mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Update typing hints (#10109)
* Improve typing hints for Matcher.__call__ * Add typing hints for DependencyMatcher * Add typing hints to underscore extensions * Update Doc.tensor type (requires numpy 1.21) * Fix typing hints for Language.component decorator * Use generic np.ndarray type in Doc to avoid numpy version update * Fix mypy errors * Fix cyclic import caused by Underscore typing hints * Use Literal type from spacy.compat * Update matcher.pyi import format Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
This commit is contained in:
parent
09734c56fc
commit
30cf9d6a05
|
@ -522,7 +522,7 @@ class Language:
|
|||
requires: Iterable[str] = SimpleFrozenList(),
|
||||
retokenizes: bool = False,
|
||||
func: Optional["Pipe"] = None,
|
||||
) -> Callable:
|
||||
) -> Callable[..., Any]:
|
||||
"""Register a new pipeline component. Can be used for stateless function
|
||||
components that don't require a separate factory. Can be used as a
|
||||
decorator on a function or classmethod, or called as a function with the
|
||||
|
|
66
spacy/matcher/dependencymatcher.pyi
Normal file
66
spacy/matcher/dependencymatcher.pyi
Normal file
|
@ -0,0 +1,66 @@
|
|||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
from .matcher import Matcher
|
||||
from ..vocab import Vocab
|
||||
from ..tokens.doc import Doc
|
||||
from ..tokens.span import Span
|
||||
|
||||
class DependencyMatcher:
|
||||
"""Match dependency parse tree based on pattern rules."""
|
||||
|
||||
_patterns: Dict[str, List[Any]]
|
||||
_raw_patterns: Dict[str, List[Any]]
|
||||
_tokens_to_key: Dict[str, List[Any]]
|
||||
_root: Dict[str, List[Any]]
|
||||
_tree: Dict[str, List[Any]]
|
||||
_callbacks: Dict[
|
||||
Any, Callable[[DependencyMatcher, Doc, int, List[Tuple[int, List[int]]]], Any]
|
||||
]
|
||||
_ops: Dict[str, Any]
|
||||
vocab: Vocab
|
||||
_matcher: Matcher
|
||||
def __init__(self, vocab: Vocab, *, validate: bool = ...) -> None: ...
|
||||
def __reduce__(
|
||||
self,
|
||||
) -> Tuple[
|
||||
Callable[
|
||||
[Vocab, Dict[str, Any], Dict[str, Callable[..., Any]]], DependencyMatcher
|
||||
],
|
||||
Tuple[
|
||||
Vocab,
|
||||
Dict[str, List[Any]],
|
||||
Dict[
|
||||
str,
|
||||
Callable[
|
||||
[DependencyMatcher, Doc, int, List[Tuple[int, List[int]]]], Any
|
||||
],
|
||||
],
|
||||
],
|
||||
None,
|
||||
None,
|
||||
]: ...
|
||||
def __len__(self) -> int: ...
|
||||
def __contains__(self, key: Union[str, int]) -> bool: ...
|
||||
def add(
|
||||
self,
|
||||
key: Union[str, int],
|
||||
patterns: List[List[Dict[str, Any]]],
|
||||
*,
|
||||
on_match: Optional[
|
||||
Callable[[DependencyMatcher, Doc, int, List[Tuple[int, List[int]]]], Any]
|
||||
] = ...
|
||||
) -> None: ...
|
||||
def has_key(self, key: Union[str, int]) -> bool: ...
|
||||
def get(
|
||||
self, key: Union[str, int], default: Optional[Any] = ...
|
||||
) -> Tuple[
|
||||
Optional[
|
||||
Callable[[DependencyMatcher, Doc, int, List[Tuple[int, List[int]]]], Any]
|
||||
],
|
||||
List[List[Dict[str, Any]]],
|
||||
]: ...
|
||||
def remove(self, key: Union[str, int]) -> None: ...
|
||||
def __call__(self, doclike: Union[Doc, Span]) -> List[Tuple[int, List[int]]]: ...
|
||||
|
||||
def unpickle_matcher(
|
||||
vocab: Vocab, patterns: Dict[str, Any], callbacks: Dict[str, Callable[..., Any]]
|
||||
) -> DependencyMatcher: ...
|
|
@ -1,4 +1,6 @@
|
|||
from typing import Any, List, Dict, Tuple, Optional, Callable, Union, Iterator, Iterable
|
||||
from typing import Any, List, Dict, Tuple, Optional, Callable, Union
|
||||
from typing import Iterator, Iterable, overload
|
||||
from ..compat import Literal
|
||||
from ..vocab import Vocab
|
||||
from ..tokens import Doc, Span
|
||||
|
||||
|
@ -31,12 +33,22 @@ class Matcher:
|
|||
) -> Union[
|
||||
Iterator[Tuple[Tuple[Doc, Any], Any]], Iterator[Tuple[Doc, Any]], Iterator[Doc]
|
||||
]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
doclike: Union[Doc, Span],
|
||||
*,
|
||||
as_spans: bool = ...,
|
||||
as_spans: Literal[False] = ...,
|
||||
allow_missing: bool = ...,
|
||||
with_alignments: bool = ...
|
||||
) -> Union[List[Tuple[int, int, int]], List[Span]]: ...
|
||||
) -> List[Tuple[int, int, int]]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
doclike: Union[Doc, Span],
|
||||
*,
|
||||
as_spans: Literal[True],
|
||||
allow_missing: bool = ...,
|
||||
with_alignments: bool = ...
|
||||
) -> List[Span]: ...
|
||||
def _normalize_key(self, key: Any) -> Any: ...
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
from typing import List, Tuple, Union, Optional, Callable, Any, Dict
|
||||
|
||||
from . import Matcher
|
||||
from typing import List, Tuple, Union, Optional, Callable, Any, Dict, overload
|
||||
from ..compat import Literal
|
||||
from .matcher import Matcher
|
||||
from ..vocab import Vocab
|
||||
from ..tokens import Doc, Span
|
||||
|
||||
|
@ -21,9 +21,17 @@ class PhraseMatcher:
|
|||
] = ...,
|
||||
) -> None: ...
|
||||
def remove(self, key: str) -> None: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
doclike: Union[Doc, Span],
|
||||
*,
|
||||
as_spans: bool = ...,
|
||||
) -> Union[List[Tuple[int, int, int]], List[Span]]: ...
|
||||
as_spans: Literal[False] = ...,
|
||||
) -> List[Tuple[int, int, int]]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
doclike: Union[Doc, Span],
|
||||
*,
|
||||
as_spans: Literal[True],
|
||||
) -> List[Span]: ...
|
||||
|
|
|
@ -10,7 +10,7 @@ from ..lexeme import Lexeme
|
|||
from ..vocab import Vocab
|
||||
from .underscore import Underscore
|
||||
from pathlib import Path
|
||||
import numpy
|
||||
import numpy as np
|
||||
|
||||
class DocMethod(Protocol):
|
||||
def __call__(self: Doc, *args: Any, **kwargs: Any) -> Any: ... # type: ignore[misc]
|
||||
|
@ -26,7 +26,7 @@ class Doc:
|
|||
user_hooks: Dict[str, Callable[..., Any]]
|
||||
user_token_hooks: Dict[str, Callable[..., Any]]
|
||||
user_span_hooks: Dict[str, Callable[..., Any]]
|
||||
tensor: numpy.ndarray
|
||||
tensor: np.ndarray[Any, np.dtype[np.float_]]
|
||||
user_data: Dict[str, Any]
|
||||
has_unknown_spaces: bool
|
||||
_context: Any
|
||||
|
@ -144,7 +144,7 @@ class Doc:
|
|||
) -> Doc: ...
|
||||
def to_array(
|
||||
self, py_attr_ids: Union[int, str, List[Union[int, str]]]
|
||||
) -> numpy.ndarray: ...
|
||||
) -> np.ndarray[Any, np.dtype[np.float_]]: ...
|
||||
@staticmethod
|
||||
def from_docs(
|
||||
docs: List[Doc],
|
||||
|
|
|
@ -1,17 +1,31 @@
|
|||
from typing import Dict, Any
|
||||
from typing import Dict, Any, List, Optional, Tuple, Union, TYPE_CHECKING
|
||||
import functools
|
||||
import copy
|
||||
|
||||
from ..errors import Errors
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .doc import Doc
|
||||
from .span import Span
|
||||
from .token import Token
|
||||
|
||||
|
||||
class Underscore:
|
||||
mutable_types = (dict, list, set)
|
||||
doc_extensions: Dict[Any, Any] = {}
|
||||
span_extensions: Dict[Any, Any] = {}
|
||||
token_extensions: Dict[Any, Any] = {}
|
||||
_extensions: Dict[str, Any]
|
||||
_obj: Union["Doc", "Span", "Token"]
|
||||
_start: Optional[int]
|
||||
_end: Optional[int]
|
||||
|
||||
def __init__(self, extensions, obj, start=None, end=None):
|
||||
def __init__(
|
||||
self,
|
||||
extensions: Dict[str, Any],
|
||||
obj: Union["Doc", "Span", "Token"],
|
||||
start: Optional[int] = None,
|
||||
end: Optional[int] = None,
|
||||
):
|
||||
object.__setattr__(self, "_extensions", extensions)
|
||||
object.__setattr__(self, "_obj", obj)
|
||||
# Assumption is that for doc values, _start and _end will both be None
|
||||
|
@ -23,12 +37,12 @@ class Underscore:
|
|||
object.__setattr__(self, "_start", start)
|
||||
object.__setattr__(self, "_end", end)
|
||||
|
||||
def __dir__(self):
|
||||
def __dir__(self) -> List[str]:
|
||||
# Hack to enable autocomplete on custom extensions
|
||||
extensions = list(self._extensions.keys())
|
||||
return ["set", "get", "has"] + extensions
|
||||
|
||||
def __getattr__(self, name):
|
||||
def __getattr__(self, name: str) -> Any:
|
||||
if name not in self._extensions:
|
||||
raise AttributeError(Errors.E046.format(name=name))
|
||||
default, method, getter, setter = self._extensions[name]
|
||||
|
@ -56,7 +70,7 @@ class Underscore:
|
|||
return new_default
|
||||
return default
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
def __setattr__(self, name: str, value: Any):
|
||||
if name not in self._extensions:
|
||||
raise AttributeError(Errors.E047.format(name=name))
|
||||
default, method, getter, setter = self._extensions[name]
|
||||
|
@ -65,28 +79,30 @@ class Underscore:
|
|||
else:
|
||||
self._doc.user_data[self._get_key(name)] = value
|
||||
|
||||
def set(self, name, value):
|
||||
def set(self, name: str, value: Any):
|
||||
return self.__setattr__(name, value)
|
||||
|
||||
def get(self, name):
|
||||
def get(self, name: str) -> Any:
|
||||
return self.__getattr__(name)
|
||||
|
||||
def has(self, name):
|
||||
def has(self, name: str) -> bool:
|
||||
return name in self._extensions
|
||||
|
||||
def _get_key(self, name):
|
||||
def _get_key(self, name: str) -> Tuple[str, str, Optional[int], Optional[int]]:
|
||||
return ("._.", name, self._start, self._end)
|
||||
|
||||
@classmethod
|
||||
def get_state(cls):
|
||||
def get_state(cls) -> Tuple[Dict[Any, Any], Dict[Any, Any], Dict[Any, Any]]:
|
||||
return cls.token_extensions, cls.span_extensions, cls.doc_extensions
|
||||
|
||||
@classmethod
|
||||
def load_state(cls, state):
|
||||
def load_state(
|
||||
cls, state: Tuple[Dict[Any, Any], Dict[Any, Any], Dict[Any, Any]]
|
||||
) -> None:
|
||||
cls.token_extensions, cls.span_extensions, cls.doc_extensions = state
|
||||
|
||||
|
||||
def get_ext_args(**kwargs):
|
||||
def get_ext_args(**kwargs: Any):
|
||||
"""Validate and convert arguments. Reused in Doc, Token and Span."""
|
||||
default = kwargs.get("default")
|
||||
getter = kwargs.get("getter")
|
||||
|
|
Loading…
Reference in New Issue
Block a user