Add a spacy benchmark speed subcommand (#11902)

* Add a `spacy evaluate speed` subcommand

This subcommand reports the mean batch performance of a model on a data set with
a 95% confidence interval. For reliability, it first performs some warmup
rounds. Then it will measure performance on batches with randomly shuffled
documents.

To avoid having too many spaCy commands, `speed` is a subcommand of `evaluate`
and accuracy evaluation is moved to its own `evaluate accuracy` subcommand.

* Fix import cycle

* Restore `spacy evaluate`, make `spacy benchmark speed` an alias

* Add documentation for `spacy benchmark`

* CREATES -> PRINTS

* WPS -> words/s

* Disable formatting of benchmark speed arguments

* Fail with an error message when trying to speed bench empty corpus

* Make it clearer that `benchmark accuracy` is a replacement for `evaluate`

* Fix docstring webpage reference

* tests: check `evaluate` output against `benchmark accuracy`
This commit is contained in:
Daniël de Kok 2023-01-12 11:55:21 +01:00 committed by GitHub
parent 8e558095a1
commit 319eb508b5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 231 additions and 7 deletions

View File

@ -4,6 +4,7 @@ from ._util import app, setup_cli # noqa: F401
# These are the actual functions, NOT the wrapped CLI commands. The CLI commands
# are registered automatically and won't have to be imported here.
from .benchmark_speed import benchmark_speed_cli # noqa: F401
from .download import download # noqa: F401
from .info import info # noqa: F401
from .package import package # noqa: F401

View File

@ -46,6 +46,7 @@ DEBUG_HELP = """Suite of helpful commands for debugging and profiling. Includes
commands to check and validate your config files, training and evaluation data,
and custom model implementations.
"""
BENCHMARK_HELP = """Commands for benchmarking pipelines."""
INIT_HELP = """Commands for initializing configs and pipeline packages."""
# Wrappers for Typer's annotations. Initially created to set defaults and to
@ -54,12 +55,14 @@ Arg = typer.Argument
Opt = typer.Option
app = typer.Typer(name=NAME, help=HELP)
benchmark_cli = typer.Typer(name="benchmark", help=BENCHMARK_HELP, no_args_is_help=True)
project_cli = typer.Typer(name="project", help=PROJECT_HELP, no_args_is_help=True)
debug_cli = typer.Typer(name="debug", help=DEBUG_HELP, no_args_is_help=True)
init_cli = typer.Typer(name="init", help=INIT_HELP, no_args_is_help=True)
app.add_typer(project_cli)
app.add_typer(debug_cli)
app.add_typer(benchmark_cli)
app.add_typer(init_cli)

View File

@ -0,0 +1,174 @@
from typing import Iterable, List, Optional
import random
from itertools import islice
import numpy
from pathlib import Path
import time
from tqdm import tqdm
import typer
from wasabi import msg
from .. import util
from ..language import Language
from ..tokens import Doc
from ..training import Corpus
from ._util import Arg, Opt, benchmark_cli, setup_gpu
@benchmark_cli.command(
"speed",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
)
def benchmark_speed_cli(
# fmt: off
ctx: typer.Context,
model: str = Arg(..., help="Model name or path"),
data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True),
batch_size: Optional[int] = Opt(None, "--batch-size", "-b", min=1, help="Override the pipeline batch size"),
no_shuffle: bool = Opt(False, "--no-shuffle", help="Do not shuffle benchmark data"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
n_batches: int = Opt(50, "--batches", help="Minimum number of batches to benchmark", min=30,),
warmup_epochs: int = Opt(3, "--warmup", "-w", min=0, help="Number of iterations over the data for warmup"),
# fmt: on
):
"""
Benchmark a pipeline. Expects a loadable spaCy pipeline and benchmark
data in the binary .spacy format.
"""
setup_gpu(use_gpu=use_gpu, silent=False)
nlp = util.load_model(model)
batch_size = batch_size if batch_size is not None else nlp.batch_size
corpus = Corpus(data_path)
docs = [eg.predicted for eg in corpus(nlp)]
if len(docs) == 0:
msg.fail("Cannot benchmark speed using an empty corpus.", exits=1)
print(f"Warming up for {warmup_epochs} epochs...")
warmup(nlp, docs, warmup_epochs, batch_size)
print()
print(f"Benchmarking {n_batches} batches...")
wps = benchmark(nlp, docs, n_batches, batch_size, not no_shuffle)
print()
print_outliers(wps)
print_mean_with_ci(wps)
# Lowercased, behaves as a context manager function.
class time_context:
"""Register the running time of a context."""
def __enter__(self):
self.start = time.perf_counter()
return self
def __exit__(self, type, value, traceback):
self.elapsed = time.perf_counter() - self.start
class Quartiles:
"""Calculate the q1, q2, q3 quartiles and the inter-quartile range (iqr)
of a sample."""
q1: float
q2: float
q3: float
iqr: float
def __init__(self, sample: numpy.ndarray) -> None:
self.q1 = numpy.quantile(sample, 0.25)
self.q2 = numpy.quantile(sample, 0.5)
self.q3 = numpy.quantile(sample, 0.75)
self.iqr = self.q3 - self.q1
def annotate(
nlp: Language, docs: List[Doc], batch_size: Optional[int]
) -> numpy.ndarray:
docs = nlp.pipe(tqdm(docs, unit="doc"), batch_size=batch_size)
wps = []
while True:
with time_context() as elapsed:
batch_docs = list(
islice(docs, batch_size if batch_size else nlp.batch_size)
)
if len(batch_docs) == 0:
break
n_tokens = count_tokens(batch_docs)
wps.append(n_tokens / elapsed.elapsed)
return numpy.array(wps)
def benchmark(
nlp: Language,
docs: List[Doc],
n_batches: int,
batch_size: int,
shuffle: bool,
) -> numpy.ndarray:
if shuffle:
bench_docs = [
nlp.make_doc(random.choice(docs).text)
for _ in range(n_batches * batch_size)
]
else:
bench_docs = [
nlp.make_doc(docs[i % len(docs)].text)
for i in range(n_batches * batch_size)
]
return annotate(nlp, bench_docs, batch_size)
def bootstrap(x, statistic=numpy.mean, iterations=10000) -> numpy.ndarray:
"""Apply a statistic to repeated random samples of an array."""
return numpy.fromiter(
(
statistic(numpy.random.choice(x, len(x), replace=True))
for _ in range(iterations)
),
numpy.float64,
)
def count_tokens(docs: Iterable[Doc]) -> int:
return sum(len(doc) for doc in docs)
def print_mean_with_ci(sample: numpy.ndarray):
mean = numpy.mean(sample)
bootstrap_means = bootstrap(sample)
bootstrap_means.sort()
# 95% confidence interval
low = bootstrap_means[int(len(bootstrap_means) * 0.025)]
high = bootstrap_means[int(len(bootstrap_means) * 0.975)]
print(f"Mean: {mean:.1f} words/s (95% CI: {low-mean:.1f} +{high-mean:.1f})")
def print_outliers(sample: numpy.ndarray):
quartiles = Quartiles(sample)
n_outliers = numpy.sum(
(sample < (quartiles.q1 - 1.5 * quartiles.iqr))
| (sample > (quartiles.q3 + 1.5 * quartiles.iqr))
)
n_extreme_outliers = numpy.sum(
(sample < (quartiles.q1 - 3.0 * quartiles.iqr))
| (sample > (quartiles.q3 + 3.0 * quartiles.iqr))
)
print(
f"Outliers: {(100 * n_outliers) / len(sample):.1f}%, extreme outliers: {(100 * n_extreme_outliers) / len(sample)}%"
)
def warmup(
nlp: Language, docs: List[Doc], warmup_epochs: int, batch_size: Optional[int]
) -> numpy.ndarray:
docs = warmup_epochs * docs
return annotate(nlp, docs, batch_size)

View File

@ -7,12 +7,15 @@ from thinc.api import fix_random_seed
from ..training import Corpus
from ..tokens import Doc
from ._util import app, Arg, Opt, setup_gpu, import_code
from ._util import app, Arg, Opt, setup_gpu, import_code, benchmark_cli
from ..scorer import Scorer
from .. import util
from .. import displacy
@benchmark_cli.command(
"accuracy",
)
@app.command("evaluate")
def evaluate_cli(
# fmt: off
@ -36,7 +39,7 @@ def evaluate_cli(
dependency parses in a HTML file, set as output directory as the
displacy_path argument.
DOCS: https://spacy.io/api/cli#evaluate
DOCS: https://spacy.io/api/cli#benchmark-accuracy
"""
import_code(code_path)
evaluate(

View File

@ -31,3 +31,12 @@ def test_convert_auto_conflict():
assert "All input files must be same type" in result.stdout
out_files = os.listdir(d_out)
assert len(out_files) == 0
def test_benchmark_accuracy_alias():
# Verify that the `evaluate` alias works correctly.
result_benchmark = CliRunner().invoke(app, ["benchmark", "accuracy", "--help"])
result_evaluate = CliRunner().invoke(app, ["evaluate", "--help"])
assert result_benchmark.stdout == result_evaluate.stdout.replace(
"spacy evaluate", "spacy benchmark accuracy"
)

View File

@ -12,6 +12,7 @@ menu:
- ['train', 'train']
- ['pretrain', 'pretrain']
- ['evaluate', 'evaluate']
- ['benchmark', 'benchmark']
- ['apply', 'apply']
- ['find-threshold', 'find-threshold']
- ['assemble', 'assemble']
@ -1135,8 +1136,19 @@ $ python -m spacy pretrain [config_path] [output_dir] [--code] [--resume-path] [
## evaluate {id="evaluate",version="2",tag="command"}
Evaluate a trained pipeline. Expects a loadable spaCy pipeline (package name or
path) and evaluation data in the
The `evaluate` subcommand is superseded by
[`spacy benchmark accuracy`](#benchmark-accuracy). `evaluate` is provided as an
alias to `benchmark accuracy` for compatibility.
## benchmark {id="benchmark", version="3.5"}
The `spacy benchmark` CLI includes commands for benchmarking the accuracy and
speed of your spaCy pipelines.
### accuracy {id="benchmark-accuracy", version="3.5", tag="command"}
Evaluate the accuracy of a trained pipeline. Expects a loadable spaCy pipeline
(package name or path) and evaluation data in the
[binary `.spacy` format](/api/data-formats#binary-training). The
`--gold-preproc` option sets up the evaluation examples with gold-standard
sentences and tokens for the predictions. Gold preprocessing helps the
@ -1147,7 +1159,7 @@ skew. To render a sample of dependency parses in a HTML file using the
`--displacy-path` argument.
```bash
$ python -m spacy evaluate [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit]
$ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit]
```
| Name | Description |
@ -1163,6 +1175,29 @@ $ python -m spacy evaluate [model] [data_path] [--output] [--code] [--gold-prepr
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | Training results and optional metrics and visualizations. |
### speed {id="benchmark-speed", version="3.5", tag="command"}
Benchmark the speed of a trained pipeline with a 95% confidence interval.
Expects a loadable spaCy pipeline (package name or path) and benchmark data in
the [binary `.spacy` format](/api/data-formats#binary-training). The pipeline is
warmed up before any measurements are taken.
```cli
$ python -m spacy benchmark speed [model] [data_path] [--batch_size] [--no-shuffle] [--gpu-id] [--batches] [--warmup]
```
| Name | Description |
| -------------------- | -------------------------------------------------------------------------------------------------------- |
| `model` | Pipeline to benchmark the speed of. Can be a package or a path to a data directory. ~~str (positional)~~ |
| `data_path` | Location of benchmark data in spaCy's [binary format](/api/data-formats#training). ~~Path (positional)~~ |
| `--batch-size`, `-b` | Set the batch size. If not set, the pipeline's batch size is used. ~~Optional[int] \(option)~~ |
| `--no-shuffle` | Do not shuffle documents in the benchmark data. ~~bool (flag)~~ |
| `--gpu-id`, `-g` | GPU to use, if any. Defaults to `-1` for CPU. ~~int (option)~~ |
| `--batches` | Number of batches to benchmark on. Defaults to `50`. ~~Optional[int] \(option)~~ |
| `--warmup`, `-w` | Iterations over the benchmark data for warmup. Defaults to `3` ~~Optional[int] \(option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **PRINTS** | Pipeline speed in words per second with a 95% confidence interval. |
## apply {id="apply", version="3.5", tag="command"}
Applies a trained pipeline to data and stores the resulting annotated documents
@ -1176,7 +1211,7 @@ input formats are:
When a directory is provided it is traversed recursively to collect all files.
```cli
```bash
$ python -m spacy apply [model] [data-path] [output-file] [--code] [--text-key] [--force-overwrite] [--gpu-id] [--batch-size] [--n-process]
```
@ -1194,7 +1229,6 @@ $ python -m spacy apply [model] [data-path] [output-file] [--code] [--text-key]
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | A `DocBin` with the annotations from the `model` for all the files found in `data-path`. |
## find-threshold {id="find-threshold",version="3.5",tag="command"}
Runs prediction trials for a trained model with varying tresholds to maximize