mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
add line that got removed from EntityLinker
This commit is contained in:
parent
12dc8ab208
commit
2f6062a8a4
|
@ -1302,71 +1302,72 @@ class EntityLinker(Pipe):
|
|||
# Looping through each sentence and each entity
|
||||
# This may go wrong if there are entities across sentences - which shouldn't happen normally.
|
||||
for sent_index, sent in enumerate(sentences):
|
||||
# get n_neightbour sentences, clipped to the length of the document
|
||||
start_sentence = max(0, sent_index - self.n_sents)
|
||||
end_sentence = min(len(sentences) -1, sent_index + self.n_sents)
|
||||
if sent.ents:
|
||||
# get n_neightbour sentences, clipped to the length of the document
|
||||
start_sentence = max(0, sent_index - self.n_sents)
|
||||
end_sentence = min(len(sentences) -1, sent_index + self.n_sents)
|
||||
|
||||
start_token = sentences[start_sentence].start
|
||||
end_token = sentences[end_sentence].end
|
||||
start_token = sentences[start_sentence].start
|
||||
end_token = sentences[end_sentence].end
|
||||
|
||||
sent_doc = doc[start_token:end_token].as_doc()
|
||||
# currently, the context is the same for each entity in a sentence (should be refined)
|
||||
sentence_encoding = self.model.predict([sent_doc])[0]
|
||||
xp = get_array_module(sentence_encoding)
|
||||
sentence_encoding_t = sentence_encoding.T
|
||||
sentence_norm = xp.linalg.norm(sentence_encoding_t)
|
||||
sent_doc = doc[start_token:end_token].as_doc()
|
||||
# currently, the context is the same for each entity in a sentence (should be refined)
|
||||
sentence_encoding = self.model.predict([sent_doc])[0]
|
||||
xp = get_array_module(sentence_encoding)
|
||||
sentence_encoding_t = sentence_encoding.T
|
||||
sentence_norm = xp.linalg.norm(sentence_encoding_t)
|
||||
|
||||
for ent in sent.ents:
|
||||
entity_count += 1
|
||||
for ent in sent.ents:
|
||||
entity_count += 1
|
||||
|
||||
to_discard = self.cfg.get("labels_discard", [])
|
||||
if to_discard and ent.label_ in to_discard:
|
||||
# ignoring this entity - setting to NIL
|
||||
final_kb_ids.append(self.NIL)
|
||||
final_tensors.append(sentence_encoding)
|
||||
|
||||
else:
|
||||
candidates = self.kb.get_candidates(ent.text)
|
||||
if not candidates:
|
||||
# no prediction possible for this entity - setting to NIL
|
||||
to_discard = self.cfg.get("labels_discard", [])
|
||||
if to_discard and ent.label_ in to_discard:
|
||||
# ignoring this entity - setting to NIL
|
||||
final_kb_ids.append(self.NIL)
|
||||
final_tensors.append(sentence_encoding)
|
||||
|
||||
elif len(candidates) == 1:
|
||||
# shortcut for efficiency reasons: take the 1 candidate
|
||||
|
||||
# TODO: thresholding
|
||||
final_kb_ids.append(candidates[0].entity_)
|
||||
final_tensors.append(sentence_encoding)
|
||||
|
||||
else:
|
||||
random.shuffle(candidates)
|
||||
candidates = self.kb.get_candidates(ent.text)
|
||||
if not candidates:
|
||||
# no prediction possible for this entity - setting to NIL
|
||||
final_kb_ids.append(self.NIL)
|
||||
final_tensors.append(sentence_encoding)
|
||||
|
||||
# this will set all prior probabilities to 0 if they should be excluded from the model
|
||||
prior_probs = xp.asarray([c.prior_prob for c in candidates])
|
||||
if not self.cfg.get("incl_prior", True):
|
||||
prior_probs = xp.asarray([0.0 for c in candidates])
|
||||
scores = prior_probs
|
||||
elif len(candidates) == 1:
|
||||
# shortcut for efficiency reasons: take the 1 candidate
|
||||
|
||||
# add in similarity from the context
|
||||
if self.cfg.get("incl_context", True):
|
||||
entity_encodings = xp.asarray([c.entity_vector for c in candidates])
|
||||
entity_norm = xp.linalg.norm(entity_encodings, axis=1)
|
||||
# TODO: thresholding
|
||||
final_kb_ids.append(candidates[0].entity_)
|
||||
final_tensors.append(sentence_encoding)
|
||||
|
||||
if len(entity_encodings) != len(prior_probs):
|
||||
raise RuntimeError(Errors.E147.format(method="predict", msg="vectors not of equal length"))
|
||||
else:
|
||||
random.shuffle(candidates)
|
||||
|
||||
# cosine similarity
|
||||
sims = xp.dot(entity_encodings, sentence_encoding_t) / (sentence_norm * entity_norm)
|
||||
if sims.shape != prior_probs.shape:
|
||||
raise ValueError(Errors.E161)
|
||||
scores = prior_probs + sims - (prior_probs*sims)
|
||||
# this will set all prior probabilities to 0 if they should be excluded from the model
|
||||
prior_probs = xp.asarray([c.prior_prob for c in candidates])
|
||||
if not self.cfg.get("incl_prior", True):
|
||||
prior_probs = xp.asarray([0.0 for c in candidates])
|
||||
scores = prior_probs
|
||||
|
||||
# TODO: thresholding
|
||||
best_index = scores.argmax().item()
|
||||
best_candidate = candidates[best_index]
|
||||
final_kb_ids.append(best_candidate.entity_)
|
||||
final_tensors.append(sentence_encoding)
|
||||
# add in similarity from the context
|
||||
if self.cfg.get("incl_context", True):
|
||||
entity_encodings = xp.asarray([c.entity_vector for c in candidates])
|
||||
entity_norm = xp.linalg.norm(entity_encodings, axis=1)
|
||||
|
||||
if len(entity_encodings) != len(prior_probs):
|
||||
raise RuntimeError(Errors.E147.format(method="predict", msg="vectors not of equal length"))
|
||||
|
||||
# cosine similarity
|
||||
sims = xp.dot(entity_encodings, sentence_encoding_t) / (sentence_norm * entity_norm)
|
||||
if sims.shape != prior_probs.shape:
|
||||
raise ValueError(Errors.E161)
|
||||
scores = prior_probs + sims - (prior_probs*sims)
|
||||
|
||||
# TODO: thresholding
|
||||
best_index = scores.argmax().item()
|
||||
best_candidate = candidates[best_index]
|
||||
final_kb_ids.append(best_candidate.entity_)
|
||||
final_tensors.append(sentence_encoding)
|
||||
|
||||
if not (len(final_tensors) == len(final_kb_ids) == entity_count):
|
||||
raise RuntimeError(Errors.E147.format(method="predict", msg="result variables not of equal length"))
|
||||
|
|
Loading…
Reference in New Issue
Block a user