Add logistic regression sentiment analysis

This commit is contained in:
samhithamuvva 2024-10-10 00:27:22 -07:00
parent bda4bb0184
commit 31bc8eb26d
4 changed files with 371 additions and 0 deletions

0
python Normal file
View File

View File

@ -0,0 +1,72 @@
import pytest
from spacy.language import Language
from spacy.training import Example
import spacy
from spacy.tokens import Doc
import numpy as np
# Define the nlp fixture
@pytest.fixture
def nlp():
# Load the spaCy model
return spacy.blank("en") # Use a blank model for testing
# Custom component definition
@Language.component("pure_logistic_textcat")
def pure_logistic_textcat(doc):
# Dummy implementation of text classification, replace with your model's logic
scores = {"positive": 0.5, "negative": 0.5}
# Store the scores in a custom attribute on the doc
doc._.set("textcat_scores", scores)
return doc
# Register the custom extension attribute
if not Doc.has_extension("textcat_scores"):
Doc.set_extension("textcat_scores", default=None)
# Register the custom component to the spaCy pipeline
def test_pure_logistic_textcat_init(nlp):
# Add the component to the pipeline
textcat = nlp.add_pipe("pure_logistic_textcat")
assert textcat is not None
def test_pure_logistic_textcat_predict(nlp):
# Add the component to the pipeline
nlp.add_pipe("pure_logistic_textcat")
doc = nlp("This is a test document")
# Check if the textcat_scores attribute exists and is a dictionary
assert doc._.textcat_scores is not None
assert isinstance(doc._.textcat_scores, dict)
assert "positive" in doc._.textcat_scores
assert "negative" in doc._.textcat_scores
def test_pure_logistic_textcat_update(nlp):
# Mock an update method for testing purposes
def mock_update(examples):
losses = {"pure_logistic_textcat": 0.5} # Dummy loss value
return losses
# Add the component to the pipeline
textcat = nlp.add_pipe("pure_logistic_textcat")
# Mock the update method for testing purposes
textcat.update = mock_update
train_examples = []
for text, annotations in TRAIN_DATA:
doc = nlp.make_doc(text)
example = Example.from_dict(doc, annotations)
train_examples.append(example)
# Update the model
losses = textcat.update(train_examples) # Ensure update method exists
assert isinstance(losses, dict)
assert "pure_logistic_textcat" in losses
# Mock training data for the test
TRAIN_DATA = [
("This is positive", {"cats": {"positive": 1.0, "negative": 0.0}}),
("This is negative", {"cats": {"positive": 0.0, "negative": 1.0}})
]

View File

@ -0,0 +1,170 @@
from typing import List, Dict, Iterable
import numpy as np
from spacy.pipeline import TrainablePipe
from spacy.language import Language
from spacy.training import Example
from spacy.vocab import Vocab
from spacy.tokens import Doc
@Language.factory(
"pure_logistic_textcat",
default_config={
"learning_rate": 0.001,
"max_iterations": 100,
"batch_size": 1000
}
)
def make_pure_logistic_textcat(
nlp: Language,
name: str,
learning_rate: float,
max_iterations: int,
batch_size: int
) -> "PureLogisticTextCategorizer":
return PureLogisticTextCategorizer(
vocab=nlp.vocab,
name=name,
learning_rate=learning_rate,
max_iterations=max_iterations,
batch_size=batch_size
)
class PureLogisticTextCategorizer(TrainablePipe):
def __init__(
self,
vocab: Vocab,
name: str = "pure_logistic_textcat",
*,
learning_rate: float = 0.001,
max_iterations: int = 100,
batch_size: int = 1000
):
"""Initialize the text categorizer."""
self.vocab = vocab
self.name = name
self.learning_rate = learning_rate
self.max_iterations = max_iterations
self.batch_size = batch_size
self.weights = None
self.bias = 0.0
self._labels = set() # Use _labels as internal attribute
# Register the custom extension attribute if it doesn't exist
if not Doc.has_extension("textcat_scores"):
Doc.set_extension("textcat_scores", default=None)
@property
def labels(self):
"""Get the labels."""
return self._labels
@labels.setter
def labels(self, value):
"""Set the labels."""
self._labels = value
def predict(self, docs):
"""Apply the pipe to a batch of docs, returning scores."""
scores = self._predict_scores(docs)
for doc, doc_scores in zip(docs, scores):
doc._.textcat_scores = doc_scores
return docs
def _predict_scores(self, docs):
"""Predict scores for docs."""
features = self._extract_features(docs)
scores = []
for doc_features in features:
if self.weights is None:
doc_scores = {"positive": 0.5, "negative": 0.5}
else:
logits = np.dot(doc_features, self.weights) + self.bias
prob = 1 / (1 + np.exp(-logits))
doc_scores = {
"positive": float(prob),
"negative": float(1 - prob)
}
scores.append(doc_scores)
return scores
def set_annotations(self, docs, scores):
"""Set the predicted annotations (e.g. categories) on the docs."""
for doc, score in zip(docs, scores):
doc.cats = {label: score[i] for i, label in enumerate(self._labels)}
def _extract_features(self, docs) -> List[np.ndarray]:
"""Extract features from docs."""
features = []
for doc in docs:
# Basic features
doc_vector = doc.vector
n_tokens = len(doc)
# Additional features
n_entities = len(doc.ents)
avg_token_length = np.mean([len(token.text) for token in doc])
n_stopwords = len([token for token in doc if token.is_stop])
# Combine features
doc_features = np.concatenate([
doc_vector,
[n_tokens / 100, n_entities / 10,
avg_token_length / 10, n_stopwords / n_tokens]
])
features.append(doc_features)
return features
def update(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd=None,
losses: Dict[str, float] = None
) -> Dict[str, float]:
"""Update the model."""
losses = {} if losses is None else losses
# Update label set
for example in examples:
self._labels.update(example.reference.cats.keys())
# Extract features and labels
docs = [example.reference for example in examples]
label_arrays = self._make_label_array([example.reference.cats for example in examples])
features = self._extract_features(docs)
if self.weights is None:
n_features = features[0].shape[0] if features else 0
self.weights = np.zeros((n_features, 1))
# Simple gradient descent
total_loss = 0.0
for i in range(self.max_iterations):
for feat, gold in zip(features, label_arrays):
pred = 1 / (1 + np.exp(-(np.dot(feat, self.weights) + self.bias)))
loss = -np.mean(gold * np.log(pred + 1e-8) +
(1 - gold) * np.log(1 - pred + 1e-8))
total_loss += loss
# Compute gradients
d_weights = feat.reshape(-1, 1) * (pred - gold)
d_bias = pred - gold
# Update weights
self.weights -= self.learning_rate * d_weights
self.bias -= self.learning_rate * float(d_bias)
losses[self.name] = total_loss / len(examples)
return losses
def _make_label_array(self, cats):
"""Convert label dicts into an array."""
arr = np.zeros((len(cats),))
for i, cat_dict in enumerate(cats):
if cat_dict.get("positive", 0) > 0.5:
arr[i] = 1.0
return arr.reshape(-1, 1)

View File

@ -0,0 +1,129 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'cells': [{'cell_type': 'markdown',\n",
" 'metadata': {},\n",
" 'source': ['# Pure Logistic Regression Text Categorizer\\n',\n",
" 'This tutorial demonstrates how to use the custom logistic regression text categorizer.']},\n",
" {'cell_type': 'code',\n",
" 'execution_count': None,\n",
" 'metadata': {},\n",
" 'source': ['import spacy\\n',\n",
" 'from spacy.training import Example\\n',\n",
" '\\n',\n",
" '# Load spaCy model\\n',\n",
" 'nlp = spacy.load(\"en_core_web_lg\")\\n',\n",
" 'nlp.add_pipe(\"pure_logistic_textcat\")\\n',\n",
" '\\n',\n",
" '# Example training data\\n',\n",
" 'TRAIN_DATA = [\\n',\n",
" ' (\"This is amazing!\", {\"cats\": {\"positive\": 1.0, \"negative\": 0.0}}),\\n',\n",
" ' (\"This is terrible!\", {\"cats\": {\"positive\": 0.0, \"negative\": 1.0}})\\n',\n",
" ']\\n',\n",
" '\\n',\n",
" '# Create training examples\\n',\n",
" 'examples = []\\n',\n",
" 'for text, annotations in TRAIN_DATA:\\n',\n",
" ' doc = nlp.make_doc(text)\\n',\n",
" ' example = Example.from_dict(doc, annotations)\\n',\n",
" ' examples.append(example)\\n',\n",
" '\\n',\n",
" '# Train the model\\n',\n",
" 'textcat = nlp.get_pipe(\"pure_logistic_textcat\")\\n',\n",
" 'losses = textcat.update(examples)\\n',\n",
" 'print(f\"Losses: {losses}\")\\n',\n",
" '\\n',\n",
" '# Test the model\\n',\n",
" 'test_text = \"This product is fantastic!\"\\n',\n",
" 'doc = nlp(test_text)\\n',\n",
" 'print(f\"\\\\nText: {test_text}\")\\n',\n",
" 'print(f\"Predictions: {doc.cats}\")']}]}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"{\n",
" \"cells\": [\n",
" {\n",
" \"cell_type\": \"markdown\",\n",
" \"metadata\": {},\n",
" \"source\": [\n",
" \"# Pure Logistic Regression Text Categorizer\\n\",\n",
" \"This tutorial demonstrates how to use the custom logistic regression text categorizer.\"\n",
" ]\n",
" },\n",
" {\n",
" \"cell_type\": \"code\",\n",
" \"execution_count\": None,\n",
" \"metadata\": {},\n",
" \"source\": [\n",
" \"import spacy\\n\",\n",
" \"from spacy.training import Example\\n\",\n",
" \"\\n\",\n",
" \"# Load spaCy model\\n\",\n",
" \"nlp = spacy.load(\\\"en_core_web_lg\\\")\\n\",\n",
" \"nlp.add_pipe(\\\"pure_logistic_textcat\\\")\\n\",\n",
" \"\\n\",\n",
" \"# Example training data\\n\",\n",
" \"TRAIN_DATA = [\\n\",\n",
" \" (\\\"This is amazing!\\\", {\\\"cats\\\": {\\\"positive\\\": 1.0, \\\"negative\\\": 0.0}}),\\n\",\n",
" \" (\\\"This is terrible!\\\", {\\\"cats\\\": {\\\"positive\\\": 0.0, \\\"negative\\\": 1.0}})\\n\",\n",
" \"]\\n\",\n",
" \"\\n\",\n",
" \"# Create training examples\\n\",\n",
" \"examples = []\\n\",\n",
" \"for text, annotations in TRAIN_DATA:\\n\",\n",
" \" doc = nlp.make_doc(text)\\n\",\n",
" \" example = Example.from_dict(doc, annotations)\\n\",\n",
" \" examples.append(example)\\n\",\n",
" \"\\n\",\n",
" \"# Train the model\\n\",\n",
" \"textcat = nlp.get_pipe(\\\"pure_logistic_textcat\\\")\\n\",\n",
" \"losses = textcat.update(examples)\\n\",\n",
" \"print(f\\\"Losses: {losses}\\\")\\n\",\n",
" \"\\n\",\n",
" \"# Test the model\\n\",\n",
" \"test_text = \\\"This product is fantastic!\\\"\\n\",\n",
" \"doc = nlp(test_text)\\n\",\n",
" \"print(f\\\"\\\\nText: {test_text}\\\")\\n\",\n",
" \"print(f\\\"Predictions: {doc.cats}\\\")\"\n",
" ]\n",
" }\n",
" ]\n",
"}"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}