Merge branch 'feature/prepare' of https://github.com/explosion/spaCy into feature/prepare

This commit is contained in:
Ines Montani 2020-09-29 16:53:48 +02:00
commit 30c76dbd67
8 changed files with 98 additions and 1 deletions

View File

@ -16,6 +16,7 @@ from .debug_model import debug_model # noqa: F401
from .evaluate import evaluate # noqa: F401
from .convert import convert # noqa: F401
from .init_pipeline import init_pipeline_cli # noqa: F401
from .init_labels import init_labels_cli # noqa: F401
from .init_config import init_config, fill_config # noqa: F401
from .validate import validate # noqa: F401
from .project.clone import project_clone # noqa: F401

43
spacy/cli/init_labels.py Normal file
View File

@ -0,0 +1,43 @@
from typing import Optional
import logging
from pathlib import Path
from wasabi import msg
import typer
import srsly
from .. import util
from ..training.initialize import init_nlp, convert_vectors
from ._util import init_cli, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code, setup_gpu
@init_cli.command(
"labels",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
)
def init_labels_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True),
output_path: Path = Arg(..., help="Output directory for the labels"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
# fmt: on
):
if not output_path.exists():
output_path.mkdir()
util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR)
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
setup_gpu(use_gpu)
with show_validation_error(config_path):
config = util.load_config(config_path, overrides=overrides)
with show_validation_error(hint_fill=False):
nlp = init_nlp(config, use_gpu=use_gpu, silent=False)
for name, component in nlp.pipeline:
if getattr(component, "label_data", None) is not None:
srsly.write_json(output_path / f"{name}.json", component.label_data)
msg.good(f"Saving {name} labels to {output_path}/{name}.json")
else:
msg.info(f"No labels found for {name}")

View File

@ -1,5 +1,5 @@
# cython: infer_types=True, profile=True, binding=True
from typing import Optional
from typing import Optional, Union, Dict
import srsly
from thinc.api import SequenceCategoricalCrossentropy, Model, Config
from itertools import islice
@ -101,6 +101,11 @@ class Morphologizer(Tagger):
"""RETURNS (Tuple[str]): The labels currently added to the component."""
return tuple(self.cfg["labels_morph"].keys())
@property
def label_data(self) -> Dict[str, Dict[str, Union[str, float, int, None]]]:
"""RETURNS (Dict): A dictionary with all labels data."""
return {"morph": self.cfg["labels_morph"], "pos": self.cfg["labels_pos"]}
def add_label(self, label):
"""Add a new label to the pipe.

View File

@ -1,4 +1,5 @@
# cython: infer_types=True, profile=True
from typing import Optional, Tuple
import srsly
from thinc.api import set_dropout_rate, Model
@ -32,6 +33,20 @@ cdef class Pipe:
self.name = name
self.cfg = dict(cfg)
@property
def labels(self) -> Optional[Tuple[str]]:
if "labels" in self.cfg:
return tuple(self.cfg["labels"])
else:
return None
@property
def label_data(self):
"""Optional JSON-serializable data that would be sufficient to recreate
the label set if provided to the `pipe.initialize()` method.
"""
return None
def __call__(self, Doc doc):
"""Apply the pipe to one document. The document is modified in place,
and returned. This usually happens under the hood when the nlp object

View File

@ -71,6 +71,10 @@ class SentenceRecognizer(Tagger):
# are 0
return tuple(["I", "S"])
@property
def label_data(self):
return self.labels
def set_annotations(self, docs, batch_tag_ids):
"""Modify a batch of documents, using pre-computed scores.

View File

@ -90,6 +90,16 @@ class Tagger(Pipe):
"""
return tuple(self.cfg["labels"])
@property
def label_data(self):
"""Data about the labels currently added to the component.
RETURNS (Dict): The labels data.
DOCS: https://nightly.spacy.io/api/tagger#labels
"""
return tuple(self.cfg["labels"])
def __call__(self, doc):
"""Apply the pipe to a Doc.

View File

@ -154,8 +154,23 @@ class TextCategorizer(Pipe):
@labels.setter
def labels(self, value: List[str]) -> None:
# TODO: This really shouldn't be here. I had a look and I added it when
# I added the labels property, but it's pretty nasty to have this, and
# will lead to problems.
self.cfg["labels"] = tuple(value)
@property
def label_data(self) -> Dict:
"""RETURNS (Dict): Information about the component's labels.
DOCS: https://nightly.spacy.io/api/textcategorizer#labels
"""
return {
"labels": self.labels,
"positive": self.cfg["positive_label"],
"threshold": self.cfg["threshold"]
}
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
"""Apply the pipe to a stream of documents. This usually happens under
the hood when the nlp object is called on a text and all components are

View File

@ -95,6 +95,10 @@ cdef class Parser(Pipe):
class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)]
return class_names
@property
def label_data(self):
return self.moves.labels
@property
def tok2vec(self):
"""Return the embedding and convolutional layer of the model."""