WIP on beam parser. Currently segfaults.

This commit is contained in:
Matthew Honnibal 2017-03-11 06:19:52 -06:00
parent b0d80dc9ae
commit 318b9e32ff
3 changed files with 67 additions and 36 deletions

View File

@ -1,6 +1,9 @@
from libc.string cimport memcpy, memset
from libc.stdlib cimport malloc, calloc, free
from libc.stdint cimport uint32_t
from libc.stdint cimport uint32_t, uint64_t
from murmurhash.mrmr cimport hash64
from ..vocab cimport EMPTY_LEXEME
from ..structs cimport TokenC, Entity
from ..lexeme cimport Lexeme
@ -138,7 +141,7 @@ cdef cppclass StateC:
else:
ptr += 1
return -1
int R(int i, int idx) nogil const:
if idx < 1:
return -1
@ -201,6 +204,21 @@ cdef cppclass StateC:
else:
return this.length - this._b_i
uint64_t hash() nogil const:
cdef TokenC[11] sig
sig[0] = this.S_(2)[0]
sig[1] = this.S_(1)[0]
sig[2] = this.R_(this.S(1), 1)[0]
sig[3] = this.L_(this.S(0), 1)[0]
sig[4] = this.L_(this.S(0), 2)[0]
sig[5] = this.S_(0)[0]
sig[6] = this.R_(this.S(0), 2)[0]
sig[7] = this.R_(this.S(0), 1)[0]
sig[8] = this.B_(0)[0]
sig[9] = this.E_(0)[0]
sig[10] = this.E_(1)[0]
return hash64(sig, sizeof(sig), this._s_i)
void push() nogil:
if this.B(0) != -1:
this._stack[this._s_i] = this.B(0)
@ -212,7 +230,7 @@ cdef cppclass StateC:
void pop() nogil:
if this._s_i >= 1:
this._s_i -= 1
void unshift() nogil:
this._b_i -= 1
this._buffer[this._b_i] = this.S(0)
@ -281,7 +299,7 @@ cdef cppclass StateC:
this._sent[i].ent_type = ent_type
void set_break(int i) nogil:
if 0 <= i < this.length:
if 0 <= i < this.length:
this._sent[i].sent_start = True
this._break = this._b_i
@ -290,6 +308,8 @@ cdef cppclass StateC:
memcpy(this._stack, src._stack, this.length * sizeof(int))
memcpy(this._buffer, src._buffer, this.length * sizeof(int))
memcpy(this._ents, src._ents, this.length * sizeof(Entity))
memcpy(this.shifted, src.shifted, this.length * sizeof(this.shifted[0]))
this.length = src.length
this._b_i = src._b_i
this._s_i = src._s_i
this._e_i = src._e_i

View File

@ -126,14 +126,15 @@ cdef class BeamParser(Parser):
violn.check_crf(pred, gold)
assert pred.size >= 1
assert gold.size >= 1
#_check_train_integrity(pred, gold, gold_parse, self.moves)
histories = zip(violn.p_probs, violn.p_hist) + zip(violn.g_probs, violn.g_hist)
min_grad = 0.001 ** (itn+1)
histories = [(grad, hist) for grad, hist in histories if abs(grad) >= min_grad]
random.shuffle(histories)
for grad, hist in histories:
assert not math.isnan(grad) and not math.isinf(grad), hist
self.model.update_from_history(self.moves, tokens, hist, grad)
if pred.loss == 0:
self.model.update_from_histories(self.moves, tokens, [(0.0, [])])
elif True:
#_check_train_integrity(pred, gold, gold_parse, self.moves)
histories = zip(violn.p_probs, violn.p_hist) + zip(violn.g_probs, violn.g_hist)
self.model.update_from_histories(self.moves, tokens, histories, min_grad=0.001**(itn+1))
else:
self.model.update_from_histories(self.moves, tokens,
[(1.0, violn.p_hist[0]), (-1.0, violn.g_hist[0])])
_cleanup(pred)
_cleanup(gold)
return pred.loss
@ -173,7 +174,7 @@ cdef class BeamParser(Parser):
if follow_gold:
beam.advance(_transition_state, NULL, <void*>self.moves.c)
else:
beam.advance(_transition_state, NULL, <void*>self.moves.c)
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
beam.check_done(_check_final_state, NULL)

View File

@ -12,7 +12,9 @@ from cpython.exc cimport PyErr_CheckSignals
from libc.stdint cimport uint32_t, uint64_t
from libc.string cimport memset, memcpy
from libc.stdlib cimport malloc, calloc, free
import os.path
from collections import Counter
from os import path
import shutil
import json
@ -80,34 +82,46 @@ cdef class ParserModel(AveragedPerceptron):
def update(self, Example eg):
'''Does regression on negative cost. Sort of cute?'''
self.time += 1
cdef weight_t loss = 0.0
best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
for clas in range(eg.c.nr_class):
if not eg.c.is_valid[clas]:
continue
if eg.c.scores[clas] < eg.c.scores[best]:
continue
guess = eg.guess
cdef weight_t loss = 0.0
if guess == best:
return loss
for clas in [guess, best]:
loss += (-eg.c.costs[clas] - eg.c.scores[clas]) ** 2
d_loss = -2 * (-eg.c.costs[clas] - eg.c.scores[clas])
d_loss = eg.c.scores[clas] - -eg.c.costs[clas]
for feat in eg.c.features[:eg.c.nr_feat]:
self.update_weight_ftrl(feat.key, clas, feat.value * d_loss)
return int(loss)
return loss
def update_from_history(self, TransitionSystem moves, Doc doc, history, weight_t grad):
def update_from_histories(self, TransitionSystem moves, Doc doc, histories, weight_t min_grad=0.0):
cdef Pool mem = Pool()
features = <FeatureC*>mem.alloc(self.nr_feat, sizeof(FeatureC))
cdef StateClass stcls = StateClass.init(doc.c, doc.length)
moves.initialize_state(stcls.c)
cdef StateClass stcls
cdef class_t clas
self.time += 1
cdef atom_t[CONTEXT_SIZE] atoms
for clas in history:
nr_feat = self.set_featuresC(atoms, features, stcls.c)
for feat in features[:nr_feat]:
self.update_weight(feat.key, clas, feat.value * grad)
moves.c[clas].do(stcls.c, moves.c[clas].label)
histories = [(grad, hist) for grad, hist in histories if abs(grad) >= min_grad and hist]
if not histories:
return None
gradient = [Counter() for _ in range(max([max(h)+1 for _, h in histories]))]
for d_loss, history in histories:
stcls = StateClass.init(doc.c, doc.length)
moves.initialize_state(stcls.c)
for clas in history:
nr_feat = self.set_featuresC(atoms, features, stcls.c)
clas_grad = gradient[clas]
for feat in features[:nr_feat]:
clas_grad[feat.key] += d_loss * feat.value
moves.c[clas].do(stcls.c, moves.c[clas].label)
cdef feat_t key
cdef weight_t d_feat
for clas, clas_grad in enumerate(gradient):
for key, d_feat in clas_grad.items():
if d_feat != 0:
self.update_weight_ftrl(key, clas, d_feat)
cdef class Parser:
@ -161,7 +175,8 @@ cdef class Parser:
elif 'features' not in cfg:
cfg['features'] = self.feature_templates
self.model = ParserModel(cfg['features'])
self.model.l1_penalty = cfg.get('L1', 0.0)
self.model.l1_penalty = cfg.get('L1', 1e-8)
self.model.learn_rate = cfg.get('learn_rate', 0.001)
self.cfg = cfg
@ -298,12 +313,7 @@ cdef class Parser:
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
if eg.c.costs[guess] > 0:
self.model.update(eg)
#best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
#for feat in eg.c.features[:eg.c.nr_feat]:
# self.model.update_weight_ftrl(feat.key, best, -feat.value * eg.c.costs[guess])
# self.model.update_weight_ftrl(feat.key, guess, feat.value * eg.c.costs[guess])
self.model.update(eg)
action = self.moves.c[guess]
action.do(stcls.c, action.label)