
deps=deps,
ents=ents,
morphs=morphs,
)
@pytest.fixture()
def doc_without_deps(en_vocab):
words = ["c", "d", "e"]
pos = ["VERB", "NOUN", "NOUN"]
tags = ["VBP", "NN", "NN"]
ents = ["O", "B-ORG", "O"]
morphs = ["Feat1=A", "Feat1=B", "Feat1=A|Feat2=D"]
return Doc(
en_vocab,
words=words,
pos=pos,
tags=tags,
ents=ents,
morphs=morphs,
sent_starts=[True, False, True],
)
def test_doc_to_json(doc):
json_doc = doc.to_json()
assert json_doc["text"] == "c d e "
assert len(json_doc["tokens"]) == 3
assert json_doc["tokens"][0]["pos"] == "VERB"
assert json_doc["tokens"][0]["tag"] == "VBP"
assert json_doc["tokens"][0]["dep"] == "ROOT"
assert len(json_doc["ents"]) == 1
assert json_doc["ents"][0]["start"] == 2 # character offset!
assert json_doc["ents"][0]["end"] == 3 # character offset!
assert json_doc["ents"][0]["label"] == "ORG"
assert not schemas.validate(schemas.DocJSONSchema, json_doc)
def test_doc_to_json_underscore(doc):
Doc.set_extension("json_test1", default=False)
Doc.set_extension("json_test2", default=False)
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
json_doc = doc.to_json(underscore=["json_test1", "json_test2"])
assert "_" in json_doc
assert json_doc["_"]["json_test1"] == "hello world"
assert json_doc["_"]["json_test2"] == [1, 2, 3]
assert not schemas.validate(schemas.DocJSONSchema, json_doc)
def test_doc_to_json_underscore_error_attr(doc):
"""Test that Doc.to_json() raises an error if a custom attribute doesn't
exist in the ._ space."""
with pytest.raises(ValueError):
doc.to_json(underscore=["json_test3"])
def test_doc_to_json_underscore_error_serialize(doc):
"""Test that Doc.to_json() raises an error if a custom attribute value
isn't JSON-serializable."""
Doc.set_extension("json_test4", method=lambda doc: doc.text)
with pytest.raises(ValueError):
doc.to_json(underscore=["json_test4"])
def test_doc_to_json_span(doc):
"""Test that Doc.to_json() includes spans"""
doc.spans["test"] = [Span(doc, 0, 2, "test"), Span(doc, 0, 1, "test")]
json_doc = doc.to_json()
assert "spans" in json_doc
assert len(json_doc["spans"]) == 1
assert len(json_doc["spans"]["test"]) == 2
assert json_doc["spans"]["test"][0]["start"] == 0
assert not schemas.validate(schemas.DocJSONSchema, json_doc)
def test_json_to_doc(doc):
new_doc = Doc(doc.vocab).from_json(doc.to_json(), validate=True)
new_tokens = [token for token in new_doc]
assert new_doc.text == doc.text == "c d e "
assert len(new_tokens) == len([token for token in doc]) == 3
assert new_tokens[0].pos == doc[0].pos
assert new_tokens[0].tag == doc[0].tag
assert new_tokens[0].dep == doc[0].dep
assert new_tokens[0].head.idx == doc[0].head.idx
assert new_tokens[0].lemma == doc[0].lemma
assert len(new_doc.ents) == 1
assert new_doc.ents[0].start == 1
assert new_doc.ents[0].end == 2
assert new_doc.ents[0].label_ == "ORG"
def test_json_to_doc_underscore(doc):
if not Doc.has_extension("json_test1"):
Doc.set_extension("json_test1", default=False)
if not Doc.has_extension("json_test2"):
Doc.set_extension("json_test2", default=False)
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
json_doc = doc.to_json(underscore=["json_test1", "json_test2"])
new_doc = Doc(doc.vocab).from_json(json_doc, validate=True)
assert all([new_doc.has_extension(f"json_test{i}") for i in range(1, 3)])
assert new_doc._.json_test1 == "hello world"
assert new_doc._.json_test2 == [1, 2, 3]
def test_json_to_doc_spans(doc):
"""Test that Doc.from_json() includes correct.spans."""
doc.spans["test"] = [
Span(doc, 0, 2, label="test"),
Span(doc, 0, 1, label="test", kb_id=7),
]
json_doc = doc.to_json()
new_doc = Doc(doc.vocab).from_json(json_doc, validate=True)
assert len(new_doc.spans) == 1
assert len(new_doc.spans["test"]) == 2
for i in range(2):
assert new_doc.spans["test"][i].start == doc.spans["test"][i].start
assert new_doc.spans["test"][i].end == doc.spans["test"][i].end
assert new_doc.spans["test"][i].label == doc.spans["test"][i].label
assert new_doc.spans["test"][i].kb_id == doc.spans["test"][i].kb_id
def test_json_to_doc_sents(doc, doc_without_deps):
"""Test that Doc.from_json() includes correct.sents."""
for test_doc in (doc, doc_without_deps):
json_doc = test_doc.to_json()
new_doc = Doc(doc.vocab).from_json(json_doc, validate=True)
assert [sent.text for sent in test_doc.sents] == [
sent.text for sent in new_doc.sents
]
assert [token.is_sent_start for token in test_doc] == [
token.is_sent_start for token in new_doc
]
def test_json_to_doc_cats(doc):
"""Test that Doc.from_json() includes correct .cats."""
cats = {"A": 0.3, "B": 0.7}
doc.cats = cats
json_doc = doc.to_json()
new_doc = Doc(doc.vocab).from_json(json_doc, validate=True)
assert new_doc.cats == cats
def test_json_to_doc_spaces():
"""Test that Doc.from_json() preserves spaces correctly."""
doc = spacy.blank("en")("This is just brilliant.")
json_doc = doc.to_json()
new_doc = Doc(doc.vocab).from_json(json_doc, validate=True)
assert doc.text == new_doc.text
def test_json_to_doc_attribute_consistency(doc):
"""Test that Doc.from_json() raises an exception if tokens don't all have the same set of properties."""
doc_json = doc.to_json()
doc_json["tokens"][1].pop("morph")
with pytest.raises(ValueError):
Doc(doc.vocab).from_json(doc_json)
def test_json_to_doc_validation_error(doc):
"""Test that Doc.from_json() raises an exception when validating invalid input."""
doc_json = doc.to_json()
doc_json.pop("tokens")
with pytest.raises(ValueError):
Doc(doc.vocab).from_json(doc_json, validate=True)

View File

@ -5,11 +5,9 @@ from spacy.compat import pickle
def test_pickle_single_doc(): def test_pickle_single_doc():
nlp = Language() nlp = Language()
doc = nlp("pickle roundtrip") doc = nlp("pickle roundtrip")
doc._context = 3
data = pickle.dumps(doc, 1) data = pickle.dumps(doc, 1)
doc2 = pickle.loads(data) doc2 = pickle.loads(data)
assert doc2.text == "pickle roundtrip" assert doc2.text == "pickle roundtrip"
assert doc2._context == 3
def test_list_of_docs_pickles_efficiently(): def test_list_of_docs_pickles_efficiently():

View File

@ -440,10 +440,19 @@ def test_span_string_label_kb_id(doc):
assert span.kb_id == doc.vocab.strings["Q342"] assert span.kb_id == doc.vocab.strings["Q342"]
def test_span_string_label_id(doc):
span = Span(doc, 0, 1, label="hello", span_id="Q342")
assert span.label_ == "hello"
assert span.label == doc.vocab.strings["hello"]
assert span.id_ == "Q342"
assert span.id == doc.vocab.strings["Q342"]
def test_span_attrs_writable(doc): def test_span_attrs_writable(doc):
span = Span(doc, 0, 1) span = Span(doc, 0, 1)
span.label_ = "label" span.label_ = "label"
span.kb_id_ = "kb_id" span.kb_id_ = "kb_id"
span.id_ = "id"
def test_span_ents_property(doc): def test_span_ents_property(doc):
@ -631,6 +640,9 @@ def test_span_comparison(doc):
assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") <= Span(doc, 1, 3) assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") <= Span(doc, 1, 3)
assert Span(doc, 1, 3) > Span(doc, 0, 4, "LABEL", kb_id="KB_ID") assert Span(doc, 1, 3) > Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
assert Span(doc, 1, 3) >= Span(doc, 0, 4, "LABEL", kb_id="KB_ID") assert Span(doc, 1, 3) >= Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
# Different id
assert Span(doc, 1, 3, span_id="AAA") < Span(doc, 1, 3, span_id="BBB")
# fmt: on # fmt: on

View File

@ -1,72 +0,0 @@
import pytest
from spacy.tokens import Doc, Span
@pytest.fixture()
def doc(en_vocab):
words = ["c", "d", "e"]
pos = ["VERB", "NOUN", "NOUN"]
tags = ["VBP", "NN", "NN"]
heads = [0, 0, 0]
deps = ["ROOT", "dobj", "dobj"]
ents = ["O", "B-ORG", "O"]
morphs = ["Feat1=A", "Feat1=B", "Feat1=A|Feat2=D"]
return Doc(
en_vocab,
words=words,
pos=pos,
tags=tags,
heads=heads,
deps=deps,
ents=ents,
morphs=morphs,
)
def test_doc_to_json(doc):
json_doc = doc.to_json()
assert json_doc["text"] == "c d e "
assert len(json_doc["tokens"]) == 3
assert json_doc["tokens"][0]["pos"] == "VERB"
assert json_doc["tokens"][0]["tag"] == "VBP"
assert json_doc["tokens"][0]["dep"] == "ROOT"
assert len(json_doc["ents"]) == 1
assert json_doc["ents"][0]["start"] == 2 # character offset!
assert json_doc["ents"][0]["end"] == 3 # character offset!
assert json_doc["ents"][0]["label"] == "ORG"
def test_doc_to_json_underscore(doc):
Doc.set_extension("json_test1", default=False)
Doc.set_extension("json_test2", default=False)
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
json_doc = doc.to_json(underscore=["json_test1", "json_test2"])
assert "_" in json_doc
assert json_doc["_"]["json_test1"] == "hello world"
assert json_doc["_"]["json_test2"] == [1, 2, 3]
def test_doc_to_json_underscore_error_attr(doc):
"""Test that Doc.to_json() raises an error if a custom attribute doesn't
exist in the ._ space."""
with pytest.raises(ValueError):
doc.to_json(underscore=["json_test3"])
def test_doc_to_json_underscore_error_serialize(doc):
"""Test that Doc.to_json() raises an error if a custom attribute value
isn't JSON-serializable."""
Doc.set_extension("json_test4", method=lambda doc: doc.text)
with pytest.raises(ValueError):
doc.to_json(underscore=["json_test4"])
def test_doc_to_json_span(doc):
"""Test that Doc.to_json() includes spans"""
doc.spans["test"] = [Span(doc, 0, 2, "test"), Span(doc, 0, 1, "test")]
json_doc = doc.to_json()
assert "spans" in json_doc
assert len(json_doc["spans"]) == 1
assert len(json_doc["spans"]["test"]) == 2
assert json_doc["spans"]["test"][0]["start"] == 0

View File

@ -167,3 +167,12 @@ def test_issue3521(en_tokenizer, word):
tok = en_tokenizer(word)[1] tok = en_tokenizer(word)[1]
# 'not' and 'would' should be stopwords, also in their abbreviated forms # 'not' and 'would' should be stopwords, also in their abbreviated forms
assert tok.is_stop assert tok.is_stop
@pytest.mark.issue(10699)
@pytest.mark.parametrize("text", ["theses", "thisre"])
def test_issue10699(en_tokenizer, text):
"""Test that 'theses' and 'thisre' are excluded from the contractions
generated by the English tokenizer exceptions."""
tokens = en_tokenizer(text)
assert len(tokens) == 1

View File

@ -49,7 +49,7 @@ def test_parser_contains_cycle(tree, cyclic_tree, partial_tree, multirooted_tree
assert contains_cycle(multirooted_tree) is None assert contains_cycle(multirooted_tree) is None
def test_parser_is_nonproj_arc(nonproj_tree, partial_tree, multirooted_tree): def test_parser_is_nonproj_arc(cyclic_tree, nonproj_tree, partial_tree, multirooted_tree):
assert is_nonproj_arc(0, nonproj_tree) is False assert is_nonproj_arc(0, nonproj_tree) is False
assert is_nonproj_arc(1, nonproj_tree) is False assert is_nonproj_arc(1, nonproj_tree) is False
assert is_nonproj_arc(2, nonproj_tree) is False assert is_nonproj_arc(2, nonproj_tree) is False
@ -62,15 +62,19 @@ def test_parser_is_nonproj_arc(nonproj_tree, partial_tree, multirooted_tree):
assert is_nonproj_arc(7, partial_tree) is False assert is_nonproj_arc(7, partial_tree) is False
assert is_nonproj_arc(17, multirooted_tree) is False assert is_nonproj_arc(17, multirooted_tree) is False
assert is_nonproj_arc(16, multirooted_tree) is True assert is_nonproj_arc(16, multirooted_tree) is True
with pytest.raises(ValueError, match=r'Found cycle in dependency graph: \[1, 2, 2, 4, 5, 3, 2\]'):
is_nonproj_arc(6, cyclic_tree)
def test_parser_is_nonproj_tree( def test_parser_is_nonproj_tree(
proj_tree, nonproj_tree, partial_tree, multirooted_tree proj_tree, cyclic_tree, nonproj_tree, partial_tree, multirooted_tree
): ):
assert is_nonproj_tree(proj_tree) is False assert is_nonproj_tree(proj_tree) is False
assert is_nonproj_tree(nonproj_tree) is True assert is_nonproj_tree(nonproj_tree) is True
assert is_nonproj_tree(partial_tree) is False assert is_nonproj_tree(partial_tree) is False
assert is_nonproj_tree(multirooted_tree) is True assert is_nonproj_tree(multirooted_tree) is True
with pytest.raises(ValueError, match=r'Found cycle in dependency graph: \[1, 2, 2, 4, 5, 3, 2\]'):
is_nonproj_tree(cyclic_tree)
def test_parser_pseudoprojectivity(en_vocab): def test_parser_pseudoprojectivity(en_vocab):
@ -84,8 +88,10 @@ def test_parser_pseudoprojectivity(en_vocab):
tree = [1, 2, 2] tree = [1, 2, 2]
nonproj_tree = [1, 2, 2, 4, 5, 2, 7, 4, 2] nonproj_tree = [1, 2, 2, 4, 5, 2, 7, 4, 2]
nonproj_tree2 = [9, 1, 3, 1, 5, 6, 9, 8, 6, 1, 6, 12, 13, 10, 1] nonproj_tree2 = [9, 1, 3, 1, 5, 6, 9, 8, 6, 1, 6, 12, 13, 10, 1]
cyclic_tree = [1, 2, 2, 4, 5, 3, 2]
labels = ["det", "nsubj", "root", "det", "dobj", "aux", "nsubj", "acl", "punct"] labels = ["det", "nsubj", "root", "det", "dobj", "aux", "nsubj", "acl", "punct"]
labels2 = ["advmod", "root", "det", "nsubj", "advmod", "det", "dobj", "det", "nmod", "aux", "nmod", "advmod", "det", "amod", "punct"] labels2 = ["advmod", "root", "det", "nsubj", "advmod", "det", "dobj", "det", "nmod", "aux", "nmod", "advmod", "det", "amod", "punct"]
cyclic_labels = ["det", "nsubj", "root", "det", "dobj", "aux", "punct"]
# fmt: on # fmt: on
assert nonproj.decompose("X||Y") == ("X", "Y") assert nonproj.decompose("X||Y") == ("X", "Y")
assert nonproj.decompose("X") == ("X", "") assert nonproj.decompose("X") == ("X", "")
@ -97,6 +103,8 @@ def test_parser_pseudoprojectivity(en_vocab):
assert nonproj.get_smallest_nonproj_arc_slow(nonproj_tree2) == 10 assert nonproj.get_smallest_nonproj_arc_slow(nonproj_tree2) == 10
# fmt: off # fmt: off
proj_heads, deco_labels = nonproj.projectivize(nonproj_tree, labels) proj_heads, deco_labels = nonproj.projectivize(nonproj_tree, labels)
with pytest.raises(ValueError, match=r'Found cycle in dependency graph: \[1, 2, 2, 4, 5, 3, 2\]'):
nonproj.projectivize(cyclic_tree, cyclic_labels)
assert proj_heads == [1, 2, 2, 4, 5, 2, 7, 5, 2] assert proj_heads == [1, 2, 2, 4, 5, 2, 7, 5, 2]
assert deco_labels == ["det", "nsubj", "root", "det", "dobj", "aux", assert deco_labels == ["det", "nsubj", "root", "det", "dobj", "aux",
"nsubj", "acl||dobj", "punct"] "nsubj", "acl||dobj", "punct"]

View File

@ -14,7 +14,7 @@ from spacy.pipeline.legacy import EntityLinker_v1
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
from spacy.scorer import Scorer from spacy.scorer import Scorer
from spacy.tests.util import make_tempdir from spacy.tests.util import make_tempdir
from spacy.tokens import Span from spacy.tokens import Span, Doc
from spacy.training import Example from spacy.training import Example
from spacy.util import ensure_path from spacy.util import ensure_path
from spacy.vocab import Vocab from spacy.vocab import Vocab
@ -1075,3 +1075,43 @@ def test_no_gold_ents(patterns):
# this will run the pipeline on the examples and shouldn't crash # this will run the pipeline on the examples and shouldn't crash
results = nlp.evaluate(train_examples) results = nlp.evaluate(train_examples)
@pytest.mark.issue(9575)
def test_tokenization_mismatch():
nlp = English()
# include a matching entity so that update isn't skipped
doc1 = Doc(
nlp.vocab,
words=["Kirby", "123456"],
spaces=[True, False],
ents=["B-CHARACTER", "B-CARDINAL"],
)
doc2 = Doc(
nlp.vocab,
words=["Kirby", "123", "456"],
spaces=[True, False, False],
ents=["B-CHARACTER", "B-CARDINAL", "B-CARDINAL"],
)
eg = Example(doc1, doc2)
train_examples = [eg]
vector_length = 3
def create_kb(vocab):
# create placeholder KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Kirby", ["Q613241"], [0.9])
return mykb
entity_linker = nlp.add_pipe("entity_linker", last=True)
entity_linker.set_kb(create_kb)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(2):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
nlp.add_pipe("sentencizer", first=True)
results = nlp.evaluate(train_examples)

View File

@ -5,12 +5,15 @@ from spacy.tokens import Doc, Span
from spacy.language import Language from spacy.language import Language
from spacy.lang.en import English from spacy.lang.en import English
from spacy.pipeline import EntityRuler, EntityRecognizer, merge_entities from spacy.pipeline import EntityRuler, EntityRecognizer, merge_entities
from spacy.pipeline import SpanRuler
from spacy.pipeline.ner import DEFAULT_NER_MODEL from spacy.pipeline.ner import DEFAULT_NER_MODEL
from spacy.errors import MatchPatternError from spacy.errors import MatchPatternError
from spacy.tests.util import make_tempdir from spacy.tests.util import make_tempdir
from thinc.api import NumpyOps, get_current_ops from thinc.api import NumpyOps, get_current_ops
ENTITY_RULERS = ["entity_ruler", "future_entity_ruler"]
@pytest.fixture @pytest.fixture
def nlp(): def nlp():
@ -37,12 +40,14 @@ def add_ent_component(doc):
@pytest.mark.issue(3345) @pytest.mark.issue(3345)
def test_issue3345(): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_issue3345(entity_ruler_factory):
"""Test case where preset entity crosses sentence boundary.""" """Test case where preset entity crosses sentence boundary."""
nlp = English() nlp = English()
doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"]) doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"])
doc[4].is_sent_start = True doc[4].is_sent_start = True
ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}]) ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns([{"label": "GPE", "pattern": "New York"}])
cfg = {"model": DEFAULT_NER_MODEL} cfg = {"model": DEFAULT_NER_MODEL}
model = registry.resolve(cfg, validate=True)["model"] model = registry.resolve(cfg, validate=True)["model"]
ner = EntityRecognizer(doc.vocab, model) ner = EntityRecognizer(doc.vocab, model)
@ -60,13 +65,18 @@ def test_issue3345():
@pytest.mark.issue(4849) @pytest.mark.issue(4849)
def test_issue4849(): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_issue4849(entity_ruler_factory):
nlp = English() nlp = English()
patterns = [ patterns = [
{"label": "PERSON", "pattern": "joe biden", "id": "joe-biden"}, {"label": "PERSON", "pattern": "joe biden", "id": "joe-biden"},
{"label": "PERSON", "pattern": "bernie sanders", "id": "bernie-sanders"}, {"label": "PERSON", "pattern": "bernie sanders", "id": "bernie-sanders"},
] ]
ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"}) ruler = nlp.add_pipe(
entity_ruler_factory,
name="entity_ruler",
config={"phrase_matcher_attr": "LOWER"},
)
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
text = """ text = """
The left is starting to take aim at Democratic front-runner Joe Biden. The left is starting to take aim at Democratic front-runner Joe Biden.
@ -86,10 +96,11 @@ def test_issue4849():
@pytest.mark.issue(5918) @pytest.mark.issue(5918)
def test_issue5918(): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_issue5918(entity_ruler_factory):
# Test edge case when merging entities. # Test edge case when merging entities.
nlp = English() nlp = English()
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "ORG", "pattern": "Digicon Inc"}, {"label": "ORG", "pattern": "Digicon Inc"},
{"label": "ORG", "pattern": "Rotan Mosle Inc's"}, {"label": "ORG", "pattern": "Rotan Mosle Inc's"},
@ -114,9 +125,10 @@ def test_issue5918():
@pytest.mark.issue(8168) @pytest.mark.issue(8168)
def test_issue8168(): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_issue8168(entity_ruler_factory):
nlp = English() nlp = English()
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "ORG", "pattern": "Apple"}, {"label": "ORG", "pattern": "Apple"},
{ {
@ -131,14 +143,17 @@ def test_issue8168():
}, },
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = nlp("San Francisco San Fran")
assert ruler._ent_ids == {8043148519967183733: ("GPE", "san-francisco")} assert all(t.ent_id_ == "san-francisco" for t in doc)
@pytest.mark.issue(8216) @pytest.mark.issue(8216)
def test_entity_ruler_fix8216(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_fix8216(nlp, patterns, entity_ruler_factory):
"""Test that patterns don't get added excessively.""" """Test that patterns don't get added excessively."""
ruler = nlp.add_pipe("entity_ruler", config={"validate": True}) ruler = nlp.add_pipe(
entity_ruler_factory, name="entity_ruler", config={"validate": True}
)
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values()) pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
assert pattern_count > 0 assert pattern_count > 0
@ -147,13 +162,16 @@ def test_entity_ruler_fix8216(nlp, patterns):
assert after_count == pattern_count assert after_count == pattern_count
def test_entity_ruler_init(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp, patterns=patterns) def test_entity_ruler_init(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns)
assert len(ruler) == len(patterns) assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
assert "HELLO" in ruler assert "HELLO" in ruler
assert "BYE" in ruler assert "BYE" in ruler
ruler = nlp.add_pipe("entity_ruler") nlp.remove_pipe("entity_ruler")
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = nlp("hello world bye bye") doc = nlp("hello world bye bye")
assert len(doc.ents) == 2 assert len(doc.ents) == 2
@ -161,20 +179,23 @@ def test_entity_ruler_init(nlp, patterns):
assert doc.ents[1].label_ == "BYE" assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_no_patterns_warns(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_no_patterns_warns(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
assert len(ruler) == 0 assert len(ruler) == 0
assert len(ruler.labels) == 0 assert len(ruler.labels) == 0
nlp.add_pipe("entity_ruler") nlp.remove_pipe("entity_ruler")
nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
assert nlp.pipe_names == ["entity_ruler"] assert nlp.pipe_names == ["entity_ruler"]
with pytest.warns(UserWarning): with pytest.warns(UserWarning):
doc = nlp("hello world bye bye") doc = nlp("hello world bye bye")
assert len(doc.ents) == 0 assert len(doc.ents) == 0
def test_entity_ruler_init_patterns(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_init_patterns(nlp, patterns, entity_ruler_factory):
# initialize with patterns # initialize with patterns
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
assert len(ruler.labels) == 0 assert len(ruler.labels) == 0
ruler.initialize(lambda: [], patterns=patterns) ruler.initialize(lambda: [], patterns=patterns)
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
@ -186,7 +207,7 @@ def test_entity_ruler_init_patterns(nlp, patterns):
nlp.config["initialize"]["components"]["entity_ruler"] = { nlp.config["initialize"]["components"]["entity_ruler"] = {
"patterns": {"@misc": "entity_ruler_patterns"} "patterns": {"@misc": "entity_ruler_patterns"}
} }
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
assert len(ruler.labels) == 0 assert len(ruler.labels) == 0
nlp.initialize() nlp.initialize()
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
@ -195,18 +216,20 @@ def test_entity_ruler_init_patterns(nlp, patterns):
assert doc.ents[1].label_ == "BYE" assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_init_clear(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_init_clear(nlp, patterns, entity_ruler_factory):
"""Test that initialization clears patterns.""" """Test that initialization clears patterns."""
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
ruler.initialize(lambda: []) ruler.initialize(lambda: [])
assert len(ruler.labels) == 0 assert len(ruler.labels) == 0
def test_entity_ruler_clear(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_clear(nlp, patterns, entity_ruler_factory):
"""Test that initialization clears patterns.""" """Test that initialization clears patterns."""
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
doc = nlp("hello world") doc = nlp("hello world")
@ -218,8 +241,9 @@ def test_entity_ruler_clear(nlp, patterns):
assert len(doc.ents) == 0 assert len(doc.ents) == 0
def test_entity_ruler_existing(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = nlp.add_pipe("entity_ruler") def test_entity_ruler_existing(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
nlp.add_pipe("add_ent", before="entity_ruler") nlp.add_pipe("add_ent", before="entity_ruler")
doc = nlp("OH HELLO WORLD bye bye") doc = nlp("OH HELLO WORLD bye bye")
@ -228,8 +252,11 @@ def test_entity_ruler_existing(nlp, patterns):
assert doc.ents[1].label_ == "BYE" assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_existing_overwrite(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True}) def test_entity_ruler_existing_overwrite(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(
entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
)
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
nlp.add_pipe("add_ent", before="entity_ruler") nlp.add_pipe("add_ent", before="entity_ruler")
doc = nlp("OH HELLO WORLD bye bye") doc = nlp("OH HELLO WORLD bye bye")
@ -239,8 +266,11 @@ def test_entity_ruler_existing_overwrite(nlp, patterns):
assert doc.ents[1].label_ == "BYE" assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_existing_complex(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True}) def test_entity_ruler_existing_complex(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(
entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
)
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
nlp.add_pipe("add_ent", before="entity_ruler") nlp.add_pipe("add_ent", before="entity_ruler")
doc = nlp("foo foo bye bye") doc = nlp("foo foo bye bye")
@ -251,8 +281,11 @@ def test_entity_ruler_existing_complex(nlp, patterns):
assert len(doc.ents[1]) == 2 assert len(doc.ents[1]) == 2
def test_entity_ruler_entity_id(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True}) def test_entity_ruler_entity_id(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(
entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
)
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = nlp("Apple is a technology company") doc = nlp("Apple is a technology company")
assert len(doc.ents) == 1 assert len(doc.ents) == 1
@ -260,18 +293,21 @@ def test_entity_ruler_entity_id(nlp, patterns):
assert doc.ents[0].ent_id_ == "a1" assert doc.ents[0].ent_id_ == "a1"
def test_entity_ruler_cfg_ent_id_sep(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_cfg_ent_id_sep(nlp, patterns, entity_ruler_factory):
config = {"overwrite_ents": True, "ent_id_sep": "**"} config = {"overwrite_ents": True, "ent_id_sep": "**"}
ruler = nlp.add_pipe("entity_ruler", config=config) ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler", config=config)
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
assert "TECH_ORG**a1" in ruler.phrase_patterns
doc = nlp("Apple is a technology company") doc = nlp("Apple is a technology company")
if isinstance(ruler, EntityRuler):
assert "TECH_ORG**a1" in ruler.phrase_patterns
assert len(doc.ents) == 1 assert len(doc.ents) == 1
assert doc.ents[0].label_ == "TECH_ORG" assert doc.ents[0].label_ == "TECH_ORG"
assert doc.ents[0].ent_id_ == "a1" assert doc.ents[0].ent_id_ == "a1"
def test_entity_ruler_serialize_bytes(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_serialize_bytes(nlp, patterns, entity_ruler_factory):
ruler = EntityRuler(nlp, patterns=patterns) ruler = EntityRuler(nlp, patterns=patterns)
assert len(ruler) == len(patterns) assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
@ -288,7 +324,10 @@ def test_entity_ruler_serialize_bytes(nlp, patterns):
assert sorted(new_ruler.labels) == sorted(ruler.labels) assert sorted(new_ruler.labels) == sorted(ruler.labels)
def test_entity_ruler_serialize_phrase_matcher_attr_bytes(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_serialize_phrase_matcher_attr_bytes(
nlp, patterns, entity_ruler_factory
):
ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER", patterns=patterns) ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER", patterns=patterns)
assert len(ruler) == len(patterns) assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
@ -303,8 +342,9 @@ def test_entity_ruler_serialize_phrase_matcher_attr_bytes(nlp, patterns):
assert new_ruler.phrase_matcher_attr == "LOWER" assert new_ruler.phrase_matcher_attr == "LOWER"
def test_entity_ruler_validate(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_validate(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
validated_ruler = EntityRuler(nlp, validate=True) validated_ruler = EntityRuler(nlp, validate=True)
valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]} valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]}
@ -322,32 +362,35 @@ def test_entity_ruler_validate(nlp):
validated_ruler.add_patterns([invalid_pattern]) validated_ruler.add_patterns([invalid_pattern])
def test_entity_ruler_properties(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_properties(nlp, patterns, entity_ruler_factory):
ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True) ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
assert sorted(ruler.labels) == sorted(["HELLO", "BYE", "COMPLEX", "TECH_ORG"]) assert sorted(ruler.labels) == sorted(["HELLO", "BYE", "COMPLEX", "TECH_ORG"])
assert sorted(ruler.ent_ids) == ["a1", "a2"] assert sorted(ruler.ent_ids) == ["a1", "a2"]
def test_entity_ruler_overlapping_spans(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_overlapping_spans(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "FOOBAR", "pattern": "foo bar"}, {"label": "FOOBAR", "pattern": "foo bar"},
{"label": "BARBAZ", "pattern": "bar baz"}, {"label": "BARBAZ", "pattern": "bar baz"},
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("foo bar baz")) doc = nlp("foo bar baz")
assert len(doc.ents) == 1 assert len(doc.ents) == 1
assert doc.ents[0].label_ == "FOOBAR" assert doc.ents[0].label_ == "FOOBAR"
@pytest.mark.parametrize("n_process", [1, 2]) @pytest.mark.parametrize("n_process", [1, 2])
def test_entity_ruler_multiprocessing(nlp, n_process): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_multiprocessing(nlp, n_process, entity_ruler_factory):
if isinstance(get_current_ops, NumpyOps) or n_process < 2: if isinstance(get_current_ops, NumpyOps) or n_process < 2:
texts = ["I enjoy eating Pizza Hut pizza."] texts = ["I enjoy eating Pizza Hut pizza."]
patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut", "id": "1234"}] patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut", "id": "1234"}]
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
for doc in nlp.pipe(texts, n_process=2): for doc in nlp.pipe(texts, n_process=2):
@ -355,8 +398,9 @@ def test_entity_ruler_multiprocessing(nlp, n_process):
assert ent.ent_id_ == "1234" assert ent.ent_id_ == "1234"
def test_entity_ruler_serialize_jsonl(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = nlp.add_pipe("entity_ruler") def test_entity_ruler_serialize_jsonl(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
with make_tempdir() as d: with make_tempdir() as d:
ruler.to_disk(d / "test_ruler.jsonl") ruler.to_disk(d / "test_ruler.jsonl")
@ -365,8 +409,9 @@ def test_entity_ruler_serialize_jsonl(nlp, patterns):
ruler.from_disk(d / "non_existing.jsonl") # read from a bad jsonl file ruler.from_disk(d / "non_existing.jsonl") # read from a bad jsonl file
def test_entity_ruler_serialize_dir(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = nlp.add_pipe("entity_ruler") def test_entity_ruler_serialize_dir(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
with make_tempdir() as d: with make_tempdir() as d:
ruler.to_disk(d / "test_ruler") ruler.to_disk(d / "test_ruler")
@ -375,52 +420,65 @@ def test_entity_ruler_serialize_dir(nlp, patterns):
ruler.from_disk(d / "non_existing_dir") # read from a bad directory ruler.from_disk(d / "non_existing_dir") # read from a bad directory
def test_entity_ruler_remove_basic(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_basic(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, {"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"}, {"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "ORG", "pattern": "ACM"}, {"label": "ORG", "pattern": "ACM"},
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu went to school")) doc = nlp("Dina went to school")
assert len(ruler.patterns) == 3 assert len(ruler.patterns) == 3
assert len(doc.ents) == 1 assert len(doc.ents) == 1
if isinstance(ruler, EntityRuler):
assert "PERSON||dina" in ruler.phrase_matcher
assert doc.ents[0].label_ == "PERSON" assert doc.ents[0].label_ == "PERSON"
assert doc.ents[0].text == "Duygu" assert doc.ents[0].text == "Dina"
assert "PERSON||duygu" in ruler.phrase_matcher if isinstance(ruler, EntityRuler):
ruler.remove("duygu") ruler.remove("dina")
doc = ruler(nlp.make_doc("Duygu went to school")) else:
ruler.remove_by_id("dina")
doc = nlp("Dina went to school")
assert len(doc.ents) == 0 assert len(doc.ents) == 0
assert "PERSON||duygu" not in ruler.phrase_matcher if isinstance(ruler, EntityRuler):
assert "PERSON||dina" not in ruler.phrase_matcher
assert len(ruler.patterns) == 2 assert len(ruler.patterns) == 2
def test_entity_ruler_remove_same_id_multiple_patterns(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_same_id_multiple_patterns(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, {"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "DuyguCorp", "id": "duygu"}, {"label": "ORG", "pattern": "DinaCorp", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"}, {"label": "ORG", "pattern": "ACME", "id": "acme"},
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu founded DuyguCorp and ACME.")) doc = nlp("Dina founded DinaCorp and ACME.")
assert len(ruler.patterns) == 3 assert len(ruler.patterns) == 3
assert "PERSON||duygu" in ruler.phrase_matcher if isinstance(ruler, EntityRuler):
assert "ORG||duygu" in ruler.phrase_matcher assert "PERSON||dina" in ruler.phrase_matcher
assert "ORG||dina" in ruler.phrase_matcher
assert len(doc.ents) == 3 assert len(doc.ents) == 3
ruler.remove("duygu") if isinstance(ruler, EntityRuler):
doc = ruler(nlp.make_doc("Duygu founded DuyguCorp and ACME.")) ruler.remove("dina")
else:
ruler.remove_by_id("dina")
doc = nlp("Dina founded DinaCorp and ACME.")
assert len(ruler.patterns) == 1 assert len(ruler.patterns) == 1
assert "PERSON||duygu" not in ruler.phrase_matcher if isinstance(ruler, EntityRuler):
assert "ORG||duygu" not in ruler.phrase_matcher assert "PERSON||dina" not in ruler.phrase_matcher
assert "ORG||dina" not in ruler.phrase_matcher
assert len(doc.ents) == 1 assert len(doc.ents) == 1
def test_entity_ruler_remove_nonexisting_pattern(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_nonexisting_pattern(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, {"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"}, {"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "ORG", "pattern": "ACM"}, {"label": "ORG", "pattern": "ACM"},
] ]
@ -428,82 +486,108 @@ def test_entity_ruler_remove_nonexisting_pattern(nlp):
assert len(ruler.patterns) == 3 assert len(ruler.patterns) == 3
with pytest.raises(ValueError): with pytest.raises(ValueError):
ruler.remove("nepattern") ruler.remove("nepattern")
assert len(ruler.patterns) == 3 if isinstance(ruler, SpanRuler):
with pytest.raises(ValueError):
ruler.remove_by_id("nepattern")
def test_entity_ruler_remove_several_patterns(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_several_patterns(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, {"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"}, {"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "ORG", "pattern": "ACM"}, {"label": "ORG", "pattern": "ACM"},
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu founded her company ACME.")) doc = nlp("Dina founded her company ACME.")
assert len(ruler.patterns) == 3 assert len(ruler.patterns) == 3
assert len(doc.ents) == 2 assert len(doc.ents) == 2
assert doc.ents[0].label_ == "PERSON" assert doc.ents[0].label_ == "PERSON"
assert doc.ents[0].text == "Duygu" assert doc.ents[0].text == "Dina"
assert doc.ents[1].label_ == "ORG" assert doc.ents[1].label_ == "ORG"
assert doc.ents[1].text == "ACME" assert doc.ents[1].text == "ACME"
ruler.remove("duygu") if isinstance(ruler, EntityRuler):
doc = ruler(nlp.make_doc("Duygu founded her company ACME")) ruler.remove("dina")
else:
ruler.remove_by_id("dina")
doc = nlp("Dina founded her company ACME")
assert len(ruler.patterns) == 2 assert len(ruler.patterns) == 2
assert len(doc.ents) == 1 assert len(doc.ents) == 1
assert doc.ents[0].label_ == "ORG" assert doc.ents[0].label_ == "ORG"
assert doc.ents[0].text == "ACME" assert doc.ents[0].text == "ACME"
ruler.remove("acme") if isinstance(ruler, EntityRuler):
doc = ruler(nlp.make_doc("Duygu founded her company ACME")) ruler.remove("acme")
else:
ruler.remove_by_id("acme")
doc = nlp("Dina founded her company ACME")
assert len(ruler.patterns) == 1 assert len(ruler.patterns) == 1
assert len(doc.ents) == 0 assert len(doc.ents) == 0
def test_entity_ruler_remove_patterns_in_a_row(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_patterns_in_a_row(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, {"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"}, {"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "DATE", "pattern": "her birthday", "id": "bday"}, {"label": "DATE", "pattern": "her birthday", "id": "bday"},
{"label": "ORG", "pattern": "ACM"}, {"label": "ORG", "pattern": "ACM"},
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu founded her company ACME on her birthday")) doc = nlp("Dina founded her company ACME on her birthday")
assert len(doc.ents) == 3 assert len(doc.ents) == 3
assert doc.ents[0].label_ == "PERSON" assert doc.ents[0].label_ == "PERSON"
assert doc.ents[0].text == "Duygu" assert doc.ents[0].text == "Dina"
assert doc.ents[1].label_ == "ORG" assert doc.ents[1].label_ == "ORG"
assert doc.ents[1].text == "ACME" assert doc.ents[1].text == "ACME"
assert doc.ents[2].label_ == "DATE" assert doc.ents[2].label_ == "DATE"
assert doc.ents[2].text == "her birthday" assert doc.ents[2].text == "her birthday"
ruler.remove("duygu") if isinstance(ruler, EntityRuler):
ruler.remove("acme") ruler.remove("dina")
ruler.remove("bday") ruler.remove("acme")
doc = ruler(nlp.make_doc("Duygu went to school")) ruler.remove("bday")
else:
ruler.remove_by_id("dina")
ruler.remove_by_id("acme")
ruler.remove_by_id("bday")
doc = nlp("Dina went to school")
assert len(doc.ents) == 0 assert len(doc.ents) == 0
def test_entity_ruler_remove_all_patterns(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_all_patterns(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, {"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"}, {"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "DATE", "pattern": "her birthday", "id": "bday"}, {"label": "DATE", "pattern": "her birthday", "id": "bday"},
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
assert len(ruler.patterns) == 3 assert len(ruler.patterns) == 3
ruler.remove("duygu") if isinstance(ruler, EntityRuler):
ruler.remove("dina")
else:
ruler.remove_by_id("dina")
assert len(ruler.patterns) == 2 assert len(ruler.patterns) == 2
ruler.remove("acme") if isinstance(ruler, EntityRuler):
ruler.remove("acme")
else:
ruler.remove_by_id("acme")
assert len(ruler.patterns) == 1 assert len(ruler.patterns) == 1
ruler.remove("bday") if isinstance(ruler, EntityRuler):
ruler.remove("bday")
else:
ruler.remove_by_id("bday")
assert len(ruler.patterns) == 0 assert len(ruler.patterns) == 0
with pytest.warns(UserWarning): with pytest.warns(UserWarning):
doc = ruler(nlp.make_doc("Duygu founded her company ACME on her birthday")) doc = nlp("Dina founded her company ACME on her birthday")
assert len(doc.ents) == 0 assert len(doc.ents) == 0
def test_entity_ruler_remove_and_add(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_and_add(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [{"label": "DATE", "pattern": "last time"}] patterns = [{"label": "DATE", "pattern": "last time"}]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = ruler( doc = ruler(
@ -524,7 +608,10 @@ def test_entity_ruler_remove_and_add(nlp):
assert doc.ents[0].text == "last time" assert doc.ents[0].text == "last time"
assert doc.ents[1].label_ == "DATE" assert doc.ents[1].label_ == "DATE"
assert doc.ents[1].text == "this time" assert doc.ents[1].text == "this time"
ruler.remove("ttime") if isinstance(ruler, EntityRuler):
ruler.remove("ttime")
else:
ruler.remove_by_id("ttime")
doc = ruler( doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers") nlp.make_doc("I saw him last time we met, this time he brought some flowers")
) )
@ -547,7 +634,10 @@ def test_entity_ruler_remove_and_add(nlp):
) )
assert len(ruler.patterns) == 3 assert len(ruler.patterns) == 3
assert len(doc.ents) == 3 assert len(doc.ents) == 3
ruler.remove("ttime") if isinstance(ruler, EntityRuler):
ruler.remove("ttime")
else:
ruler.remove_by_id("ttime")
doc = ruler( doc = ruler(
nlp.make_doc( nlp.make_doc(
"I saw him last time we met, this time he brought some flowers, another time some chocolate." "I saw him last time we met, this time he brought some flowers, another time some chocolate."

View File

@ -0,0 +1,465 @@
import pytest
import spacy
from spacy import registry
from spacy.errors import MatchPatternError
from spacy.tokens import Span
from spacy.training import Example
from spacy.tests.util import make_tempdir
from thinc.api import NumpyOps, get_current_ops
@pytest.fixture
@registry.misc("span_ruler_patterns")
def patterns():
return [
{"label": "HELLO", "pattern": "hello world", "id": "hello1"},
{"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
{"label": "HELLO", "pattern": [{"ORTH": "HELLO"}], "id": "hello2"},
{"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
{"label": "TECH_ORG", "pattern": "Apple"},
{"label": "TECH_ORG", "pattern": "Microsoft"},
]
@pytest.fixture
def overlapping_patterns():
return [
{"label": "FOOBAR", "pattern": "foo bar"},
{"label": "BARBAZ", "pattern": "bar baz"},
]
@pytest.fixture
def person_org_patterns():
return [
{"label": "PERSON", "pattern": "Dina"},
{"label": "ORG", "pattern": "ACME"},
{"label": "ORG", "pattern": "ACM"},
]
@pytest.fixture
def person_org_date_patterns(person_org_patterns):
return person_org_patterns + [{"label": "DATE", "pattern": "June 14th"}]
def test_span_ruler_add_empty(patterns):
"""Test that patterns don't get added excessively."""
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"validate": True})
ruler.add_patterns(patterns)
pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
assert pattern_count > 0
ruler.add_patterns([])
after_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
assert after_count == pattern_count
def test_span_ruler_init(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4
assert "HELLO" in ruler
assert "BYE" in ruler
doc = nlp("hello world bye bye")
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "HELLO"
assert doc.spans["ruler"][0].id_ == "hello1"
assert doc.spans["ruler"][1].label_ == "BYE"
assert doc.spans["ruler"][1].id_ == ""
def test_span_ruler_no_patterns_warns():
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
assert len(ruler) == 0
assert len(ruler.labels) == 0
assert nlp.pipe_names == ["span_ruler"]
with pytest.warns(UserWarning):
doc = nlp("hello world bye bye")
assert len(doc.spans["ruler"]) == 0
def test_span_ruler_init_patterns(patterns):
# initialize with patterns
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
assert len(ruler.labels) == 0
ruler.initialize(lambda: [], patterns=patterns)
assert len(ruler.labels) == 4
doc = nlp("hello world bye bye")
assert doc.spans["ruler"][0].label_ == "HELLO"
assert doc.spans["ruler"][1].label_ == "BYE"
nlp.remove_pipe("span_ruler")
# initialize with patterns from misc registry
nlp.config["initialize"]["components"]["span_ruler"] = {
"patterns": {"@misc": "span_ruler_patterns"}
}
ruler = nlp.add_pipe("span_ruler")
assert len(ruler.labels) == 0
nlp.initialize()
assert len(ruler.labels) == 4
doc = nlp("hello world bye bye")
assert doc.spans["ruler"][0].label_ == "HELLO"
assert doc.spans["ruler"][1].label_ == "BYE"
def test_span_ruler_init_clear(patterns):
"""Test that initialization clears patterns."""
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
assert len(ruler.labels) == 4
ruler.initialize(lambda: [])
assert len(ruler.labels) == 0
def test_span_ruler_clear(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
assert len(ruler.labels) == 4
doc = nlp("hello world")
assert len(doc.spans["ruler"]) == 1
ruler.clear()
assert len(ruler.labels) == 0
with pytest.warns(UserWarning):
doc = nlp("hello world")
assert len(doc.spans["ruler"]) == 0
def test_span_ruler_existing(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"overwrite": False})
ruler.add_patterns(patterns)
doc = nlp.make_doc("OH HELLO WORLD bye bye")
doc.spans["ruler"] = [doc[0:2]]
doc = nlp(doc)
assert len(doc.spans["ruler"]) == 3
assert doc.spans["ruler"][0] == doc[0:2]
assert doc.spans["ruler"][1].label_ == "HELLO"
assert doc.spans["ruler"][1].id_ == "hello2"
assert doc.spans["ruler"][2].label_ == "BYE"
assert doc.spans["ruler"][2].id_ == ""
def test_span_ruler_existing_overwrite(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"overwrite": True})
ruler.add_patterns(patterns)
doc = nlp.make_doc("OH HELLO WORLD bye bye")
doc.spans["ruler"] = [doc[0:2]]
doc = nlp(doc)
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "HELLO"
assert doc.spans["ruler"][0].text == "HELLO"
assert doc.spans["ruler"][1].label_ == "BYE"
def test_span_ruler_serialize_bytes(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4
ruler_bytes = ruler.to_bytes()
new_nlp = spacy.blank("xx")
new_ruler = new_nlp.add_pipe("span_ruler")
assert len(new_ruler) == 0
assert len(new_ruler.labels) == 0
new_ruler = new_ruler.from_bytes(ruler_bytes)
assert len(new_ruler) == len(patterns)
assert len(new_ruler.labels) == 4
assert len(new_ruler.patterns) == len(ruler.patterns)
for pattern in ruler.patterns:
assert pattern in new_ruler.patterns
assert sorted(new_ruler.labels) == sorted(ruler.labels)
def test_span_ruler_validate():
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
validated_ruler = nlp.add_pipe(
"span_ruler", name="validated_span_ruler", config={"validate": True}
)
valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]}
invalid_pattern = {"label": "HELLO", "pattern": [{"ASDF": "HELLO"}]}
# invalid pattern raises error without validate
with pytest.raises(ValueError):
ruler.add_patterns([invalid_pattern])
# valid pattern is added without errors with validate
validated_ruler.add_patterns([valid_pattern])
# invalid pattern raises error with validate
with pytest.raises(MatchPatternError):
validated_ruler.add_patterns([invalid_pattern])
def test_span_ruler_properties(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"overwrite": True})
ruler.add_patterns(patterns)
assert sorted(ruler.labels) == sorted(set([p["label"] for p in patterns]))
def test_span_ruler_overlapping_spans(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(overlapping_patterns)
doc = ruler(nlp.make_doc("foo bar baz"))
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "FOOBAR"
assert doc.spans["ruler"][1].label_ == "BARBAZ"
def test_span_ruler_scorer(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(overlapping_patterns)
text = "foo bar baz"
pred_doc = ruler(nlp.make_doc(text))
assert len(pred_doc.spans["ruler"]) == 2
assert pred_doc.spans["ruler"][0].label_ == "FOOBAR"
assert pred_doc.spans["ruler"][1].label_ == "BARBAZ"
ref_doc = nlp.make_doc(text)
ref_doc.spans["ruler"] = [Span(ref_doc, 0, 2, label="FOOBAR")]
scores = nlp.evaluate([Example(pred_doc, ref_doc)])
assert scores["spans_ruler_p"] == 0.5
assert scores["spans_ruler_r"] == 1.0
@pytest.mark.parametrize("n_process", [1, 2])
def test_span_ruler_multiprocessing(n_process):
if isinstance(get_current_ops, NumpyOps) or n_process < 2:
texts = ["I enjoy eating Pizza Hut pizza."]
patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut"}]
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
for doc in nlp.pipe(texts, n_process=2):
for ent in doc.spans["ruler"]:
assert ent.label_ == "FASTFOOD"
def test_span_ruler_serialize_dir(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
with make_tempdir() as d:
ruler.to_disk(d / "test_ruler")
ruler.from_disk(d / "test_ruler") # read from an existing directory
with pytest.raises(ValueError):
ruler.from_disk(d / "non_existing_dir") # read from a bad directory
def test_span_ruler_remove_basic(person_org_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_patterns)
doc = ruler(nlp.make_doc("Dina went to school"))
assert len(ruler.patterns) == 3
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "PERSON"
assert doc.spans["ruler"][0].text == "Dina"
ruler.remove("PERSON")
doc = ruler(nlp.make_doc("Dina went to school"))
assert len(doc.spans["ruler"]) == 0
assert len(ruler.patterns) == 2
def test_span_ruler_remove_nonexisting_pattern(person_org_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_patterns)
assert len(ruler.patterns) == 3
with pytest.raises(ValueError):
ruler.remove("NE")
with pytest.raises(ValueError):
ruler.remove_by_id("NE")
def test_span_ruler_remove_several_patterns(person_org_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_patterns)
doc = ruler(nlp.make_doc("Dina founded the company ACME."))
assert len(ruler.patterns) == 3
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "PERSON"
assert doc.spans["ruler"][0].text == "Dina"
assert doc.spans["ruler"][1].label_ == "ORG"
assert doc.spans["ruler"][1].text == "ACME"
ruler.remove("PERSON")
doc = ruler(nlp.make_doc("Dina founded the company ACME"))
assert len(ruler.patterns) == 2
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "ORG"
assert doc.spans["ruler"][0].text == "ACME"
ruler.remove("ORG")
with pytest.warns(UserWarning):
doc = ruler(nlp.make_doc("Dina founded the company ACME"))
assert len(ruler.patterns) == 0
assert len(doc.spans["ruler"]) == 0
def test_span_ruler_remove_patterns_in_a_row(person_org_date_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_date_patterns)
doc = ruler(nlp.make_doc("Dina founded the company ACME on June 14th"))
assert len(doc.spans["ruler"]) == 3
assert doc.spans["ruler"][0].label_ == "PERSON"
assert doc.spans["ruler"][0].text == "Dina"
assert doc.spans["ruler"][1].label_ == "ORG"
assert doc.spans["ruler"][1].text == "ACME"
assert doc.spans["ruler"][2].label_ == "DATE"
assert doc.spans["ruler"][2].text == "June 14th"
ruler.remove("ORG")
ruler.remove("DATE")
doc = ruler(nlp.make_doc("Dina went to school"))
assert len(doc.spans["ruler"]) == 1
def test_span_ruler_remove_all_patterns(person_org_date_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_date_patterns)
assert len(ruler.patterns) == 4
ruler.remove("PERSON")
assert len(ruler.patterns) == 3
ruler.remove("ORG")
assert len(ruler.patterns) == 1
ruler.remove("DATE")
assert len(ruler.patterns) == 0
with pytest.warns(UserWarning):
doc = ruler(nlp.make_doc("Dina founded the company ACME on June 14th"))
assert len(doc.spans["ruler"]) == 0
def test_span_ruler_remove_and_add():
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
patterns1 = [{"label": "DATE1", "pattern": "last time"}]
ruler.add_patterns(patterns1)
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 1
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "DATE1"
assert doc.spans["ruler"][0].text == "last time"
patterns2 = [{"label": "DATE2", "pattern": "this time"}]
ruler.add_patterns(patterns2)
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 2
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "DATE1"
assert doc.spans["ruler"][0].text == "last time"
assert doc.spans["ruler"][1].label_ == "DATE2"
assert doc.spans["ruler"][1].text == "this time"
ruler.remove("DATE1")
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 1
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "DATE2"
assert doc.spans["ruler"][0].text == "this time"
ruler.add_patterns(patterns1)
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 2
assert len(doc.spans["ruler"]) == 2
patterns3 = [{"label": "DATE3", "pattern": "another time"}]
ruler.add_patterns(patterns3)
doc = ruler(
nlp.make_doc(
"I saw him last time we met, this time he brought some flowers, another time some chocolate."
)
)
assert len(ruler.patterns) == 3
assert len(doc.spans["ruler"]) == 3
ruler.remove("DATE3")
doc = ruler(
nlp.make_doc(
"I saw him last time we met, this time he brought some flowers, another time some chocolate."
)
)
assert len(ruler.patterns) == 2
assert len(doc.spans["ruler"]) == 2
def test_span_ruler_spans_filter(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe(
"span_ruler",
config={"spans_filter": {"@misc": "spacy.first_longest_spans_filter.v1"}},
)
ruler.add_patterns(overlapping_patterns)
doc = ruler(nlp.make_doc("foo bar baz"))
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "FOOBAR"
def test_span_ruler_ents_default_filter(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"annotate_ents": True})
ruler.add_patterns(overlapping_patterns)
doc = ruler(nlp.make_doc("foo bar baz"))
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "FOOBAR"
def test_span_ruler_ents_overwrite_filter(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe(
"span_ruler",
config={
"annotate_ents": True,
"overwrite": False,
"ents_filter": {"@misc": "spacy.prioritize_new_ents_filter.v1"},
},
)
ruler.add_patterns(overlapping_patterns)
# overlapping ents are clobbered, non-overlapping ents are preserved
doc = nlp.make_doc("foo bar baz a b c")
doc.ents = [Span(doc, 1, 3, label="BARBAZ"), Span(doc, 3, 6, label="ABC")]
doc = ruler(doc)
assert len(doc.ents) == 2
assert doc.ents[0].label_ == "FOOBAR"
assert doc.ents[1].label_ == "ABC"
def test_span_ruler_ents_bad_filter(overlapping_patterns):
@registry.misc("test_pass_through_filter")
def make_pass_through_filter():
def pass_through_filter(spans1, spans2):
return spans1 + spans2
return pass_through_filter
nlp = spacy.blank("xx")
ruler = nlp.add_pipe(
"span_ruler",
config={
"annotate_ents": True,
"ents_filter": {"@misc": "test_pass_through_filter"},
},
)
ruler.add_patterns(overlapping_patterns)
with pytest.raises(ValueError):
ruler(nlp.make_doc("foo bar baz"))

View File

@ -0,0 +1,161 @@
import pytest
from spacy.tokens import Span, SpanGroup
from spacy.tokens._dict_proxies import SpanGroups
@pytest.mark.issue(10685)
def test_issue10685(en_tokenizer):
"""Test `SpanGroups` de/serialization"""
# Start with a Doc with no SpanGroups
doc = en_tokenizer("Will it blend?")
# Test empty `SpanGroups` de/serialization:
assert len(doc.spans) == 0
doc.spans.from_bytes(doc.spans.to_bytes())
assert len(doc.spans) == 0
# Test non-empty `SpanGroups` de/serialization:
doc.spans["test"] = SpanGroup(doc, name="test", spans=[doc[0:1]])
doc.spans["test2"] = SpanGroup(doc, name="test", spans=[doc[1:2]])
def assert_spangroups():
assert len(doc.spans) == 2
assert doc.spans["test"].name == "test"
assert doc.spans["test2"].name == "test"
assert list(doc.spans["test"]) == [doc[0:1]]
assert list(doc.spans["test2"]) == [doc[1:2]]
# Sanity check the currently-expected behavior
assert_spangroups()
# Now test serialization/deserialization:
doc.spans.from_bytes(doc.spans.to_bytes())
assert_spangroups()
def test_span_groups_serialization_mismatches(en_tokenizer):
"""Test the serialization of multiple mismatching `SpanGroups` keys and `SpanGroup.name`s"""
doc = en_tokenizer("How now, brown cow?")
# Some variety:
# 1 SpanGroup where its name matches its key
# 2 SpanGroups that have the same name--which is not a key
# 2 SpanGroups that have the same name--which is a key
# 1 SpanGroup that is a value for 2 different keys (where its name is a key)
# 1 SpanGroup that is a value for 2 different keys (where its name is not a key)
groups = doc.spans
groups["key1"] = SpanGroup(doc, name="key1", spans=[doc[0:1], doc[1:2]])
groups["key2"] = SpanGroup(doc, name="too", spans=[doc[3:4], doc[4:5]])
groups["key3"] = SpanGroup(doc, name="too", spans=[doc[1:2], doc[0:1]])
groups["key4"] = SpanGroup(doc, name="key4", spans=[doc[0:1]])
groups["key5"] = SpanGroup(doc, name="key4", spans=[doc[0:1]])
sg6 = SpanGroup(doc, name="key6", spans=[doc[0:1]])
groups["key6"] = sg6
groups["key7"] = sg6
sg8 = SpanGroup(doc, name="also", spans=[doc[1:2]])
groups["key8"] = sg8
groups["key9"] = sg8
regroups = SpanGroups(doc).from_bytes(groups.to_bytes())
# Assert regroups == groups
assert regroups.keys() == groups.keys()
for key, regroup in regroups.items():
# Assert regroup == groups[key]
assert regroup.name == groups[key].name
assert list(regroup) == list(groups[key])
@pytest.mark.parametrize(
"spans_bytes,doc_text,expected_spangroups,expected_warning",
# The bytestrings below were generated from an earlier version of spaCy
# that serialized `SpanGroups` as a list of SpanGroup bytes (via SpanGroups.to_bytes).
# Comments preceding the bytestrings indicate from what Doc they were created.
[
# Empty SpanGroups:
(b"\x90", "", {}, False),
# doc = nlp("Will it blend?")
# doc.spans['test'] = SpanGroup(doc, name='test', spans=[doc[0:1]])
(
b"\x91\xc4C\x83\xa4name\xa4test\xa5attrs\x80\xa5spans\x91\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x04",
"Will it blend?",
{"test": {"name": "test", "spans": [(0, 1)]}},
False,
),
# doc = nlp("Will it blend?")
# doc.spans['test'] = SpanGroup(doc, name='test', spans=[doc[0:1]])
# doc.spans['test2'] = SpanGroup(doc, name='test', spans=[doc[1:2]])
(
b"\x92\xc4C\x83\xa4name\xa4test\xa5attrs\x80\xa5spans\x91\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x04\xc4C\x83\xa4name\xa4test\xa5attrs\x80\xa5spans\x91\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x05\x00\x00\x00\x07",
"Will it blend?",
# We expect only 1 SpanGroup to be in doc.spans in this example
# because there are 2 `SpanGroup`s that have the same .name. See #10685.
{"test": {"name": "test", "spans": [(1, 2)]}},
True,
),
# doc = nlp('How now, brown cow?')
# doc.spans['key1'] = SpanGroup(doc, name='key1', spans=[doc[0:1], doc[1:2]])
# doc.spans['key2'] = SpanGroup(doc, name='too', spans=[doc[3:4], doc[4:5]])
# doc.spans['key3'] = SpanGroup(doc, name='too', spans=[doc[1:2], doc[0:1]])
# doc.spans['key4'] = SpanGroup(doc, name='key4', spans=[doc[0:1]])
# doc.spans['key5'] = SpanGroup(doc, name='key4', spans=[doc[0:1]])
(
b"\x95\xc4m\x83\xa4name\xa4key1\xa5attrs\x80\xa5spans\x92\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x03\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x07\xc4l\x83\xa4name\xa3too\xa5attrs\x80\xa5spans\x92\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\t\x00\x00\x00\x0e\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x05\x00\x00\x00\x0f\x00\x00\x00\x12\xc4l\x83\xa4name\xa3too\xa5attrs\x80\xa5spans\x92\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x07\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x03\xc4C\x83\xa4name\xa4key4\xa5attrs\x80\xa5spans\x91\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x03\xc4C\x83\xa4name\xa4key4\xa5attrs\x80\xa5spans\x91\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x03",
"How now, brown cow?",
{
"key1": {"name": "key1", "spans": [(0, 1), (1, 2)]},
"too": {"name": "too", "spans": [(1, 2), (0, 1)]},
"key4": {"name": "key4", "spans": [(0, 1)]},
},
True,
),
],
)
def test_deserialize_span_groups_compat(
en_tokenizer, spans_bytes, doc_text, expected_spangroups, expected_warning
):
"""Test backwards-compatibility of `SpanGroups` deserialization.
This uses serializations (bytes) from a prior version of spaCy (before 3.3.1).
spans_bytes (bytes): Serialized `SpanGroups` object.
doc_text (str): Doc text.
expected_spangroups (dict):
Dict mapping every expected (after deserialization) `SpanGroups` key
to a SpanGroup's "args", where a SpanGroup's args are given as a dict:
{"name": span_group.name,
"spans": [(span0.start, span0.end), ...]}
expected_warning (bool): Whether a warning is to be expected from .from_bytes()
--i.e. if more than 1 SpanGroup has the same .name within the `SpanGroups`.
"""
doc = en_tokenizer(doc_text)
if expected_warning:
with pytest.warns(UserWarning):
doc.spans.from_bytes(spans_bytes)
else:
# TODO: explicitly check for lack of a warning
doc.spans.from_bytes(spans_bytes)
assert doc.spans.keys() == expected_spangroups.keys()
for name, spangroup_args in expected_spangroups.items():
assert doc.spans[name].name == spangroup_args["name"]
spans = [Span(doc, start, end) for start, end in spangroup_args["spans"]]
assert list(doc.spans[name]) == spans
def test_span_groups_serialization(en_tokenizer):
doc = en_tokenizer("0 1 2 3 4 5 6")
span_groups = SpanGroups(doc)
spans = [doc[0:2], doc[1:3]]
sg1 = SpanGroup(doc, spans=spans)
span_groups["key1"] = sg1
span_groups["key2"] = sg1
span_groups["key3"] = []
reloaded_span_groups = SpanGroups(doc).from_bytes(span_groups.to_bytes())
assert span_groups.keys() == reloaded_span_groups.keys()
for key, value in span_groups.items():
assert all(
span == reloaded_span
for span, reloaded_span in zip(span_groups[key], reloaded_span_groups[key])
)

View File

@ -1,4 +1,7 @@
import os import os
import math
from random import sample
from typing import Counter
import pytest import pytest
import srsly import srsly
@ -14,6 +17,10 @@ from spacy.cli._util import substitute_project_variables
from spacy.cli._util import validate_project_commands from spacy.cli._util import validate_project_commands
from spacy.cli.debug_data import _compile_gold, _get_labels_from_model from spacy.cli.debug_data import _compile_gold, _get_labels_from_model
from spacy.cli.debug_data import _get_labels_from_spancat from spacy.cli.debug_data import _get_labels_from_spancat
from spacy.cli.debug_data import _get_distribution, _get_kl_divergence
from spacy.cli.debug_data import _get_span_characteristics
from spacy.cli.debug_data import _print_span_characteristics
from spacy.cli.debug_data import _get_spans_length_freq_dist
from spacy.cli.download import get_compatibility, get_version from spacy.cli.download import get_compatibility, get_version
from spacy.cli.init_config import RECOMMENDATIONS, init_config, fill_config from spacy.cli.init_config import RECOMMENDATIONS, init_config, fill_config
from spacy.cli.package import get_third_party_dependencies from spacy.cli.package import get_third_party_dependencies
@ -24,6 +31,7 @@ from spacy.lang.nl import Dutch
from spacy.language import Language from spacy.language import Language
from spacy.schemas import ProjectConfigSchema, RecommendationSchema, validate from spacy.schemas import ProjectConfigSchema, RecommendationSchema, validate
from spacy.tokens import Doc from spacy.tokens import Doc
from spacy.tokens.span import Span
from spacy.training import Example, docs_to_json, offsets_to_biluo_tags from spacy.training import Example, docs_to_json, offsets_to_biluo_tags
from spacy.training.converters import conll_ner_to_docs, conllu_to_docs from spacy.training.converters import conll_ner_to_docs, conllu_to_docs
from spacy.training.converters import iob_to_docs from spacy.training.converters import iob_to_docs
@ -740,3 +748,110 @@ def test_debug_data_compile_gold():
eg = Example(pred, ref) eg = Example(pred, ref)
data = _compile_gold([eg], ["ner"], nlp, True) data = _compile_gold([eg], ["ner"], nlp, True)
assert data["boundary_cross_ents"] == 1 assert data["boundary_cross_ents"] == 1
def test_debug_data_compile_gold_for_spans():
nlp = English()
spans_key = "sc"
pred = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
pred.spans[spans_key] = [Span(pred, 3, 6, "ORG"), Span(pred, 5, 6, "GPE")]
ref = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
ref.spans[spans_key] = [Span(ref, 3, 6, "ORG"), Span(ref, 5, 6, "GPE")]
eg = Example(pred, ref)
data = _compile_gold([eg], ["spancat"], nlp, True)
assert data["spancat"][spans_key] == Counter({"ORG": 1, "GPE": 1})
assert data["spans_length"][spans_key] == {"ORG": [3], "GPE": [1]}
assert data["spans_per_type"][spans_key] == {
"ORG": [Span(ref, 3, 6, "ORG")],
"GPE": [Span(ref, 5, 6, "GPE")],
}
assert data["sb_per_type"][spans_key] == {
"ORG": {"start": [ref[2:3]], "end": [ref[6:7]]},
"GPE": {"start": [ref[4:5]], "end": [ref[6:7]]},
}
def test_frequency_distribution_is_correct():
nlp = English()
docs = [
Doc(nlp.vocab, words=["Bank", "of", "China"]),
Doc(nlp.vocab, words=["China"]),
]
expected = Counter({"china": 0.5, "bank": 0.25, "of": 0.25})
freq_distribution = _get_distribution(docs, normalize=True)
assert freq_distribution == expected
def test_kl_divergence_computation_is_correct():
p = Counter({"a": 0.5, "b": 0.25})
q = Counter({"a": 0.25, "b": 0.50, "c": 0.15, "d": 0.10})
result = _get_kl_divergence(p, q)
expected = 0.1733
assert math.isclose(result, expected, rel_tol=1e-3)
def test_get_span_characteristics_return_value():
nlp = English()
spans_key = "sc"
pred = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
pred.spans[spans_key] = [Span(pred, 3, 6, "ORG"), Span(pred, 5, 6, "GPE")]
ref = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
ref.spans[spans_key] = [Span(ref, 3, 6, "ORG"), Span(ref, 5, 6, "GPE")]
eg = Example(pred, ref)
examples = [eg]
data = _compile_gold(examples, ["spancat"], nlp, True)
span_characteristics = _get_span_characteristics(
examples=examples, compiled_gold=data, spans_key=spans_key
)
assert {"sd", "bd", "lengths"}.issubset(span_characteristics.keys())
assert span_characteristics["min_length"] == 1
assert span_characteristics["max_length"] == 3
def test_ensure_print_span_characteristics_wont_fail():
"""Test if interface between two methods aren't destroyed if refactored"""
nlp = English()
spans_key = "sc"
pred = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
pred.spans[spans_key] = [Span(pred, 3, 6, "ORG"), Span(pred, 5, 6, "GPE")]
ref = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
ref.spans[spans_key] = [Span(ref, 3, 6, "ORG"), Span(ref, 5, 6, "GPE")]
eg = Example(pred, ref)
examples = [eg]
data = _compile_gold(examples, ["spancat"], nlp, True)
span_characteristics = _get_span_characteristics(
examples=examples, compiled_gold=data, spans_key=spans_key
)
_print_span_characteristics(span_characteristics)
@pytest.mark.parametrize("threshold", [70, 80, 85, 90, 95])
def test_span_length_freq_dist_threshold_must_be_correct(threshold):
sample_span_lengths = {
"span_type_1": [1, 4, 4, 5],
"span_type_2": [5, 3, 3, 2],
"span_type_3": [3, 1, 3, 3],
}
span_freqs = _get_spans_length_freq_dist(sample_span_lengths, threshold)
assert sum(span_freqs.values()) >= threshold
def test_span_length_freq_dist_output_must_be_correct():
sample_span_lengths = {
"span_type_1": [1, 4, 4, 5],
"span_type_2": [5, 3, 3, 2],
"span_type_3": [3, 1, 3, 3],
}
threshold = 90
span_freqs = _get_spans_length_freq_dist(sample_span_lengths, threshold)
assert sum(span_freqs.values()) >= threshold
assert list(span_freqs.keys()) == [3, 1, 4, 5, 2]

View File

@ -671,13 +671,13 @@ def test_gold_ner_missing_tags(en_tokenizer):
def test_projectivize(en_tokenizer): def test_projectivize(en_tokenizer):
doc = en_tokenizer("He pretty quickly walks away") doc = en_tokenizer("He pretty quickly walks away")
heads = [3, 2, 3, 0, 2] heads = [3, 2, 3, 3, 2]
deps = ["dep"] * len(heads) deps = ["dep"] * len(heads)
example = Example.from_dict(doc, {"heads": heads, "deps": deps}) example = Example.from_dict(doc, {"heads": heads, "deps": deps})
proj_heads, proj_labels = example.get_aligned_parse(projectivize=True) proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
nonproj_heads, nonproj_labels = example.get_aligned_parse(projectivize=False) nonproj_heads, nonproj_labels = example.get_aligned_parse(projectivize=False)
assert proj_heads == [3, 2, 3, 0, 3] assert proj_heads == [3, 2, 3, 3, 3]
assert nonproj_heads == [3, 2, 3, 0, 2] assert nonproj_heads == [3, 2, 3, 3, 2]
def test_iob_to_biluo(): def test_iob_to_biluo():

View File

@ -1,10 +1,11 @@
from typing import Iterable, Tuple, Union, Optional, TYPE_CHECKING from typing import Dict, Iterable, List, Tuple, Union, Optional, TYPE_CHECKING
import warnings
import weakref import weakref
from collections import UserDict from collections import UserDict
import srsly import srsly
from .span_group import SpanGroup from .span_group import SpanGroup
from ..errors import Errors from ..errors import Errors, Warnings
if TYPE_CHECKING: if TYPE_CHECKING:
@ -16,7 +17,7 @@ if TYPE_CHECKING:
# Why inherit from UserDict instead of dict here? # Why inherit from UserDict instead of dict here?
# Well, the 'dict' class doesn't necessarily delegate everything nicely, # Well, the 'dict' class doesn't necessarily delegate everything nicely,
# for performance reasons. The UserDict is slower but better behaved. # for performance reasons. The UserDict is slower but better behaved.
# See https://treyhunner.com/2019/04/why-you-shouldnt-inherit-from-list-and-dict-in-python/0ww # See https://treyhunner.com/2019/04/why-you-shouldnt-inherit-from-list-and-dict-in-python/
class SpanGroups(UserDict): class SpanGroups(UserDict):
"""A dict-like proxy held by the Doc, to control access to span groups.""" """A dict-like proxy held by the Doc, to control access to span groups."""
@ -53,20 +54,52 @@ class SpanGroups(UserDict):
return super().setdefault(key, default=default) return super().setdefault(key, default=default)
def to_bytes(self) -> bytes: def to_bytes(self) -> bytes:
# We don't need to serialize this as a dict, because the groups # We serialize this as a dict in order to track the key(s) a SpanGroup
# know their names. # is a value of (in a backward- and forward-compatible way), since
# a SpanGroup can have a key that doesn't match its `.name` (See #10685)
if len(self) == 0: if len(self) == 0:
return self._EMPTY_BYTES return self._EMPTY_BYTES
msg = [value.to_bytes() for value in self.values()] msg: Dict[bytes, List[str]] = {}
for key, value in self.items():
msg.setdefault(value.to_bytes(), []).append(key)
return srsly.msgpack_dumps(msg) return srsly.msgpack_dumps(msg)
def from_bytes(self, bytes_data: bytes) -> "SpanGroups": def from_bytes(self, bytes_data: bytes) -> "SpanGroups":
msg = [] if bytes_data == self._EMPTY_BYTES else srsly.msgpack_loads(bytes_data) # backwards-compatibility: bytes_data may be one of:
# b'', a serialized empty list, a serialized list of SpanGroup bytes
# or a serialized dict of SpanGroup bytes -> keys
msg = (
[]
if not bytes_data or bytes_data == self._EMPTY_BYTES
else srsly.msgpack_loads(bytes_data)
)
self.clear() self.clear()
doc = self._ensure_doc() doc = self._ensure_doc()
for value_bytes in msg: if isinstance(msg, list):
group = SpanGroup(doc).from_bytes(value_bytes) # This is either the 1st version of `SpanGroups` serialization
self[group.name] = group # or there were no SpanGroups serialized
for value_bytes in msg:
group = SpanGroup(doc).from_bytes(value_bytes)
if group.name in self:
# Display a warning if `msg` contains `SpanGroup`s
# that have the same .name (attribute).
# Because, for `SpanGroups` serialized as lists,
# only 1 SpanGroup per .name is loaded. (See #10685)
warnings.warn(
Warnings.W120.format(
group_name=group.name, group_values=self[group.name]
)
)
self[group.name] = group
else:
for value_bytes, keys in msg.items():
group = SpanGroup(doc).from_bytes(value_bytes)
# Deserialize `SpanGroup`s as copies because it's possible for two
# different `SpanGroup`s (pre-serialization) to have the same bytes
# (since they can have the same `.name`).
self[keys[0]] = group
for key in keys[1:]:
self[key] = group.copy()
return self return self
def _ensure_doc(self) -> "Doc": def _ensure_doc(self) -> "Doc":

View File

@ -170,6 +170,9 @@ class Doc:
def extend_tensor(self, tensor: Floats2d) -> None: ... def extend_tensor(self, tensor: Floats2d) -> None: ...
def retokenize(self) -> Retokenizer: ... def retokenize(self) -> Retokenizer: ...
def to_json(self, underscore: Optional[List[str]] = ...) -> Dict[str, Any]: ... def to_json(self, underscore: Optional[List[str]] = ...) -> Dict[str, Any]: ...
def from_json(
self, doc_json: Dict[str, Any] = ..., validate: bool = False
) -> Doc: ...
def to_utf8_array(self, nr_char: int = ...) -> Ints2d: ... def to_utf8_array(self, nr_char: int = ...) -> Ints2d: ...
@staticmethod @staticmethod
def _get_array_attrs() -> Tuple[Any]: ... def _get_array_attrs() -> Tuple[Any]: ...

View File

@ -1,4 +1,6 @@
# cython: infer_types=True, bounds_check=False, profile=True # cython: infer_types=True, bounds_check=False, profile=True
from typing import Set
cimport cython cimport cython
cimport numpy as np cimport numpy as np
from libc.string cimport memcpy from libc.string cimport memcpy
@ -31,10 +33,11 @@ from ..errors import Errors, Warnings
from ..morphology import Morphology from ..morphology import Morphology
from .. import util from .. import util
from .. import parts_of_speech from .. import parts_of_speech
from .. import schemas
from .underscore import Underscore, get_ext_args from .underscore import Underscore, get_ext_args
from ._retokenize import Retokenizer from ._retokenize import Retokenizer
from ._serialize import ALL_ATTRS as DOCBIN_ALL_ATTRS from ._serialize import ALL_ATTRS as DOCBIN_ALL_ATTRS
from ..util import get_words_and_spaces
DEF PADDING = 5 DEF PADDING = 5
@ -414,6 +417,7 @@ cdef class Doc:
""" """
# empty docs are always annotated # empty docs are always annotated
input_attr = attr
if self.length == 0: if self.length == 0:
return True return True
cdef int i cdef int i
@ -423,6 +427,10 @@ cdef class Doc:
elif attr == "IS_SENT_END" or attr == self.vocab.strings["IS_SENT_END"]: elif attr == "IS_SENT_END" or attr == self.vocab.strings["IS_SENT_END"]:
attr = SENT_START attr = SENT_START
attr = intify_attr(attr) attr = intify_attr(attr)
if attr is None:
raise ValueError(
Errors.E1037.format(attr=input_attr)
)
# adjust attributes # adjust attributes
if attr == HEAD: if attr == HEAD:
# HEAD does not have an unset state, so rely on DEP # HEAD does not have an unset state, so rely on DEP
@ -511,7 +519,7 @@ cdef class Doc:
def doc(self): def doc(self):
return self return self
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None, alignment_mode="strict"): def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None, alignment_mode="strict", span_id=0):
"""Create a `Span` object from the slice """Create a `Span` object from the slice
`doc.text[start_idx : end_idx]`. Returns None if no valid `Span` can be `doc.text[start_idx : end_idx]`. Returns None if no valid `Span` can be
created. created.
@ -570,7 +578,7 @@ cdef class Doc:
start += 1 start += 1
# Currently we have the token index, we want the range-end index # Currently we have the token index, we want the range-end index
end += 1 end += 1
cdef Span span = Span(self, start, end, label=label, kb_id=kb_id, vector=vector) cdef Span span = Span(self, start, end, label=label, kb_id=kb_id, span_id=span_id, vector=vector)
return span return span
def similarity(self, other): def similarity(self, other):
@ -708,6 +716,7 @@ cdef class Doc:
cdef int start = -1 cdef int start = -1
cdef attr_t label = 0 cdef attr_t label = 0
cdef attr_t kb_id = 0 cdef attr_t kb_id = 0
cdef attr_t ent_id = 0
output = [] output = []
for i in range(self.length): for i in range(self.length):
token = &self.c[i] token = &self.c[i]
@ -718,18 +727,20 @@ cdef class Doc:
elif token.ent_iob == 2 or token.ent_iob == 0 or \ elif token.ent_iob == 2 or token.ent_iob == 0 or \
(token.ent_iob == 3 and token.ent_type == 0): (token.ent_iob == 3 and token.ent_type == 0):
if start != -1: if start != -1:
output.append(Span(self, start, i, label=label, kb_id=kb_id)) output.append(Span(self, start, i, label=label, kb_id=kb_id, span_id=ent_id))
start = -1 start = -1
label = 0 label = 0
kb_id = 0 kb_id = 0
ent_id = 0
elif token.ent_iob == 3: elif token.ent_iob == 3:
if start != -1: if start != -1:
output.append(Span(self, start, i, label=label, kb_id=kb_id)) output.append(Span(self, start, i, label=label, kb_id=kb_id, span_id=ent_id))
start = i start = i
label = token.ent_type label = token.ent_type
kb_id = token.ent_kb_id kb_id = token.ent_kb_id
ent_id = token.ent_id
if start != -1: if start != -1:
output.append(Span(self, start, self.length, label=label, kb_id=kb_id)) output.append(Span(self, start, self.length, label=label, kb_id=kb_id, span_id=ent_id))
# remove empty-label spans # remove empty-label spans
output = [o for o in output if o.label_ != ""] output = [o for o in output if o.label_ != ""]
return tuple(output) return tuple(output)
@ -738,14 +749,14 @@ cdef class Doc:
# TODO: # TODO:
# 1. Test basic data-driven ORTH gazetteer # 1. Test basic data-driven ORTH gazetteer
# 2. Test more nuanced date and currency regex # 2. Test more nuanced date and currency regex
cdef attr_t entity_type, kb_id cdef attr_t entity_type, kb_id, ent_id
cdef int ent_start, ent_end cdef int ent_start, ent_end
ent_spans = [] ent_spans = []
for ent_info in ents: for ent_info in ents:
entity_type_, kb_id, ent_start, ent_end = get_entity_info(ent_info) entity_type_, kb_id, ent_start, ent_end, ent_id = get_entity_info(ent_info)
if isinstance(entity_type_, str): if isinstance(entity_type_, str):
self.vocab.strings.add(entity_type_) self.vocab.strings.add(entity_type_)
span = Span(self, ent_start, ent_end, label=entity_type_, kb_id=kb_id) span = Span(self, ent_start, ent_end, label=entity_type_, kb_id=kb_id, span_id=ent_id)
ent_spans.append(span) ent_spans.append(span)
self.set_ents(ent_spans, default=SetEntsDefault.outside) self.set_ents(ent_spans, default=SetEntsDefault.outside)
@ -796,6 +807,9 @@ cdef class Doc:
self.c[i].ent_iob = 1 self.c[i].ent_iob = 1
self.c[i].ent_type = span.label self.c[i].ent_type = span.label
self.c[i].ent_kb_id = span.kb_id self.c[i].ent_kb_id = span.kb_id
# for backwards compatibility in v3, only set ent_id from
# span.id if it's set, otherwise don't override
self.c[i].ent_id = span.id if span.id else self.c[i].ent_id
for span in blocked: for span in blocked:
for i in range(span.start, span.end): for i in range(span.start, span.end):
self.c[i].ent_iob = 3 self.c[i].ent_iob = 3
@ -1175,6 +1189,7 @@ cdef class Doc:
span.end_char + char_offset, span.end_char + char_offset,
span.label, span.label,
span.kb_id, span.kb_id,
span.id,
span.text, # included as a check span.text, # included as a check
)) ))
char_offset += len(doc.text) char_offset += len(doc.text)
@ -1210,8 +1225,9 @@ cdef class Doc:
span_tuple[1], span_tuple[1],
label=span_tuple[2], label=span_tuple[2],
kb_id=span_tuple[3], kb_id=span_tuple[3],
span_id=span_tuple[4],
) )
text = span_tuple[4] text = span_tuple[5]
if span is not None and span.text == text: if span is not None and span.text == text:
concat_doc.spans[key].append(span) concat_doc.spans[key].append(span)
else: else:
@ -1462,6 +1478,138 @@ cdef class Doc:
remove_label_if_necessary(attributes[i]) remove_label_if_necessary(attributes[i])
retokenizer.merge(span, attributes[i]) retokenizer.merge(span, attributes[i])
def from_json(self, doc_json, *, validate=False):
"""Convert a JSON document generated by Doc.to_json() to a Doc.
doc_json (Dict): JSON representation of doc object to load.
validate (bool): Whether to validate `doc_json` against the expected schema.
Defaults to False.
RETURNS (Doc): A doc instance corresponding to the specified JSON representation.
"""
if validate:
schema_validation_message = schemas.validate(schemas.DocJSONSchema, doc_json)
if schema_validation_message:
raise ValueError(Errors.E1038.format(message=schema_validation_message))
### Token-level properties ###
words = []
token_attrs_ids = (POS, HEAD, DEP, LEMMA, TAG, MORPH)
# Map annotation type IDs to their string equivalents.
token_attrs = {t: self.vocab.strings[t].lower() for t in token_attrs_ids}
token_annotations = {}
# Gather token-level properties.
for token_json in doc_json["tokens"]:
words.append(doc_json["text"][token_json["start"]:token_json["end"]])
for attr, attr_json in token_attrs.items():
if attr_json in token_json:
if token_json["id"] == 0 and attr not in token_annotations:
token_annotations[attr] = []
elif attr not in token_annotations:
raise ValueError(Errors.E1040.format(partial_attrs=attr))
token_annotations[attr].append(token_json[attr_json])
# Initialize doc instance.
start = 0
cdef const LexemeC* lex
cdef bint has_space
reconstructed_words, spaces = get_words_and_spaces(words, doc_json["text"])
assert words == reconstructed_words
for word, has_space in zip(words, spaces):
lex = self.vocab.get(self.mem, word)
self.push_back(lex, has_space)
# Set remaining token-level attributes via Doc.from_array().
if HEAD in token_annotations:
token_annotations[HEAD] = [
head - i for i, head in enumerate(token_annotations[HEAD])
]
if DEP in token_annotations and HEAD not in token_annotations:
token_annotations[HEAD] = [0] * len(token_annotations[DEP])
if HEAD in token_annotations and DEP not in token_annotations:
raise ValueError(Errors.E1017)
if POS in token_annotations:
for pp in set(token_annotations[POS]):
if pp not in parts_of_speech.IDS:
raise ValueError(Errors.E1021.format(pp=pp))
# Collect token attributes, assert all tokens have exactly the same set of attributes.
attrs = []
partial_attrs: Set[str] = set()
for attr in token_attrs.keys():
if attr in token_annotations:
if len(token_annotations[attr]) != len(words):
partial_attrs.add(token_attrs[attr])
attrs.append(attr)
if len(partial_attrs):
raise ValueError(Errors.E1040.format(partial_attrs=partial_attrs))
# If there are any other annotations, set them.
if attrs:
array = self.to_array(attrs)
if array.ndim == 1:
array = numpy.reshape(array, (array.size, 1))
j = 0
for j, (attr, annot) in enumerate(token_annotations.items()):
if attr is HEAD:
for i in range(len(words)):
array[i, j] = annot[i]
elif attr is MORPH:
for i in range(len(words)):
array[i, j] = self.vocab.morphology.add(annot[i])
else:
for i in range(len(words)):
array[i, j] = self.vocab.strings.add(annot[i])
self.from_array(attrs, array)
### Span/document properties ###
# Complement other document-level properties (cats, spans, ents).
self.cats = doc_json.get("cats", {})
# Set sentence boundaries, if dependency parser not available but sentences are specified in JSON.
if not self.has_annotation("DEP"):
for sent in doc_json.get("sents", {}):
char_span = self.char_span(sent["start"], sent["end"])
if char_span is None:
raise ValueError(Errors.E1039.format(obj="sentence", start=sent["start"], end=sent["end"]))
char_span[0].is_sent_start = True
for token in char_span[1:]:
token.is_sent_start = False
for span_group in doc_json.get("spans", {}):
spans = []
for span in doc_json["spans"][span_group]:
char_span = self.char_span(span["start"], span["end"], span["label"], span["kb_id"])
if char_span is None:
raise ValueError(Errors.E1039.format(obj="span", start=span["start"], end=span["end"]))
spans.append(char_span)
self.spans[span_group] = spans
if "ents" in doc_json:
ents = []
for ent in doc_json["ents"]:
char_span = self.char_span(ent["start"], ent["end"], ent["label"])
if char_span is None:
raise ValueError(Errors.E1039.format(obj="entity"), start=ent["start"], end=ent["end"])
ents.append(char_span)
self.ents = ents
# Add custom attributes. Note that only Doc extensions are currently considered, Token and Span extensions are
# not yet supported.
for attr in doc_json.get("_", {}):
if not Doc.has_extension(attr):
Doc.set_extension(attr)
self._.set(attr, doc_json["_"][attr])
return self
def to_json(self, underscore=None): def to_json(self, underscore=None):
"""Convert a Doc to JSON. """Convert a Doc to JSON.
@ -1472,12 +1620,10 @@ cdef class Doc:
""" """
data = {"text": self.text} data = {"text": self.text}
if self.has_annotation("ENT_IOB"): if self.has_annotation("ENT_IOB"):
data["ents"] = [{"start": ent.start_char, "end": ent.end_char, data["ents"] = [{"start": ent.start_char, "end": ent.end_char, "label": ent.label_} for ent in self.ents]
"label": ent.label_} for ent in self.ents]
if self.has_annotation("SENT_START"): if self.has_annotation("SENT_START"):
sents = list(self.sents) sents = list(self.sents)
data["sents"] = [{"start": sent.start_char, "end": sent.end_char} data["sents"] = [{"start": sent.start_char, "end": sent.end_char} for sent in sents]
for sent in sents]
if self.cats: if self.cats:
data["cats"] = self.cats data["cats"] = self.cats
data["tokens"] = [] data["tokens"] = []
@ -1503,7 +1649,9 @@ cdef class Doc:
for span_group in self.spans: for span_group in self.spans:
data["spans"][span_group] = [] data["spans"][span_group] = []
for span in self.spans[span_group]: for span in self.spans[span_group]:
span_data = {"start": span.start_char, "end": span.end_char, "label": span.label_, "kb_id": span.kb_id_} span_data = {
"start": span.start_char, "end": span.end_char, "label": span.label_, "kb_id": span.kb_id_
}
data["spans"][span_group].append(span_data) data["spans"][span_group].append(span_data)
if underscore: if underscore:
@ -1732,18 +1880,17 @@ cdef int [:,:] _get_lca_matrix(Doc doc, int start, int end):
def pickle_doc(doc): def pickle_doc(doc):
bytes_data = doc.to_bytes(exclude=["vocab", "user_data", "user_hooks"]) bytes_data = doc.to_bytes(exclude=["vocab", "user_data", "user_hooks"])
hooks_and_data = (doc.user_data, doc.user_hooks, doc.user_span_hooks, hooks_and_data = (doc.user_data, doc.user_hooks, doc.user_span_hooks,
doc.user_token_hooks, doc._context) doc.user_token_hooks)
return (unpickle_doc, (doc.vocab, srsly.pickle_dumps(hooks_and_data), bytes_data)) return (unpickle_doc, (doc.vocab, srsly.pickle_dumps(hooks_and_data), bytes_data))
def unpickle_doc(vocab, hooks_and_data, bytes_data): def unpickle_doc(vocab, hooks_and_data, bytes_data):
user_data, doc_hooks, span_hooks, token_hooks, _context = srsly.pickle_loads(hooks_and_data) user_data, doc_hooks, span_hooks, token_hooks = srsly.pickle_loads(hooks_and_data)
doc = Doc(vocab, user_data=user_data).from_bytes(bytes_data, exclude=["user_data"]) doc = Doc(vocab, user_data=user_data).from_bytes(bytes_data, exclude=["user_data"])
doc.user_hooks.update(doc_hooks) doc.user_hooks.update(doc_hooks)
doc.user_span_hooks.update(span_hooks) doc.user_span_hooks.update(span_hooks)
doc.user_token_hooks.update(token_hooks) doc.user_token_hooks.update(token_hooks)
doc._context = _context
return doc return doc
@ -1767,16 +1914,18 @@ def fix_attributes(doc, attributes):
def get_entity_info(ent_info): def get_entity_info(ent_info):
ent_kb_id = 0
ent_id = 0
if isinstance(ent_info, Span): if isinstance(ent_info, Span):
ent_type = ent_info.label ent_type = ent_info.label
ent_kb_id = ent_info.kb_id ent_kb_id = ent_info.kb_id
start = ent_info.start start = ent_info.start
end = ent_info.end end = ent_info.end
ent_id = ent_info.id
elif len(ent_info) == 3: elif len(ent_info) == 3:
ent_type, start, end = ent_info ent_type, start, end = ent_info
ent_kb_id = 0
elif len(ent_info) == 4: elif len(ent_info) == 4:
ent_type, ent_kb_id, start, end = ent_info ent_type, ent_kb_id, start, end = ent_info
else: else:
ent_id, ent_kb_id, ent_type, start, end = ent_info ent_id, ent_kb_id, ent_type, start, end = ent_info
return ent_type, ent_kb_id, start, end return ent_type, ent_kb_id, start, end, ent_id

View File

@ -48,7 +48,8 @@ class Span:
label: Union[str, int] = ..., label: Union[str, int] = ...,
vector: Optional[Floats1d] = ..., vector: Optional[Floats1d] = ...,
vector_norm: Optional[float] = ..., vector_norm: Optional[float] = ...,
kb_id: Optional[int] = ..., kb_id: Union[str, int] = ...,
span_id: Union[str, int] = ...,
) -> None: ... ) -> None: ...
def __richcmp__(self, other: Span, op: int) -> bool: ... def __richcmp__(self, other: Span, op: int) -> bool: ...
def __hash__(self) -> int: ... def __hash__(self) -> int: ...

View File

@ -81,17 +81,20 @@ cdef class Span:
return Underscore.span_extensions.pop(name) return Underscore.span_extensions.pop(name)
def __cinit__(self, Doc doc, int start, int end, label=0, vector=None, def __cinit__(self, Doc doc, int start, int end, label=0, vector=None,
vector_norm=None, kb_id=0): vector_norm=None, kb_id=0, span_id=0):
"""Create a `Span` object from the slice `doc[start : end]`. """Create a `Span` object from the slice `doc[start : end]`.
doc (Doc): The parent document. doc (Doc): The parent document.
start (int): The index of the first token of the span. start (int): The index of the first token of the span.
end (int): The index of the first token after the span. end (int): The index of the first token after the span.
label (int or str): A label to attach to the Span, e.g. for named entities. label (Union[int, str]): A label to attach to the Span, e.g. for named
entities.
vector (ndarray[ndim=1, dtype='float32']): A meaning representation vector (ndarray[ndim=1, dtype='float32']): A meaning representation
of the span. of the span.
vector_norm (float): The L2 norm of the span's vector representation. vector_norm (float): The L2 norm of the span's vector representation.
kb_id (uint64): An identifier from a Knowledge Base to capture the meaning of a named entity. kb_id (Union[int, str]): An identifier from a Knowledge Base to capture
the meaning of a named entity.
span_id (Union[int, str]): An identifier to associate with the span.
DOCS: https://spacy.io/api/span#init DOCS: https://spacy.io/api/span#init
""" """
@ -102,6 +105,8 @@ cdef class Span:
label = doc.vocab.strings.add(label) label = doc.vocab.strings.add(label)
if isinstance(kb_id, str): if isinstance(kb_id, str):
kb_id = doc.vocab.strings.add(kb_id) kb_id = doc.vocab.strings.add(kb_id)
if isinstance(span_id, str):
span_id = doc.vocab.strings.add(span_id)
if label not in doc.vocab.strings: if label not in doc.vocab.strings:
raise ValueError(Errors.E084.format(label=label)) raise ValueError(Errors.E084.format(label=label))
@ -113,6 +118,7 @@ cdef class Span:
self.c = make_shared[SpanC](SpanC( self.c = make_shared[SpanC](SpanC(
label=label, label=label,
kb_id=kb_id, kb_id=kb_id,
id=span_id,
start=start, start=start,
end=end, end=end,
start_char=start_char, start_char=start_char,
@ -130,8 +136,8 @@ cdef class Span:
cdef SpanC* span_c = self.span_c() cdef SpanC* span_c = self.span_c()
cdef SpanC* other_span_c = other.span_c() cdef SpanC* other_span_c = other.span_c()
self_tuple = (span_c.start_char, span_c.end_char, span_c.label, span_c.kb_id, self.doc) self_tuple = (span_c.start_char, span_c.end_char, span_c.label, span_c.kb_id, self.id, self.doc)
other_tuple = (other_span_c.start_char, other_span_c.end_char, other_span_c.label, other_span_c.kb_id, other.doc) other_tuple = (other_span_c.start_char, other_span_c.end_char, other_span_c.label, other_span_c.kb_id, other.id, other.doc)
# < # <
if op == 0: if op == 0:
return self_tuple < other_tuple return self_tuple < other_tuple
@ -153,7 +159,7 @@ cdef class Span:
def __hash__(self): def __hash__(self):
cdef SpanC* span_c = self.span_c() cdef SpanC* span_c = self.span_c()
return hash((self.doc, span_c.start_char, span_c.end_char, span_c.label, span_c.kb_id)) return hash((self.doc, span_c.start_char, span_c.end_char, span_c.label, span_c.kb_id, span_c.id))
def __len__(self): def __len__(self):
"""Get the number of tokens in the span. """Get the number of tokens in the span.
@ -650,7 +656,7 @@ cdef class Span:
else: else:
return self.doc[root] return self.doc[root]
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None): def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None, id=0):
"""Create a `Span` object from the slice `span.text[start : end]`. """Create a `Span` object from the slice `span.text[start : end]`.
start (int): The index of the first character of the span. start (int): The index of the first character of the span.
@ -793,6 +799,15 @@ cdef class Span:
def __set__(self, attr_t kb_id): def __set__(self, attr_t kb_id):
self.span_c().kb_id = kb_id self.span_c().kb_id = kb_id
property id:
def __get__(self):
cdef SpanC* span_c = self.span_c()
return span_c.id
def __set__(self, attr_t id):
cdef SpanC* span_c = self.span_c()
span_c.id = id
property ent_id: property ent_id:
"""RETURNS (uint64): The entity ID.""" """RETURNS (uint64): The entity ID."""
def __get__(self): def __get__(self):
@ -831,13 +846,21 @@ cdef class Span:
self.label = self.doc.vocab.strings.add(label_) self.label = self.doc.vocab.strings.add(label_)
property kb_id_: property kb_id_:
"""RETURNS (str): The named entity's KB ID.""" """RETURNS (str): The span's KB ID."""
def __get__(self): def __get__(self):
return self.doc.vocab.strings[self.kb_id] return self.doc.vocab.strings[self.kb_id]
def __set__(self, str kb_id_): def __set__(self, str kb_id_):
self.kb_id = self.doc.vocab.strings.add(kb_id_) self.kb_id = self.doc.vocab.strings.add(kb_id_)
property id_:
"""RETURNS (str): The span's ID."""
def __get__(self):
return self.doc.vocab.strings[self.id]
def __set__(self, str id_):
self.id = self.doc.vocab.strings.add(id_)
cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1: cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1:
# Don't allow spaces to be the root, if there are # Don't allow spaces to be the root, if there are

View File

@ -24,3 +24,4 @@ class SpanGroup:
def __getitem__(self, i: int) -> Span: ... def __getitem__(self, i: int) -> Span: ...
def to_bytes(self) -> bytes: ... def to_bytes(self) -> bytes: ...
def from_bytes(self, bytes_data: bytes) -> SpanGroup: ... def from_bytes(self, bytes_data: bytes) -> SpanGroup: ...
def copy(self) -> SpanGroup: ...

View File

@ -198,7 +198,7 @@ cdef class Example:
def get_aligned_sent_starts(self): def get_aligned_sent_starts(self):
"""Get list of SENT_START attributes aligned to the predicted tokenization. """Get list of SENT_START attributes aligned to the predicted tokenization.
If the reference has not sentence starts, return a list of None values. If the reference does not have sentence starts, return a list of None values.
""" """
if self.y.has_annotation("SENT_START"): if self.y.has_annotation("SENT_START"):
align = self.alignment.y2x align = self.alignment.y2x

View File

@ -1,4 +1,4 @@
from typing import List, Mapping, NoReturn, Union, Dict, Any, Set from typing import List, Mapping, NoReturn, Union, Dict, Any, Set, cast
from typing import Optional, Iterable, Callable, Tuple, Type from typing import Optional, Iterable, Callable, Tuple, Type
from typing import Iterator, Type, Pattern, Generator, TYPE_CHECKING from typing import Iterator, Type, Pattern, Generator, TYPE_CHECKING
from types import ModuleType from types import ModuleType
@ -294,7 +294,7 @@ def find_matching_language(lang: str) -> Optional[str]:
# Find out which language modules we have # Find out which language modules we have
possible_languages = [] possible_languages = []
for modinfo in pkgutil.iter_modules(spacy.lang.__path__): # type: ignore for modinfo in pkgutil.iter_modules(spacy.lang.__path__): # type: ignore[attr-defined]
code = modinfo.name code = modinfo.name
if code == "xx": if code == "xx":
# Temporarily make 'xx' into a valid language code # Temporarily make 'xx' into a valid language code
@ -391,7 +391,8 @@ def get_module_path(module: ModuleType) -> Path:
""" """
if not hasattr(module, "__module__"): if not hasattr(module, "__module__"):
raise ValueError(Errors.E169.format(module=repr(module))) raise ValueError(Errors.E169.format(module=repr(module)))
return Path(sys.modules[module.__module__].__file__).parent file_path = Path(cast(os.PathLike, sys.modules[module.__module__].__file__))
return file_path.parent
def load_model( def load_model(
@ -878,7 +879,7 @@ def get_package_path(name: str) -> Path:
# Here we're importing the module just to find it. This is worryingly # Here we're importing the module just to find it. This is worryingly
# indirect, but it's otherwise very difficult to find the package. # indirect, but it's otherwise very difficult to find the package.
pkg = importlib.import_module(name) pkg = importlib.import_module(name)
return Path(pkg.__file__).parent return Path(cast(Union[str, os.PathLike], pkg.__file__)).parent
def replace_model_node(model: Model, target: Model, replacement: Model) -> None: def replace_model_node(model: Model, target: Model, replacement: Model) -> None:
@ -1241,6 +1242,15 @@ def filter_spans(spans: Iterable["Span"]) -> List["Span"]:
return result return result
def filter_chain_spans(*spans: Iterable["Span"]) -> List["Span"]:
return filter_spans(itertools.chain(*spans))
@registry.misc("spacy.first_longest_spans_filter.v1")
def make_first_longest_spans_filter():
return filter_chain_spans
def to_bytes(getters: Dict[str, Callable[[], bytes]], exclude: Iterable[str]) -> bytes: def to_bytes(getters: Dict[str, Callable[[], bytes]], exclude: Iterable[str]) -> bytes:
return srsly.msgpack_dumps(to_dict(getters, exclude)) return srsly.msgpack_dumps(to_dict(getters, exclude))
@ -1675,7 +1685,7 @@ def packages_distributions() -> Dict[str, List[str]]:
it's not available in the builtin importlib.metadata. it's not available in the builtin importlib.metadata.
""" """
pkg_to_dist = defaultdict(list) pkg_to_dist = defaultdict(list)
for dist in importlib_metadata.distributions(): # type: ignore[attr-defined] for dist in importlib_metadata.distributions():
for pkg in (dist.read_text("top_level.txt") or "").split(): for pkg in (dist.read_text("top_level.txt") or "").split():
pkg_to_dist[pkg].append(dist.metadata["Name"]) pkg_to_dist[pkg].append(dist.metadata["Name"])
return dict(pkg_to_dist) return dict(pkg_to_dist)

View File

@ -466,6 +466,18 @@ takes the same arguments as `train` and reads settings off the
</Infobox> </Infobox>
<Infobox title="Notes on span characteristics" emoji="💡">
If your pipeline contains a `spancat` component, then this command will also
report span characteristics such as the average span length and the span (or
span boundary) distinctiveness. The distinctiveness measure shows how different
the tokens are with respect to the rest of the corpus using the KL-divergence of
the token distributions. To learn more, you can check out Papay et al.'s work on
[*Dissecting Span Identification Tasks with Performance Prediction* (EMNLP
2020)](https://aclanthology.org/2020.emnlp-main.396/).
</Infobox>
```cli ```cli
$ python -m spacy debug data [config_path] [--code] [--ignore-warnings] [--verbose] [--no-format] [overrides] $ python -m spacy debug data [config_path] [--code] [--ignore-warnings] [--verbose] [--no-format] [overrides]
``` ```
@ -1323,7 +1335,7 @@ $ python -m spacy project run [subcommand] [project_dir] [--force] [--dry]
| `subcommand` | Name of the command or workflow to run. ~~str (positional)~~ | | `subcommand` | Name of the command or workflow to run. ~~str (positional)~~ |
| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ | | `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
| `--force`, `-F` | Force re-running steps, even if nothing changed. ~~bool (flag)~~ | | `--force`, `-F` | Force re-running steps, even if nothing changed. ~~bool (flag)~~ |
| `--dry`, `-D` |  Perform a dry run and don't execute scripts. ~~bool (flag)~~ | | `--dry`, `-D` | Perform a dry run and don't execute scripts. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **EXECUTES** | The command defined in the `project.yml`. | | **EXECUTES** | The command defined in the `project.yml`. |
@ -1441,12 +1453,12 @@ For more examples, see the templates in our
</Accordion> </Accordion>
| Name | Description | | Name | Description |
| -------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ | | `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
| `--output`, `-o` | Path to output file or `-` for stdout (default). If a file is specified and it already exists and contains auto-generated docs, only the auto-generated docs section is replaced. ~~Path (positional)~~ | | `--output`, `-o` | Path to output file or `-` for stdout (default). If a file is specified and it already exists and contains auto-generated docs, only the auto-generated docs section is replaced. ~~Path (positional)~~ |
|  `--no-emoji`, `-NE` | Don't use emoji in the titles. ~~bool (flag)~~ | | `--no-emoji`, `-NE` | Don't use emoji in the titles. ~~bool (flag)~~ |
| **CREATES** | The Markdown-formatted project documentation. | | **CREATES** | The Markdown-formatted project documentation. |
### project dvc {#project-dvc tag="command"} ### project dvc {#project-dvc tag="command"}
@ -1485,7 +1497,7 @@ $ python -m spacy project dvc [project_dir] [workflow] [--force] [--verbose]
| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ | | `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
| `workflow` | Name of workflow defined in `project.yml`. Defaults to first workflow if not set. ~~Optional[str] \(option)~~ | | `workflow` | Name of workflow defined in `project.yml`. Defaults to first workflow if not set. ~~Optional[str] \(option)~~ |
| `--force`, `-F` | Force-updating config file. ~~bool (flag)~~ | | `--force`, `-F` | Force-updating config file. ~~bool (flag)~~ |
| `--verbose`, `-V` |  Print more output generated by DVC. ~~bool (flag)~~ | | `--verbose`, `-V` | Print more output generated by DVC. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | A `dvc.yaml` file in the project directory, based on the steps defined in the given workflow. | | **CREATES** | A `dvc.yaml` file in the project directory, based on the steps defined in the given workflow. |
@ -1576,5 +1588,5 @@ $ python -m spacy huggingface-hub push [whl_path] [--org] [--msg] [--local-repo]
| `--org`, `-o` | Optional name of organization to which the pipeline should be uploaded. ~~str (option)~~ | | `--org`, `-o` | Optional name of organization to which the pipeline should be uploaded. ~~str (option)~~ |
| `--msg`, `-m` | Commit message to use for update. Defaults to `"Update spaCy pipeline"`. ~~str (option)~~ | | `--msg`, `-m` | Commit message to use for update. Defaults to `"Update spaCy pipeline"`. ~~str (option)~~ |
| `--local-repo`, `-l` | Local path to the model repository (will be created if it doesn't exist). Defaults to `hub` in the current working directory. ~~Path (option)~~ | | `--local-repo`, `-l` | Local path to the model repository (will be created if it doesn't exist). Defaults to `hub` in the current working directory. ~~Path (option)~~ |
| `--verbose`, `-V` | Output additional info for debugging, e.g. the full generated hub metadata. ~~bool (flag)~~  | | `--verbose`, `-V` | Output additional info for debugging, e.g. the full generated hub metadata. ~~bool (flag)~~ |
| **UPLOADS** | The pipeline to the hub. | | **UPLOADS** | The pipeline to the hub. |

View File

@ -37,13 +37,13 @@ streaming.
> augmenter = null > augmenter = null
> ``` > ```
| Name | Description | | Name | Description |
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. Expects data in spaCy's binary [`.spacy` format](/api/data-formats#binary-training). ~~Path~~ | | `path` | The directory or filename to read from. Expects data in spaCy's binary [`.spacy` format](/api/data-formats#binary-training). ~~Path~~ |
|  `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ | | `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ | | `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ | | `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Apply some simply data augmentation, where we replace tokens with variations. This is especially useful for punctuation and case replacement, to help generalize beyond corpora that don't have smart-quotes, or only have smart quotes, etc. Defaults to `None`. ~~Optional[Callable]~~ | | `augmenter` | Apply some simply data augmentation, where we replace tokens with variations. This is especially useful for punctuation and case replacement, to help generalize beyond corpora that don't have smart-quotes, or only have smart quotes, etc. Defaults to `None`. ~~Optional[Callable]~~ |
```python ```python
%%GITHUB_SPACY/spacy/training/corpus.py %%GITHUB_SPACY/spacy/training/corpus.py
@ -71,15 +71,15 @@ train/test skew.
> corpus = Corpus("./data", limit=10) > corpus = Corpus("./data", limit=10)
> ``` > ```
| Name | Description | | Name | Description |
| --------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- | | -------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. ~~Union[str, Path]~~ | | `path` | The directory or filename to read from. ~~Union[str, Path]~~ |
| _keyword-only_ | | | _keyword-only_ | |
|  `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. Defaults to `False`. ~~bool~~ | | `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. Defaults to `False`. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ | | `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ | | `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Optional data augmentation callback. ~~Callable[[Language, Example], Iterable[Example]]~~ | | `augmenter` | Optional data augmentation callback. ~~Callable[[Language, Example], Iterable[Example]]~~ |
| `shuffle` | Whether to shuffle the examples. Defaults to `False`. ~~bool~~ | | `shuffle` | Whether to shuffle the examples. Defaults to `False`. ~~bool~~ |
## Corpus.\_\_call\_\_ {#call tag="method"} ## Corpus.\_\_call\_\_ {#call tag="method"}

View File

@ -481,6 +481,45 @@ Deserialize, i.e. import the document contents from a binary string.
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | | `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The `Doc` object. ~~Doc~~ | | **RETURNS** | The `Doc` object. ~~Doc~~ |
## Doc.to_json {#to_json tag="method"}
Serializes a document to JSON. Note that this is format differs from the
deprecated [`JSON training format`](/api/data-formats#json-input).
> #### Example
>
> ```python
> doc = nlp("All we have to decide is what to do with the time that is given us.")
> assert doc.to_json()["text"] == doc.text
> ```
| Name | Description |
| ------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `underscore` | Optional list of string names of custom `Doc` attributes. Attribute values need to be JSON-serializable. Values will be added to an `"_"` key in the data, e.g. `"_": {"foo": "bar"}`. ~~Optional[List[str]]~~ |
| **RETURNS** | The data in JSON format. ~~Dict[str, Any]~~ |
## Doc.from_json {#from_json tag="method" new="3.3.1"}
Deserializes a document from JSON, i.e. generates a document from the provided
JSON data as generated by [`Doc.to_json()`](/api/doc#to_json).
> #### Example
>
> ```python
> from spacy.tokens import Doc
> doc = nlp("All we have to decide is what to do with the time that is given us.")
> doc_json = doc.to_json()
> deserialized_doc = Doc(nlp.vocab).from_json(doc_json)
> assert deserialized_doc.text == doc.text == doc_json["text"]
> ```
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------- |
| `doc_json` | The Doc data in JSON format from [`Doc.to_json`](#to_json). ~~Dict[str, Any]~~ |
| _keyword-only_ | |
| `validate` | Whether to validate the JSON input against the expected schema for detailed debugging. Defaults to `False`. ~~bool~~ |
| **RETURNS** | A `Doc` corresponding to the provided JSON. ~~Doc~~ |
## Doc.retokenize {#retokenize tag="contextmanager" new="2.1"} ## Doc.retokenize {#retokenize tag="contextmanager" new="2.1"}
Context manager to handle retokenization of the `Doc`. Modifications to the Context manager to handle retokenization of the `Doc`. Modifications to the

View File

@ -290,7 +290,7 @@ Load the pipe from a bytestring. Modifies the object in place and returns it.
> >
> ```python > ```python
> ruler_bytes = ruler.to_bytes() > ruler_bytes = ruler.to_bytes()
> ruler = nlp.add_pipe("enity_ruler") > ruler = nlp.add_pipe("entity_ruler")
> ruler.from_bytes(ruler_bytes) > ruler.from_bytes(ruler_bytes)
> ``` > ```

View File

@ -1123,7 +1123,7 @@ instance and factory instance.
| `factory` | The name of the registered component factory. ~~str~~ | | `factory` | The name of the registered component factory. ~~str~~ |
| `default_config` | The default config, describing the default values of the factory arguments. ~~Dict[str, Any]~~ | | `default_config` | The default config, describing the default values of the factory arguments. ~~Dict[str, Any]~~ |
| `assigns` | `Doc` or `Token` attributes assigned by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ | | `assigns` | `Doc` or `Token` attributes assigned by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
| `requires` | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~  | | `requires` | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
| `retokenizes` | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~  | | `retokenizes` | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~ |
| `default_score_weights` | The scores to report during training, and their default weight towards the final score used to select the best model. Weights should sum to `1.0` per component and will be combined and normalized for the whole pipeline. If a weight is set to `None`, the score will not be logged or weighted. ~~Dict[str, Optional[float]]~~ | | `default_score_weights` | The scores to report during training, and their default weight towards the final score used to select the best model. Weights should sum to `1.0` per component and will be combined and normalized for the whole pipeline. If a weight is set to `None`, the score will not be logged or weighted. ~~Dict[str, Optional[float]]~~ |
| `scores` | All scores set by the components if it's trainable, e.g. `["ents_f", "ents_r", "ents_p"]`. Based on the `default_score_weights` and used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ | | `scores` | All scores set by the components if it's trainable, e.g. `["ents_f", "ents_r", "ents_p"]`. Based on the `default_score_weights` and used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |

View File

@ -30,26 +30,26 @@ pattern keys correspond to a number of
[`Token` attributes](/api/token#attributes). The supported attributes for [`Token` attributes](/api/token#attributes). The supported attributes for
rule-based matching are: rule-based matching are:
| Attribute |  Description | | Attribute | Description |
| ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- | | ---------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| `ORTH` | The exact verbatim text of a token. ~~str~~ | | `ORTH` | The exact verbatim text of a token. ~~str~~ |
| `TEXT` <Tag variant="new">2.1</Tag> | The exact verbatim text of a token. ~~str~~ | | `TEXT` <Tag variant="new">2.1</Tag> | The exact verbatim text of a token. ~~str~~ |
| `NORM` | The normalized form of the token text. ~~str~~ | | `NORM` | The normalized form of the token text. ~~str~~ |
| `LOWER` | The lowercase form of the token text. ~~str~~ | | `LOWER` | The lowercase form of the token text. ~~str~~ |
|  `LENGTH` | The length of the token text. ~~int~~ | | `LENGTH` | The length of the token text. ~~int~~ |
|  `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ | | `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ |
|  `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ | | `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ |
|  `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ | | `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ |
|  `IS_SENT_START` | Token is start of sentence. ~~bool~~ | | `IS_SENT_START` | Token is start of sentence. ~~bool~~ |
|  `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ | | `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ |
| `SPACY` | Token has a trailing space. ~~bool~~ | | `SPACY` | Token has a trailing space. ~~bool~~ |
|  `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. ~~str~~ | | `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. ~~str~~ |
| `ENT_TYPE` | The token's entity label. ~~str~~ | | `ENT_TYPE` | The token's entity label. ~~str~~ |
| `ENT_IOB` | The IOB part of the token's entity tag. ~~str~~ | | `ENT_IOB` | The IOB part of the token's entity tag. ~~str~~ |
| `ENT_ID` | The token's entity ID (`ent_id`). ~~str~~ | | `ENT_ID` | The token's entity ID (`ent_id`). ~~str~~ |
| `ENT_KB_ID` | The token's entity knowledge base ID (`ent_kb_id`). ~~str~~ | | `ENT_KB_ID` | The token's entity knowledge base ID (`ent_kb_id`). ~~str~~ |
| `_` <Tag variant="new">2.1</Tag> | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ | | `_` <Tag variant="new">2.1</Tag> | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ |
| `OP` | Operator or quantifier to determine how often to match a token pattern. ~~str~~ | | `OP` | Operator or quantifier to determine how often to match a token pattern. ~~str~~ |
Operators and quantifiers define **how often** a token pattern should be Operators and quantifiers define **how often** a token pattern should be
matched: matched:
@ -113,6 +113,10 @@ string where an integer is expected) or unexpected property names.
Find all token sequences matching the supplied patterns on the `Doc` or `Span`. Find all token sequences matching the supplied patterns on the `Doc` or `Span`.
Note that if a single label has multiple patterns associated with it, the
returned matches don't provide a way to tell which pattern was responsible for
the match.
> #### Example > #### Example
> >
> ```python > ```python
@ -131,7 +135,7 @@ Find all token sequences matching the supplied patterns on the `Doc` or `Span`.
| _keyword-only_ | | | _keyword-only_ | |
| `as_spans` <Tag variant="new">3</Tag> | Instead of tuples, return a list of [`Span`](/api/span) objects of the matches, with the `match_id` assigned as the span label. Defaults to `False`. ~~bool~~ | | `as_spans` <Tag variant="new">3</Tag> | Instead of tuples, return a list of [`Span`](/api/span) objects of the matches, with the `match_id` assigned as the span label. Defaults to `False`. ~~bool~~ |
| `allow_missing` <Tag variant="new">3</Tag> | Whether to skip checks for missing annotation for attributes included in patterns. Defaults to `False`. ~~bool~~ | | `allow_missing` <Tag variant="new">3</Tag> | Whether to skip checks for missing annotation for attributes included in patterns. Defaults to `False`. ~~bool~~ |
| `with_alignments` <Tag variant="new">3.0.6</Tag> | Return match alignment information as part of the match tuple as `List[int]` with the same length as the matched span. Each entry denotes the corresponding index of the token pattern. If `as_spans` is set to `True`, this setting is ignored. Defaults to `False`. ~~bool~~ | | `with_alignments` <Tag variant="new">3.0.6</Tag> | Return match alignment information as part of the match tuple as `List[int]` with the same length as the matched span. Each entry denotes the corresponding index of the token in the pattern. If `as_spans` is set to `True`, this setting is ignored. Defaults to `False`. ~~bool~~ |
| **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. If `as_spans` is set to `True`, a list of `Span` objects is returned instead. ~~Union[List[Tuple[int, int, int]], List[Span]]~~ | | **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. If `as_spans` is set to `True`, a list of `Span` objects is returned instead. ~~Union[List[Tuple[int, int, int]], List[Span]]~~ |
## Matcher.\_\_len\_\_ {#len tag="method" new="2"} ## Matcher.\_\_len\_\_ {#len tag="method" new="2"}

View File

@ -7,6 +7,7 @@ menu:
- ['merge_entities', 'merge_entities'] - ['merge_entities', 'merge_entities']
- ['merge_subtokens', 'merge_subtokens'] - ['merge_subtokens', 'merge_subtokens']
- ['token_splitter', 'token_splitter'] - ['token_splitter', 'token_splitter']
- ['doc_cleaner', 'doc_cleaner']
--- ---
## merge_noun_chunks {#merge_noun_chunks tag="function"} ## merge_noun_chunks {#merge_noun_chunks tag="function"}

View File

@ -27,6 +27,7 @@ Create a `Span` object from the slice `doc[start : end]`.
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ | | `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
| `vector_norm` | The L2 norm of the document's vector representation. ~~float~~ | | `vector_norm` | The L2 norm of the document's vector representation. ~~float~~ |
| `kb_id` | A knowledge base ID to attach to the span, e.g. for named entities. ~~Union[str, int]~~ | | `kb_id` | A knowledge base ID to attach to the span, e.g. for named entities. ~~Union[str, int]~~ |
| `span_id` | An ID to associate with the span. ~~Union[str, int]~~ |
## Span.\_\_getitem\_\_ {#getitem tag="method"} ## Span.\_\_getitem\_\_ {#getitem tag="method"}
@ -560,7 +561,9 @@ overlaps with will be returned.
| `lemma_` | The span's lemma. Equivalent to `"".join(token.text_with_ws for token in span)`. ~~str~~ | | `lemma_` | The span's lemma. Equivalent to `"".join(token.text_with_ws for token in span)`. ~~str~~ |
| `kb_id` | The hash value of the knowledge base ID referred to by the span. ~~int~~ | | `kb_id` | The hash value of the knowledge base ID referred to by the span. ~~int~~ |
| `kb_id_` | The knowledge base ID referred to by the span. ~~str~~ | | `kb_id_` | The knowledge base ID referred to by the span. ~~str~~ |
| `ent_id` | The hash value of the named entity the token is an instance of. ~~int~~ | | `ent_id` | The hash value of the named entity the root token is an instance of. ~~int~~ |
| `ent_id_` | The string ID of the named entity the token is an instance of. ~~str~~ | | `ent_id_` | The string ID of the named entity the root token is an instance of. ~~str~~ |
| `id` | The hash value of the span's ID. ~~int~~ |
| `id_` | The span's ID. ~~str~~ |
| `sentiment` | A scalar value indicating the positivity or negativity of the span. ~~float~~ | | `sentiment` | A scalar value indicating the positivity or negativity of the span. ~~float~~ |
| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ | | `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |

View File

@ -0,0 +1,351 @@
---
title: SpanRuler
tag: class
source: spacy/pipeline/span_ruler.py
new: 3.3.1
teaser: 'Pipeline component for rule-based span and named entity recognition'
api_string_name: span_ruler
api_trainable: false
---
The span ruler lets you add spans to [`Doc.spans`](/api/doc#spans) and/or
[`Doc.ents`](/api/doc#ents) using token-based rules or exact phrase matches. For
usage examples, see the docs on
[rule-based span matching](/usage/rule-based-matching#spanruler).
## Assigned Attributes {#assigned-attributes}
Matches will be saved to `Doc.spans[spans_key]` as a
[`SpanGroup`](/api/spangroup) and/or to `Doc.ents`, where the annotation is
saved in the `Token.ent_type` and `Token.ent_iob` fields.
| Location | Value |
| ---------------------- | ----------------------------------------------------------------- |
| `Doc.spans[spans_key]` | The annotated spans. ~~SpanGroup~~ |
| `Doc.ents` | The annotated spans. ~~Tuple[Span]~~ |
| `Token.ent_iob` | An enum encoding of the IOB part of the named entity tag. ~~int~~ |
| `Token.ent_iob_` | The IOB part of the named entity tag. ~~str~~ |
| `Token.ent_type` | The label part of the named entity tag (hash). ~~int~~ |
| `Token.ent_type_` | The label part of the named entity tag. ~~str~~ |
## Config and implementation {#config}
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
[`config.cfg`](/usage/training#config).
> #### Example
>
> ```python
> config = {
> "spans_key": "my_spans",
> "validate": True,
> "overwrite": False,
> }
> nlp.add_pipe("span_ruler", config=config)
> ```
| Setting | Description |
| --------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `spans_key` | The spans key to save the spans under. If `None`, no spans are saved. Defaults to `"ruler"`. ~~Optional[str]~~ |
| `spans_filter` | The optional method to filter spans before they are assigned to doc.spans. Defaults to `None`. ~~Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]]~~ |
| `annotate_ents` | Whether to save spans to doc.ents. Defaults to `False`. ~~bool~~ |
| `ents_filter` | The method to filter spans before they are assigned to doc.ents. Defaults to `util.filter_chain_spans`. ~~Callable[[Iterable[Span], Iterable[Span]], List[Span]]~~ |
| `phrase_matcher_attr` | Token attribute to match on, passed to the internal PhraseMatcher as `attr`. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
| `validate` | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`. ~~bool~~ |
| `overwrite` | Whether to remove any existing spans under `Doc.spans[spans key]` if `spans_key` is set, or to remove any ents under `Doc.ents` if `annotate_ents` is set. Defaults to `True`. ~~bool~~ |
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/span_ruler.py
```
## SpanRuler.\_\_init\_\_ {#init tag="method"}
Initialize the span ruler. If patterns are supplied here, they need to be a list
of dictionaries with a `"label"` and `"pattern"` key. A pattern can either be a
token pattern (list) or a phrase pattern (string). For example:
`{"label": "ORG", "pattern": "Apple"}`.
> #### Example
>
> ```python
> # Construction via add_pipe
> ruler = nlp.add_pipe("span_ruler")
>
> # Construction from class
> from spacy.pipeline import SpanRuler
> ruler = SpanRuler(nlp, overwrite=True)
> ```
| Name | Description |
| --------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `nlp` | The shared nlp object to pass the vocab to the matchers and process phrase patterns. ~~Language~~ |
| `name` | Instance name of the current pipeline component. Typically passed in automatically from the factory when the component is added. Used to disable the current span ruler while creating phrase patterns with the nlp object. ~~str~~ |
| _keyword-only_ | |
| `spans_key` | The spans key to save the spans under. If `None`, no spans are saved. Defaults to `"ruler"`. ~~Optional[str]~~ |
| `spans_filter` | The optional method to filter spans before they are assigned to doc.spans. Defaults to `None`. ~~Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]]~~ |
| `annotate_ents` | Whether to save spans to doc.ents. Defaults to `False`. ~~bool~~ |
| `ents_filter` | The method to filter spans before they are assigned to doc.ents. Defaults to `util.filter_chain_spans`. ~~Callable[[Iterable[Span], Iterable[Span]], List[Span]]~~ |
| `phrase_matcher_attr` | Token attribute to match on, passed to the internal PhraseMatcher as `attr`. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
| `validate` | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`. ~~bool~~ |
| `overwrite` | Whether to remove any existing spans under `Doc.spans[spans key]` if `spans_key` is set, or to remove any ents under `Doc.ents` if `annotate_ents` is set. Defaults to `True`. ~~bool~~ |
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
## SpanRuler.initialize {#initialize tag="method"}
Initialize the component with data and used before training to load in rules
from a [pattern file](/usage/rule-based-matching/#spanruler-files). This method
is typically called by [`Language.initialize`](/api/language#initialize) and
lets you customize arguments it receives via the
[`[initialize.components]`](/api/data-formats#config-initialize) block in the
config. Any existing patterns are removed on initialization.
> #### Example
>
> ```python
> span_ruler = nlp.add_pipe("span_ruler")
> span_ruler.initialize(lambda: [], nlp=nlp, patterns=patterns)
> ```
>
> ```ini
> ### config.cfg
> [initialize.components.span_ruler]
>
> [initialize.components.span_ruler.patterns]
> @readers = "srsly.read_jsonl.v1"
> path = "corpus/span_ruler_patterns.jsonl
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Not used by the `SpanRuler`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `patterns` | The list of patterns. Defaults to `None`. ~~Optional[Sequence[Dict[str, Union[str, List[Dict[str, Any]]]]]]~~ |
## SpanRuler.\_\len\_\_ {#len tag="method"}
The number of all patterns added to the span ruler.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> assert len(ruler) == 0
> ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
> assert len(ruler) == 1
> ```
| Name | Description |
| ----------- | ------------------------------- |
| **RETURNS** | The number of patterns. ~~int~~ |
## SpanRuler.\_\_contains\_\_ {#contains tag="method"}
Whether a label is present in the patterns.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
> assert "ORG" in ruler
> assert not "PERSON" in ruler
> ```
| Name | Description |
| ----------- | --------------------------------------------------- |
| `label` | The label to check. ~~str~~ |
| **RETURNS** | Whether the span ruler contains the label. ~~bool~~ |
## SpanRuler.\_\_call\_\_ {#call tag="method"}
Find matches in the `Doc` and add them to `doc.spans[span_key]` and/or
`doc.ents`. Typically, this happens automatically after the component has been
added to the pipeline using [`nlp.add_pipe`](/api/language#add_pipe). If the
span ruler was initialized with `overwrite=True`, existing spans and entities
will be removed.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
>
> doc = nlp("A text about Apple.")
> spans = [(span.text, span.label_) for span in doc.spans["ruler"]]
> assert spans == [("Apple", "ORG")]
> ```
| Name | Description |
| ----------- | -------------------------------------------------------------------- |
| `doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. ~~Doc~~ |
| **RETURNS** | The modified `Doc` with added spans/entities. ~~Doc~~ |
## SpanRuler.add_patterns {#add_patterns tag="method"}
Add patterns to the span ruler. A pattern can either be a token pattern (list of
dicts) or a phrase pattern (string). For more details, see the usage guide on
[rule-based matching](/usage/rule-based-matching).
> #### Example
>
> ```python
> patterns = [
> {"label": "ORG", "pattern": "Apple"},
> {"label": "GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]}
> ]
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns(patterns)
> ```
| Name | Description |
| ---------- | ---------------------------------------------------------------- |
| `patterns` | The patterns to add. ~~List[Dict[str, Union[str, List[dict]]]]~~ |
## SpanRuler.remove {#remove tag="method"}
Remove patterns by label from the span ruler. A `ValueError` is raised if the
label does not exist in any patterns.
> #### Example
>
> ```python
> patterns = [{"label": "ORG", "pattern": "Apple", "id": "apple"}]
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns(patterns)
> ruler.remove("ORG")
> ```
| Name | Description |
| ------- | -------------------------------------- |
| `label` | The label of the pattern rule. ~~str~~ |
## SpanRuler.remove_by_id {#remove_by_id tag="method"}
Remove patterns by ID from the span ruler. A `ValueError` is raised if the ID
does not exist in any patterns.
> #### Example
>
> ```python
> patterns = [{"label": "ORG", "pattern": "Apple", "id": "apple"}]
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns(patterns)
> ruler.remove_by_id("apple")
> ```
| Name | Description |
| ------------ | ----------------------------------- |
| `pattern_id` | The ID of the pattern rule. ~~str~~ |
## SpanRuler.clear {#clear tag="method"}
Remove all patterns the span ruler.
> #### Example
>
> ```python
> patterns = [{"label": "ORG", "pattern": "Apple", "id": "apple"}]
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns(patterns)
> ruler.clear()
> ```
## SpanRuler.to_disk {#to_disk tag="method"}
Save the span ruler patterns to a directory. The patterns will be saved as
newline-delimited JSON (JSONL).
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler.to_disk("/path/to/span_ruler")
> ```
| Name | Description |
| ------ | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
## SpanRuler.from_disk {#from_disk tag="method"}
Load the span ruler from a path.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler.from_disk("/path/to/span_ruler")
> ```
| Name | Description |
| ----------- | ----------------------------------------------------------------------------------------------- |
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| **RETURNS** | The modified `SpanRuler` object. ~~SpanRuler~~ |
## SpanRuler.to_bytes {#to_bytes tag="method"}
Serialize the span ruler to a bytestring.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler_bytes = ruler.to_bytes()
> ```
| Name | Description |
| ----------- | ---------------------------------- |
| **RETURNS** | The serialized patterns. ~~bytes~~ |
## SpanRuler.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> ruler_bytes = ruler.to_bytes()
> ruler = nlp.add_pipe("span_ruler")
> ruler.from_bytes(ruler_bytes)
> ```
| Name | Description |
| ------------ | ---------------------------------------------- |
| `bytes_data` | The bytestring to load. ~~bytes~~ |
| **RETURNS** | The modified `SpanRuler` object. ~~SpanRuler~~ |
## SpanRuler.labels {#labels tag="property"}
All labels present in the match patterns.
| Name | Description |
| ----------- | -------------------------------------- |
| **RETURNS** | The string labels. ~~Tuple[str, ...]~~ |
## SpanRuler.ids {#ids tag="property"}
All IDs present in the `id` property of the match patterns.
| Name | Description |
| ----------- | ----------------------------------- |
| **RETURNS** | The string IDs. ~~Tuple[str, ...]~~ |
## SpanRuler.patterns {#patterns tag="property"}
All patterns that were added to the span ruler.
| Name | Description |
| ----------- | ---------------------------------------------------------------------------------------- |
| **RETURNS** | The original patterns, one dictionary per pattern. ~~List[Dict[str, Union[str, dict]]]~~ |
## Attributes {#attributes}
| Name | Description |
| ---------------- | -------------------------------------------------------------------------------- |
| `key` | The spans key that spans are saved under. ~~Optional[str]~~ |
| `matcher` | The underlying matcher used to process token patterns. ~~Matcher~~ |
| `phrase_matcher` | The underlying phrase matcher used to process phrase patterns. ~~PhraseMatcher~~ |

View File

@ -161,7 +161,7 @@ Load state from a binary string.
> #### Example > #### Example
> >
> ```python > ```python
> fron spacy.strings import StringStore > from spacy.strings import StringStore
> store_bytes = stringstore.to_bytes() > store_bytes = stringstore.to_bytes()
> new_store = StringStore().from_bytes(store_bytes) > new_store = StringStore().from_bytes(store_bytes)
> ``` > ```

View File

@ -221,7 +221,7 @@ dependency tree.
## Token.ancestors {#ancestors tag="property" model="parser"} ## Token.ancestors {#ancestors tag="property" model="parser"}
The rightmost token of this token's syntactic descendants. A sequence of the token's syntactic ancestors (parents, grandparents, etc).
> #### Example > #### Example
> >

View File

@ -239,7 +239,7 @@ browser. Will run a simple web server.
| Name | Description | | Name | Description |
| --------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span]], Doc, Span]~~ | | `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span]], Doc, Span]~~ |
| `style` | Visualization style, `"dep"` or `"ent"`. Defaults to `"dep"`. ~~str~~ | | `style` | Visualization style, `"dep"`, `"ent"` or `"span"` <Tag variant="new">3.3</Tag>. Defaults to `"dep"`. ~~str~~ |
| `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ | | `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ |
| `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ | | `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ |
| `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ | | `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ |
@ -264,7 +264,7 @@ Render a dependency parse tree or named entity visualization.
| Name | Description | | Name | Description |
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span, dict]], Doc, Span, dict]~~ | | `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span, dict]], Doc, Span, dict]~~ |
| `style` | Visualization style, `"dep"` or `"ent"`. Defaults to `"dep"`. ~~str~~ | | `style` | Visualization style,`"dep"`, `"ent"` or `"span"` <Tag variant="new">3.3</Tag>. Defaults to `"dep"`. ~~str~~ |
| `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ | | `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ |
| `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ | | `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ |
| `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ | | `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ |
@ -320,7 +320,6 @@ If a setting is not present in the options, the default value will be used.
| `template` <Tag variant="new">2.2</Tag> | Optional template to overwrite the HTML used to render entity spans. Should be a format string and can use `{bg}`, `{text}` and `{label}`. See [`templates.py`](%%GITHUB_SPACY/spacy/displacy/templates.py) for examples. ~~Optional[str]~~ | | `template` <Tag variant="new">2.2</Tag> | Optional template to overwrite the HTML used to render entity spans. Should be a format string and can use `{bg}`, `{text}` and `{label}`. See [`templates.py`](%%GITHUB_SPACY/spacy/displacy/templates.py) for examples. ~~Optional[str]~~ |
| `kb_url_template` <Tag variant="new">3.2.1</Tag> | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in. ~~Optional[str]~~ | | `kb_url_template` <Tag variant="new">3.2.1</Tag> | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in. ~~Optional[str]~~ |
#### Span Visualizer options {#displacy_options-span} #### Span Visualizer options {#displacy_options-span}
> #### Example > #### Example
@ -330,21 +329,19 @@ If a setting is not present in the options, the default value will be used.
> displacy.serve(doc, style="span", options=options) > displacy.serve(doc, style="span", options=options)
> ``` > ```
| Name | Description | | Name | Description |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------| | ----------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `spans_key` | Which spans key to render spans from. Default is `"sc"`. ~~str~~ | | `spans_key` | Which spans key to render spans from. Default is `"sc"`. ~~str~~ |
| `templates` | Dictionary containing the keys `"span"`, `"slice"`, and `"start"`. These dictate how the overall span, a span slice, and the starting token will be rendered. ~~Optional[Dict[str, str]~~ | | `templates` | Dictionary containing the keys `"span"`, `"slice"`, and `"start"`. These dictate how the overall span, a span slice, and the starting token will be rendered. ~~Optional[Dict[str, str]~~ |
| `kb_url_template` | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in ~~Optional[str]~~ | | `kb_url_template` | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in ~~Optional[str]~~ |
| `colors` | Color overrides. Entity types should be mapped to color names or values. ~~Dict[str, str]~~ | | `colors` | Color overrides. Entity types should be mapped to color names or values. ~~Dict[str, str]~~ |
By default, displaCy comes with colors for all entity types used by
By default, displaCy comes with colors for all entity types used by [spaCy's [spaCy's trained pipelines](/models) for both entity and span visualizer. If
trained pipelines](/models) for both entity and span visualizer. If you're you're using custom entity types, you can use the `colors` setting to add your
using custom entity types, you can use the `colors` setting to add your own own colors for them. Your application or pipeline package can also expose a
colors for them. Your application or pipeline package can also expose a [`spacy_displacy_colors` entry point](/usage/saving-loading#entry-points-displacy)
[`spacy_displacy_colors` entry to add custom labels and their colors automatically.
point](/usage/saving-loading#entry-points-displacy) to add custom labels and
their colors automatically.
By default, displaCy links to `#` for entities without a `kb_id` set on their By default, displaCy links to `#` for entities without a `kb_id` set on their
span. If you wish to link an entity to their URL then consider using the span. If you wish to link an entity to their URL then consider using the
@ -354,7 +351,6 @@ span. If you wish to link an entity to their URL then consider using the
should redirect you to their Wikidata page, in this case should redirect you to their Wikidata page, in this case
`https://www.wikidata.org/wiki/Q95`. `https://www.wikidata.org/wiki/Q95`.
## registry {#registry source="spacy/util.py" new="3"} ## registry {#registry source="spacy/util.py" new="3"}
spaCy's function registry extends spaCy's function registry extends
@ -443,8 +439,8 @@ and the accuracy scores on the development set.
The built-in, default logger is the ConsoleLogger, which prints results to the The built-in, default logger is the ConsoleLogger, which prints results to the
console in tabular format. The console in tabular format. The
[spacy-loggers](https://github.com/explosion/spacy-loggers) package, included as [spacy-loggers](https://github.com/explosion/spacy-loggers) package, included as
a dependency of spaCy, enables other loggers, such as one that a dependency of spaCy, enables other loggers, such as one that sends results to
sends results to a [Weights & Biases](https://www.wandb.com/) dashboard. a [Weights & Biases](https://www.wandb.com/) dashboard.
Instead of using one of the built-in loggers, you can Instead of using one of the built-in loggers, you can
[implement your own](/usage/training#custom-logging). [implement your own](/usage/training#custom-logging).
@ -583,14 +579,14 @@ the [`Corpus`](/api/corpus) class.
> limit = 0 > limit = 0
> ``` > ```
| Name | Description | | Name | Description |
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. Expects data in spaCy's binary [`.spacy` format](/api/data-formats#binary-training). ~~Union[str, Path]~~ | | `path` | The directory or filename to read from. Expects data in spaCy's binary [`.spacy` format](/api/data-formats#binary-training). ~~Union[str, Path]~~ |
|  `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ | | `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ | | `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ | | `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Apply some simply data augmentation, where we replace tokens with variations. This is especially useful for punctuation and case replacement, to help generalize beyond corpora that don't have smart-quotes, or only have smart quotes, etc. Defaults to `None`. ~~Optional[Callable]~~ | | `augmenter` | Apply some simply data augmentation, where we replace tokens with variations. This is especially useful for punctuation and case replacement, to help generalize beyond corpora that don't have smart-quotes, or only have smart quotes, etc. Defaults to `None`. ~~Optional[Callable]~~ |
| **CREATES** | The corpus reader. ~~Corpus~~ | | **CREATES** | The corpus reader. ~~Corpus~~ |
#### spacy.JsonlCorpus.v1 {#jsonlcorpus tag="registered function"} #### spacy.JsonlCorpus.v1 {#jsonlcorpus tag="registered function"}

View File

@ -115,7 +115,7 @@ The Finnish, Korean and Swedish `md` and `lg` pipelines use
running a trained pipeline on texts and working with [`Doc`](/api/doc) objects, running a trained pipeline on texts and working with [`Doc`](/api/doc) objects,
you shouldn't notice any difference with floret vectors. With floret vectors no you shouldn't notice any difference with floret vectors. With floret vectors no
tokens are out-of-vocabulary, so [`Token.is_oov`](/api/token#attributes) will tokens are out-of-vocabulary, so [`Token.is_oov`](/api/token#attributes) will
return `True` for all tokens. return `False` for all tokens.
If you access vectors directly for similarity comparisons, there are a few If you access vectors directly for similarity comparisons, there are a few
differences because floret vectors don't include a fixed word list like the differences because floret vectors don't include a fixed word list like the

View File

@ -530,7 +530,8 @@ models, which can **improve the accuracy** of your components.
Word vectors in spaCy are "static" in the sense that they are not learned Word vectors in spaCy are "static" in the sense that they are not learned
parameters of the statistical models, and spaCy itself does not feature any parameters of the statistical models, and spaCy itself does not feature any
algorithms for learning word vector tables. You can train a word vectors table algorithms for learning word vector tables. You can train a word vectors table
using tools such as [Gensim](https://radimrehurek.com/gensim/), using tools such as [floret](https://github.com/explosion/floret),
[Gensim](https://radimrehurek.com/gensim/),
[FastText](https://fasttext.cc/) or [FastText](https://fasttext.cc/) or
[GloVe](https://nlp.stanford.edu/projects/glove/), or download existing [GloVe](https://nlp.stanford.edu/projects/glove/), or download existing
pretrained vectors. The [`init vectors`](/api/cli#init-vectors) command lets you pretrained vectors. The [`init vectors`](/api/cli#init-vectors) command lets you

View File

@ -129,15 +129,14 @@ machine learning library, [Thinc](https://thinc.ai). For GPU support, we've been
grateful to use the work of Chainer's [CuPy](https://cupy.chainer.org) module, grateful to use the work of Chainer's [CuPy](https://cupy.chainer.org) module,
which provides a numpy-compatible interface for GPU arrays. which provides a numpy-compatible interface for GPU arrays.
spaCy can be installed on GPU by specifying `spacy[cuda]`, `spacy[cuda90]`, spaCy can be installed for a CUDA-compatible GPU by specifying `spacy[cuda]`,
`spacy[cuda91]`, `spacy[cuda92]`, `spacy[cuda100]`, `spacy[cuda101]`, `spacy[cuda102]`, `spacy[cuda112]`, `spacy[cuda113]`, etc. If you know your
`spacy[cuda102]`, `spacy[cuda110]`, `spacy[cuda111]` or `spacy[cuda112]`. If you CUDA version, using the more explicit specifier allows CuPy to be installed via
know your cuda version, using the more explicit specifier allows cupy to be wheel, saving some compilation time. The specifiers should install
installed via wheel, saving some compilation time. The specifiers should install
[`cupy`](https://cupy.chainer.org). [`cupy`](https://cupy.chainer.org).
```bash ```bash
$ pip install -U %%SPACY_PKG_NAME[cuda92]%%SPACY_PKG_FLAGS $ pip install -U %%SPACY_PKG_NAME[cuda113]%%SPACY_PKG_FLAGS
``` ```
Once you have a GPU-enabled installation, the best way to activate it is to call Once you have a GPU-enabled installation, the best way to activate it is to call

View File

@ -48,7 +48,7 @@ but do not change its part-of-speech. We say that a **lemma** (root form) is
**inflected** (modified/combined) with one or more **morphological features** to **inflected** (modified/combined) with one or more **morphological features** to
create a surface form. Here are some examples: create a surface form. Here are some examples:
| Context | Surface | Lemma | POS |  Morphological Features | | Context | Surface | Lemma | POS | Morphological Features |
| ---------------------------------------- | ------- | ----- | ------ | ---------------------------------------- | | ---------------------------------------- | ------- | ----- | ------ | ---------------------------------------- |
| I was reading the paper | reading | read | `VERB` | `VerbForm=Ger` | | I was reading the paper | reading | read | `VERB` | `VerbForm=Ger` |
| I don't watch the news, I read the paper | read | read | `VERB` | `VerbForm=Fin`, `Mood=Ind`, `Tense=Pres` | | I don't watch the news, I read the paper | read | read | `VERB` | `VerbForm=Fin`, `Mood=Ind`, `Tense=Pres` |
@ -430,7 +430,7 @@ for token in doc:
print(token.text, token.pos_, token.dep_, token.head.text) print(token.text, token.pos_, token.dep_, token.head.text)
``` ```
| Text |  POS | Dep | Head text | | Text | POS | Dep | Head text |
| ----------------------------------- | ------ | ------- | --------- | | ----------------------------------- | ------ | ------- | --------- |
| Credit and mortgage account holders | `NOUN` | `nsubj` | submit | | Credit and mortgage account holders | `NOUN` | `nsubj` | submit |
| must | `VERB` | `aux` | submit | | must | `VERB` | `aux` | submit |

View File

@ -6,6 +6,7 @@ menu:
- ['Phrase Matcher', 'phrasematcher'] - ['Phrase Matcher', 'phrasematcher']
- ['Dependency Matcher', 'dependencymatcher'] - ['Dependency Matcher', 'dependencymatcher']
- ['Entity Ruler', 'entityruler'] - ['Entity Ruler', 'entityruler']
- ['Span Ruler', 'spanruler']
- ['Models & Rules', 'models-rules'] - ['Models & Rules', 'models-rules']
--- ---
@ -158,23 +159,23 @@ The available token pattern keys correspond to a number of
[`Token` attributes](/api/token#attributes). The supported attributes for [`Token` attributes](/api/token#attributes). The supported attributes for
rule-based matching are: rule-based matching are:
| Attribute |  Description | | Attribute | Description |
| ----------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ---------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `ORTH` | The exact verbatim text of a token. ~~str~~ | | `ORTH` | The exact verbatim text of a token. ~~str~~ |
| `TEXT` <Tag variant="new">2.1</Tag> | The exact verbatim text of a token. ~~str~~ | | `TEXT` <Tag variant="new">2.1</Tag> | The exact verbatim text of a token. ~~str~~ |
| `NORM` | The normalized form of the token text. ~~str~~ | | `NORM` | The normalized form of the token text. ~~str~~ |
| `LOWER` | The lowercase form of the token text. ~~str~~ | | `LOWER` | The lowercase form of the token text. ~~str~~ |
|  `LENGTH` | The length of the token text. ~~int~~ | | `LENGTH` | The length of the token text. ~~int~~ |
|  `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ | | `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ |
|  `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ | | `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ |
|  `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ | | `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ |
|  `IS_SENT_START` | Token is start of sentence. ~~bool~~ | | `IS_SENT_START` | Token is start of sentence. ~~bool~~ |
|  `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ | | `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ |
| `SPACY` | Token has a trailing space. ~~bool~~ | | `SPACY` | Token has a trailing space. ~~bool~~ |
|  `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. Note that the values of these attributes are case-sensitive. For a list of available part-of-speech tags and dependency labels, see the [Annotation Specifications](/api/annotation). ~~str~~ | | `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. Note that the values of these attributes are case-sensitive. For a list of available part-of-speech tags and dependency labels, see the [Annotation Specifications](/api/annotation). ~~str~~ |
| `ENT_TYPE` | The token's entity label. ~~str~~ | | `ENT_TYPE` | The token's entity label. ~~str~~ |
| `_` <Tag variant="new">2.1</Tag> | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ | | `_` <Tag variant="new">2.1</Tag> | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ |
| `OP` | [Operator or quantifier](#quantifiers) to determine how often to match a token pattern. ~~str~~ | | `OP` | [Operator or quantifier](#quantifiers) to determine how often to match a token pattern. ~~str~~ |
<Accordion title="Does it matter if the attribute names are uppercase or lowercase?"> <Accordion title="Does it matter if the attribute names are uppercase or lowercase?">
@ -1446,6 +1447,108 @@ with nlp.select_pipes(enable="tagger"):
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
``` ```
## Rule-based span matching {#spanruler new="3.3.1"}
The [`SpanRuler`](/api/spanruler) is a generalized version of the entity ruler
that lets you add spans to `doc.spans` or `doc.ents` based on pattern
dictionaries, which makes it easy to combine rule-based and statistical pipeline
components.
### Span patterns {#spanruler-patterns}
The [pattern format](#entityruler-patterns) is the same as for the entity ruler:
1. **Phrase patterns** for exact string matches (string).
```python
{"label": "ORG", "pattern": "Apple"}
```
2. **Token patterns** with one dictionary describing one token (list).
```python
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}
```
### Using the span ruler {#spanruler-usage}
The [`SpanRuler`](/api/spanruler) is a pipeline component that's typically added
via [`nlp.add_pipe`](/api/language#add_pipe). When the `nlp` object is called on
a text, it will find matches in the `doc` and add them as spans to
`doc.spans["ruler"]`, using the specified pattern label as the entity label.
Unlike in `doc.ents`, overlapping matches are allowed in `doc.spans`, so no
filtering is required, but optional filtering and sorting can be applied to the
spans before they're saved.
```python
### {executable="true"}
import spacy
nlp = spacy.blank("en")
ruler = nlp.add_pipe("span_ruler")
patterns = [{"label": "ORG", "pattern": "Apple"},
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}]
ruler.add_patterns(patterns)
doc = nlp("Apple is opening its first big office in San Francisco.")
print([(span.text, span.label_) for span in doc.spans["ruler"]])
```
The span ruler is designed to integrate with spaCy's existing pipeline
components and enhance the [SpanCategorizer](/api/spancat) and
[EntityRecognizer](/api/entityrecognizer). The `overwrite` setting determines
whether the existing annotation in `doc.spans` or `doc.ents` is preserved.
Because overlapping entities are not allowed for `doc.ents`, the entities are
always filtered, using [`util.filter_spans`](/api/top-level#util.filter_spans)
by default. See the [`SpanRuler` API docs](/api/spanruler) for more information
about how to customize the sorting and filtering of matched spans.
```python
### {executable="true"}
import spacy
nlp = spacy.load("en_core_web_sm")
# only annotate doc.ents, not doc.spans
config = {"spans_key": None, "annotate_ents": True, "overwrite": False}
ruler = nlp.add_pipe("span_ruler", config=config)
patterns = [{"label": "ORG", "pattern": "MyCorp Inc."}]
ruler.add_patterns(patterns)
doc = nlp("MyCorp Inc. is a company in the U.S.")
print([(ent.text, ent.label_) for ent in doc.ents])
```
### Using pattern files {#spanruler-files}
You can save patterns in a JSONL file (newline-delimited JSON) to load with
[`SpanRuler.initialize`](/api/spanruler#initialize) or
[`SpanRuler.add_patterns`](/api/spanruler#add_patterns).
```json
### patterns.jsonl
{"label": "ORG", "pattern": "Apple"}
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}
```
```python
import srsly
patterns = srsly.read_jsonl("patterns.jsonl")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
```
<Infobox title="Important note" variant="warning">
Unlike the entity ruler, the span ruler cannot load patterns on initialization
with `SpanRuler(patterns=patterns)` or directly from a JSONL file path with
`SpanRuler.from_disk(jsonl_path)`. Patterns should be loaded from the JSONL file
separately and then added through
[`SpanRuler.initialize`](/api/spanruler#initialize]) or
[`SpanRuler.add_patterns`](/api/spanruler#add_patterns) as shown above.
</Infobox>
## Combining models and rules {#models-rules} ## Combining models and rules {#models-rules}
You can combine statistical and rule-based components in a variety of ways. You can combine statistical and rule-based components in a variety of ways.

View File

@ -132,13 +132,13 @@ your own.
> contributions for Catalan and to Kenneth Enevoldsen for Danish. For additional > contributions for Catalan and to Kenneth Enevoldsen for Danish. For additional
> Danish pipelines, check out [DaCy](https://github.com/KennethEnevoldsen/DaCy). > Danish pipelines, check out [DaCy](https://github.com/KennethEnevoldsen/DaCy).
| Package | Language | UPOS | Parser LAS |  NER F | | Package | Language | UPOS | Parser LAS | NER F |
| ------------------------------------------------- | -------- | ---: | ---------: | -----: | | ------------------------------------------------- | -------- | ---: | ---------: | ----: |
| [`ca_core_news_sm`](/models/ca#ca_core_news_sm) | Catalan | 98.2 | 87.4 | 79.8 | | [`ca_core_news_sm`](/models/ca#ca_core_news_sm) | Catalan | 98.2 | 87.4 | 79.8 |
| [`ca_core_news_md`](/models/ca#ca_core_news_md) | Catalan | 98.3 | 88.2 | 84.0 | | [`ca_core_news_md`](/models/ca#ca_core_news_md) | Catalan | 98.3 | 88.2 | 84.0 |
| [`ca_core_news_lg`](/models/ca#ca_core_news_lg) | Catalan | 98.5 | 88.4 | 84.2 | | [`ca_core_news_lg`](/models/ca#ca_core_news_lg) | Catalan | 98.5 | 88.4 | 84.2 |
| [`ca_core_news_trf`](/models/ca#ca_core_news_trf) | Catalan | 98.9 | 93.0 | 91.2 | | [`ca_core_news_trf`](/models/ca#ca_core_news_trf) | Catalan | 98.9 | 93.0 | 91.2 |
| [`da_core_news_trf`](/models/da#da_core_news_trf) | Danish | 98.0 | 85.0 | 82.9 | | [`da_core_news_trf`](/models/da#da_core_news_trf) | Danish | 98.0 | 85.0 | 82.9 |
### Resizable text classification architectures {#resizable-textcat} ### Resizable text classification architectures {#resizable-textcat}

View File

@ -116,7 +116,7 @@ import Benchmarks from 'usage/\_benchmarks-models.md'
> corpus that had both syntactic and entity annotations, so the transformer > corpus that had both syntactic and entity annotations, so the transformer
> models for those languages do not include NER. > models for those languages do not include NER.
| Package | Language | Transformer | Tagger | Parser |  NER | | Package | Language | Transformer | Tagger | Parser | NER |
| ------------------------------------------------ | -------- | --------------------------------------------------------------------------------------------- | -----: | -----: | ---: | | ------------------------------------------------ | -------- | --------------------------------------------------------------------------------------------- | -----: | -----: | ---: |
| [`en_core_web_trf`](/models/en#en_core_web_trf) | English | [`roberta-base`](https://huggingface.co/roberta-base) | 97.8 | 95.2 | 89.9 | | [`en_core_web_trf`](/models/en#en_core_web_trf) | English | [`roberta-base`](https://huggingface.co/roberta-base) | 97.8 | 95.2 | 89.9 |
| [`de_dep_news_trf`](/models/de#de_dep_news_trf) | German | [`bert-base-german-cased`](https://huggingface.co/bert-base-german-cased) | 99.0 | 95.8 | - | | [`de_dep_news_trf`](/models/de#de_dep_news_trf) | German | [`bert-base-german-cased`](https://huggingface.co/bert-base-german-cased) | 99.0 | 95.8 | - |
@ -856,9 +856,9 @@ attribute ruler before training using the `[initialize]` block of your config.
### Using Lexeme Tables ### Using Lexeme Tables
To use tables like `lexeme_prob` when training a model from scratch, you need To use tables like `lexeme_prob` when training a model from scratch, you need to
to add an entry to the `initialize` block in your config. Here's what that add an entry to the `initialize` block in your config. Here's what that looks
looks like for the existing trained pipelines: like for the existing trained pipelines:
```ini ```ini
[initialize.lookups] [initialize.lookups]

View File

@ -103,6 +103,7 @@
{ "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" }, { "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" },
{ "text": "Sentencizer", "url": "/api/sentencizer" }, { "text": "Sentencizer", "url": "/api/sentencizer" },
{ "text": "SpanCategorizer", "url": "/api/spancategorizer" }, { "text": "SpanCategorizer", "url": "/api/spancategorizer" },
{ "text": "SpanRuler", "url": "/api/spanruler" },
{ "text": "Tagger", "url": "/api/tagger" }, { "text": "Tagger", "url": "/api/tagger" },
{ "text": "TextCategorizer", "url": "/api/textcategorizer" }, { "text": "TextCategorizer", "url": "/api/textcategorizer" },
{ "text": "Tok2Vec", "url": "/api/tok2vec" }, { "text": "Tok2Vec", "url": "/api/tok2vec" },

View File

@ -1,5 +1,25 @@
{ {
"resources": [ "resources": [
{
"id": "spacy-report",
"title": "spacy-report",
"slogan": "Generates interactive reports for spaCy models.",
"description": "The goal of spacy-report is to offer static reports for spaCy models that help users make better decisions on how the models can be used.",
"github": "koaning/spacy-report",
"pip": "spacy-report",
"thumb": "https://github.com/koaning/spacy-report/raw/main/icon.png",
"image": "https://raw.githubusercontent.com/koaning/spacy-report/main/gif.gif",
"code_example": [
"python -m spacy report textcat training/model-best/ corpus/train.spacy corpus/dev.spacy"
],
"category": ["visualizers", "research"],
"author": "Vincent D. Warmerdam",
"author_links": {
"twitter": "fishnets88",
"github": "koaning",
"website": "https://koaning.io"
}
},
{ {
"id": "scrubadub_spacy", "id": "scrubadub_spacy",
"title": "scrubadub_spacy", "title": "scrubadub_spacy",
@ -2799,13 +2819,13 @@
"id": "holmes", "id": "holmes",
"title": "Holmes", "title": "Holmes",
"slogan": "Information extraction from English and German texts based on predicate logic", "slogan": "Information extraction from English and German texts based on predicate logic",
"github": "msg-systems/holmes-extractor", "github": "explosion/holmes-extractor",
"url": "https://github.com/msg-systems/holmes-extractor", "url": "https://github.com/explosion/holmes-extractor",
"description": "Holmes is a Python 3 library that supports a number of use cases involving information extraction from English and German texts, including chatbot, structural extraction, topic matching and supervised document classification. There is a [website demonstrating intelligent search based on topic matching](https://holmes-demo.xt.msg.team).", "description": "Holmes is a Python 3 library that supports a number of use cases involving information extraction from English and German texts, including chatbot, structural extraction, topic matching and supervised document classification. There is a [website demonstrating intelligent search based on topic matching](https://demo.holmes.prod.demos.explosion.services).",
"pip": "holmes-extractor", "pip": "holmes-extractor",
"category": ["conversational", "standalone"], "category": ["pipeline", "standalone"],
"tags": ["chatbots", "text-processing"], "tags": ["chatbots", "text-processing"],
"thumb": "https://raw.githubusercontent.com/msg-systems/holmes-extractor/master/docs/holmes_thumbnail.png", "thumb": "https://raw.githubusercontent.com/explosion/holmes-extractor/master/docs/holmes_thumbnail.png",
"code_example": [ "code_example": [
"import holmes_extractor as holmes", "import holmes_extractor as holmes",
"holmes_manager = holmes.Manager(model='en_core_web_lg')", "holmes_manager = holmes.Manager(model='en_core_web_lg')",

View File

@ -23,6 +23,8 @@ const CUDA = {
'11.2': 'cuda112', '11.2': 'cuda112',
'11.3': 'cuda113', '11.3': 'cuda113',
'11.4': 'cuda114', '11.4': 'cuda114',
'11.5': 'cuda115',
'11.6': 'cuda116',
} }
const LANG_EXTRAS = ['ja'] // only for languages with models const LANG_EXTRAS = ['ja'] // only for languages with models
@ -48,7 +50,7 @@ const QuickstartInstall = ({ id, title }) => {
const modelExtras = train ? selectedModels.filter(m => LANG_EXTRAS.includes(m)) : [] const modelExtras = train ? selectedModels.filter(m => LANG_EXTRAS.includes(m)) : []
const apple = os === 'mac' && platform === 'arm' const apple = os === 'mac' && platform === 'arm'
const pipExtras = [ const pipExtras = [
hardware === 'gpu' && cuda, (hardware === 'gpu' && (platform !== 'arm' || os === 'linux')) && cuda,
train && 'transformers', train && 'transformers',
train && 'lookups', train && 'lookups',
apple && 'apple', apple && 'apple',