mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Fix issues for Mypy 0.950 and Pydantic 1.9.0 (#10786)
* Make changes to typing * Correction * Format with black * Corrections based on review * Bumped Thinc dependency version * Bumped blis requirement * Correction for older Python versions * Update spacy/ml/models/textcat.py Co-authored-by: Daniël de Kok <me@github.danieldk.eu> * Corrections based on review feedback * Readd deleted docstring line Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
This commit is contained in:
parent
6be09bbd07
commit
32954c3bcb
|
@ -5,8 +5,8 @@ requires = [
|
|||
"cymem>=2.0.2,<2.1.0",
|
||||
"preshed>=3.0.2,<3.1.0",
|
||||
"murmurhash>=0.28.0,<1.1.0",
|
||||
"thinc>=8.0.14,<8.1.0",
|
||||
"blis>=0.4.0,<0.8.0",
|
||||
"thinc>=8.1.0.dev0,<8.2.0",
|
||||
"blis>=0.9.0,<0.10.0",
|
||||
"pathy",
|
||||
"numpy>=1.15.0",
|
||||
]
|
||||
|
|
|
@ -3,8 +3,8 @@ spacy-legacy>=3.0.9,<3.1.0
|
|||
spacy-loggers>=1.0.0,<2.0.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=8.0.14,<8.1.0
|
||||
blis>=0.4.0,<0.8.0
|
||||
thinc>=8.1.0.dev0,<8.2.0
|
||||
blis>=0.9.0,<0.10.0
|
||||
ml_datasets>=0.2.0,<0.3.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
wasabi>=0.9.1,<1.1.0
|
||||
|
@ -16,7 +16,7 @@ pathy>=0.3.5
|
|||
numpy>=1.15.0
|
||||
requests>=2.13.0,<3.0.0
|
||||
tqdm>=4.38.0,<5.0.0
|
||||
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.9.0
|
||||
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.10.0
|
||||
jinja2
|
||||
langcodes>=3.2.0,<4.0.0
|
||||
# Official Python utilities
|
||||
|
@ -31,7 +31,7 @@ pytest-timeout>=1.3.0,<2.0.0
|
|||
mock>=2.0.0,<3.0.0
|
||||
flake8>=3.8.0,<3.10.0
|
||||
hypothesis>=3.27.0,<7.0.0
|
||||
mypy==0.910
|
||||
mypy>=0.910,<=0.960
|
||||
types-dataclasses>=0.1.3; python_version < "3.7"
|
||||
types-mock>=0.1.1
|
||||
types-requests
|
||||
|
|
|
@ -38,7 +38,7 @@ setup_requires =
|
|||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
thinc>=8.0.14,<8.1.0
|
||||
thinc>=8.1.0.dev0,<8.2.0
|
||||
install_requires =
|
||||
# Our libraries
|
||||
spacy-legacy>=3.0.9,<3.1.0
|
||||
|
@ -46,8 +46,8 @@ install_requires =
|
|||
murmurhash>=0.28.0,<1.1.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=8.0.14,<8.1.0
|
||||
blis>=0.4.0,<0.8.0
|
||||
thinc>=8.1.0.dev0,<8.2.0
|
||||
blis>=0.9.0,<0.10.0
|
||||
wasabi>=0.9.1,<1.1.0
|
||||
srsly>=2.4.3,<3.0.0
|
||||
catalogue>=2.0.6,<2.1.0
|
||||
|
@ -57,7 +57,7 @@ install_requires =
|
|||
tqdm>=4.38.0,<5.0.0
|
||||
numpy>=1.15.0
|
||||
requests>=2.13.0,<3.0.0
|
||||
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.9.0
|
||||
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.10.0
|
||||
jinja2
|
||||
# Official Python utilities
|
||||
setuptools
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import warnings
|
||||
from .compat import Literal
|
||||
|
||||
|
||||
class ErrorsWithCodes(type):
|
||||
|
@ -26,7 +27,10 @@ def setup_default_warnings():
|
|||
filter_warning("once", error_msg="[W114]")
|
||||
|
||||
|
||||
def filter_warning(action: str, error_msg: str):
|
||||
def filter_warning(
|
||||
action: Literal["default", "error", "ignore", "always", "module", "once"],
|
||||
error_msg: str,
|
||||
):
|
||||
"""Customize how spaCy should handle a certain warning.
|
||||
|
||||
error_msg (str): e.g. "W006", or a full error message
|
||||
|
|
|
@ -85,7 +85,7 @@ class Table(OrderedDict):
|
|||
value: The value to set.
|
||||
"""
|
||||
key = get_string_id(key)
|
||||
OrderedDict.__setitem__(self, key, value)
|
||||
OrderedDict.__setitem__(self, key, value) # type:ignore[assignment]
|
||||
self.bloom.add(key)
|
||||
|
||||
def set(self, key: Union[str, int], value: Any) -> None:
|
||||
|
@ -104,7 +104,7 @@ class Table(OrderedDict):
|
|||
RETURNS: The value.
|
||||
"""
|
||||
key = get_string_id(key)
|
||||
return OrderedDict.__getitem__(self, key)
|
||||
return OrderedDict.__getitem__(self, key) # type:ignore[index]
|
||||
|
||||
def get(self, key: Union[str, int], default: Optional[Any] = None) -> Any:
|
||||
"""Get the value for a given key. String keys will be hashed.
|
||||
|
@ -114,7 +114,7 @@ class Table(OrderedDict):
|
|||
RETURNS: The value.
|
||||
"""
|
||||
key = get_string_id(key)
|
||||
return OrderedDict.get(self, key, default)
|
||||
return OrderedDict.get(self, key, default) # type:ignore[arg-type]
|
||||
|
||||
def __contains__(self, key: Union[str, int]) -> bool: # type: ignore[override]
|
||||
"""Check whether a key is in the table. String keys will be hashed.
|
||||
|
|
|
@ -23,7 +23,7 @@ def build_nel_encoder(
|
|||
((tok2vec >> list2ragged()) & build_span_maker())
|
||||
>> extract_spans()
|
||||
>> reduce_mean()
|
||||
>> residual(Maxout(nO=token_width, nI=token_width, nP=2, dropout=0.0)) # type: ignore[arg-type]
|
||||
>> residual(Maxout(nO=token_width, nI=token_width, nP=2, dropout=0.0))
|
||||
>> output_layer
|
||||
)
|
||||
model.set_ref("output_layer", output_layer)
|
||||
|
|
|
@ -72,7 +72,7 @@ def build_tb_parser_model(
|
|||
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
|
||||
tok2vec = chain(
|
||||
tok2vec,
|
||||
cast(Model[List["Floats2d"], Floats2d], list2array()),
|
||||
list2array(),
|
||||
Linear(hidden_width, t2v_width),
|
||||
)
|
||||
tok2vec.set_dim("nO", hidden_width)
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from typing import Optional, List, cast
|
||||
from functools import partial
|
||||
from typing import Optional, List
|
||||
|
||||
from thinc.types import Floats2d
|
||||
from thinc.api import Model, reduce_mean, Linear, list2ragged, Logistic
|
||||
|
@ -59,7 +59,8 @@ def build_simple_cnn_text_classifier(
|
|||
resizable_layer=resizable_layer,
|
||||
)
|
||||
model.set_ref("tok2vec", tok2vec)
|
||||
model.set_dim("nO", nO) # type: ignore # TODO: remove type ignore once Thinc has been updated
|
||||
if nO is not None:
|
||||
model.set_dim("nO", cast(int, nO))
|
||||
model.attrs["multi_label"] = not exclusive_classes
|
||||
return model
|
||||
|
||||
|
@ -85,7 +86,7 @@ def build_bow_text_classifier(
|
|||
if not no_output_layer:
|
||||
fill_defaults["b"] = NEG_VALUE
|
||||
output_layer = softmax_activation() if exclusive_classes else Logistic()
|
||||
resizable_layer = resizable( # type: ignore[var-annotated]
|
||||
resizable_layer: Model[Floats2d, Floats2d] = resizable(
|
||||
sparse_linear,
|
||||
resize_layer=partial(resize_linear_weighted, fill_defaults=fill_defaults),
|
||||
)
|
||||
|
@ -93,7 +94,8 @@ def build_bow_text_classifier(
|
|||
model = with_cpu(model, model.ops)
|
||||
if output_layer:
|
||||
model = model >> with_cpu(output_layer, output_layer.ops)
|
||||
model.set_dim("nO", nO) # type: ignore[arg-type]
|
||||
if nO is not None:
|
||||
model.set_dim("nO", cast(int, nO))
|
||||
model.set_ref("output_layer", sparse_linear)
|
||||
model.attrs["multi_label"] = not exclusive_classes
|
||||
model.attrs["resize_output"] = partial(
|
||||
|
@ -129,8 +131,8 @@ def build_text_classifier_v2(
|
|||
output_layer = Linear(nO=nO, nI=nO_double) >> Logistic()
|
||||
model = (linear_model | cnn_model) >> output_layer
|
||||
model.set_ref("tok2vec", tok2vec)
|
||||
if model.has_dim("nO") is not False:
|
||||
model.set_dim("nO", nO) # type: ignore[arg-type]
|
||||
if model.has_dim("nO") is not False and nO is not None:
|
||||
model.set_dim("nO", cast(int, nO))
|
||||
model.set_ref("output_layer", linear_model.get_ref("output_layer"))
|
||||
model.set_ref("attention_layer", attention_layer)
|
||||
model.set_ref("maxout_layer", maxout_layer)
|
||||
|
@ -164,7 +166,7 @@ def build_text_classifier_lowdata(
|
|||
>> list2ragged()
|
||||
>> ParametricAttention(width)
|
||||
>> reduce_sum()
|
||||
>> residual(Relu(width, width)) ** 2 # type: ignore[arg-type]
|
||||
>> residual(Relu(width, width)) ** 2
|
||||
>> Linear(nO, width)
|
||||
)
|
||||
if dropout:
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from typing import Optional, List, Union, cast
|
||||
from thinc.types import Floats2d, Ints2d, Ragged
|
||||
from thinc.types import Floats2d, Ints2d, Ragged, Ints1d
|
||||
from thinc.api import chain, clone, concatenate, with_array, with_padded
|
||||
from thinc.api import Model, noop, list2ragged, ragged2list, HashEmbed
|
||||
from thinc.api import expand_window, residual, Maxout, Mish, PyTorchLSTM
|
||||
|
@ -159,7 +159,7 @@ def MultiHashEmbed(
|
|||
embeddings = [make_hash_embed(i) for i in range(len(attrs))]
|
||||
concat_size = width * (len(embeddings) + include_static_vectors)
|
||||
max_out: Model[Ragged, Ragged] = with_array(
|
||||
Maxout(width, concat_size, nP=3, dropout=0.0, normalize=True) # type: ignore
|
||||
Maxout(width, concat_size, nP=3, dropout=0.0, normalize=True)
|
||||
)
|
||||
if include_static_vectors:
|
||||
feature_extractor: Model[List[Doc], Ragged] = chain(
|
||||
|
@ -173,7 +173,7 @@ def MultiHashEmbed(
|
|||
StaticVectors(width, dropout=0.0),
|
||||
),
|
||||
max_out,
|
||||
cast(Model[Ragged, List[Floats2d]], ragged2list()),
|
||||
ragged2list(),
|
||||
)
|
||||
else:
|
||||
model = chain(
|
||||
|
@ -181,7 +181,7 @@ def MultiHashEmbed(
|
|||
cast(Model[List[Ints2d], Ragged], list2ragged()),
|
||||
with_array(concatenate(*embeddings)),
|
||||
max_out,
|
||||
cast(Model[Ragged, List[Floats2d]], ragged2list()),
|
||||
ragged2list(),
|
||||
)
|
||||
return model
|
||||
|
||||
|
@ -232,12 +232,12 @@ def CharacterEmbed(
|
|||
feature_extractor: Model[List[Doc], Ragged] = chain(
|
||||
FeatureExtractor([feature]),
|
||||
cast(Model[List[Ints2d], Ragged], list2ragged()),
|
||||
with_array(HashEmbed(nO=width, nV=rows, column=0, seed=5)), # type: ignore
|
||||
with_array(HashEmbed(nO=width, nV=rows, column=0, seed=5)), # type: ignore[misc]
|
||||
)
|
||||
max_out: Model[Ragged, Ragged]
|
||||
if include_static_vectors:
|
||||
max_out = with_array(
|
||||
Maxout(width, nM * nC + (2 * width), nP=3, normalize=True, dropout=0.0) # type: ignore
|
||||
Maxout(width, nM * nC + (2 * width), nP=3, normalize=True, dropout=0.0)
|
||||
)
|
||||
model = chain(
|
||||
concatenate(
|
||||
|
@ -246,11 +246,11 @@ def CharacterEmbed(
|
|||
StaticVectors(width, dropout=0.0),
|
||||
),
|
||||
max_out,
|
||||
cast(Model[Ragged, List[Floats2d]], ragged2list()),
|
||||
ragged2list(),
|
||||
)
|
||||
else:
|
||||
max_out = with_array(
|
||||
Maxout(width, nM * nC + width, nP=3, normalize=True, dropout=0.0) # type: ignore
|
||||
Maxout(width, nM * nC + width, nP=3, normalize=True, dropout=0.0)
|
||||
)
|
||||
model = chain(
|
||||
concatenate(
|
||||
|
@ -258,7 +258,7 @@ def CharacterEmbed(
|
|||
feature_extractor,
|
||||
),
|
||||
max_out,
|
||||
cast(Model[Ragged, List[Floats2d]], ragged2list()),
|
||||
ragged2list(),
|
||||
)
|
||||
return model
|
||||
|
||||
|
@ -289,10 +289,10 @@ def MaxoutWindowEncoder(
|
|||
normalize=True,
|
||||
),
|
||||
)
|
||||
model = clone(residual(cnn), depth) # type: ignore[arg-type]
|
||||
model = clone(residual(cnn), depth)
|
||||
model.set_dim("nO", width)
|
||||
receptive_field = window_size * depth
|
||||
return with_array(model, pad=receptive_field) # type: ignore[arg-type]
|
||||
return with_array(model, pad=receptive_field)
|
||||
|
||||
|
||||
@registry.architectures("spacy.MishWindowEncoder.v2")
|
||||
|
@ -313,9 +313,9 @@ def MishWindowEncoder(
|
|||
expand_window(window_size=window_size),
|
||||
Mish(nO=width, nI=width * ((window_size * 2) + 1), dropout=0.0, normalize=True),
|
||||
)
|
||||
model = clone(residual(cnn), depth) # type: ignore[arg-type]
|
||||
model = clone(residual(cnn), depth)
|
||||
model.set_dim("nO", width)
|
||||
return with_array(model) # type: ignore[arg-type]
|
||||
return with_array(model)
|
||||
|
||||
|
||||
@registry.architectures("spacy.TorchBiLSTMEncoder.v1")
|
||||
|
|
|
@ -40,17 +40,15 @@ def forward(
|
|||
if not token_count:
|
||||
return _handle_empty(model.ops, model.get_dim("nO"))
|
||||
key_attr: int = model.attrs["key_attr"]
|
||||
keys: Ints1d = model.ops.flatten(
|
||||
cast(Sequence, [doc.to_array(key_attr) for doc in docs])
|
||||
)
|
||||
keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs])
|
||||
vocab: Vocab = docs[0].vocab
|
||||
W = cast(Floats2d, model.ops.as_contig(model.get_param("W")))
|
||||
if vocab.vectors.mode == Mode.default:
|
||||
V = cast(Floats2d, model.ops.asarray(vocab.vectors.data))
|
||||
V = model.ops.asarray(vocab.vectors.data)
|
||||
rows = vocab.vectors.find(keys=keys)
|
||||
V = model.ops.as_contig(V[rows])
|
||||
elif vocab.vectors.mode == Mode.floret:
|
||||
V = cast(Floats2d, vocab.vectors.get_batch(keys))
|
||||
V = vocab.vectors.get_batch(keys)
|
||||
V = model.ops.as_contig(V)
|
||||
else:
|
||||
raise RuntimeError(Errors.E896)
|
||||
|
@ -62,9 +60,7 @@ def forward(
|
|||
# Convert negative indices to 0-vectors
|
||||
# TODO: more options for UNK tokens
|
||||
vectors_data[rows < 0] = 0
|
||||
output = Ragged(
|
||||
vectors_data, model.ops.asarray([len(doc) for doc in docs], dtype="i") # type: ignore
|
||||
)
|
||||
output = Ragged(vectors_data, model.ops.asarray1i([len(doc) for doc in docs]))
|
||||
mask = None
|
||||
if is_train:
|
||||
mask = _get_drop_mask(model.ops, W.shape[0], model.attrs.get("dropout_rate"))
|
||||
|
@ -77,7 +73,9 @@ def forward(
|
|||
model.inc_grad(
|
||||
"W",
|
||||
model.ops.gemm(
|
||||
cast(Floats2d, d_output.data), model.ops.as_contig(V), trans1=True
|
||||
cast(Floats2d, d_output.data),
|
||||
cast(Floats2d, model.ops.as_contig(V)),
|
||||
trans1=True,
|
||||
),
|
||||
)
|
||||
return []
|
||||
|
|
|
@ -138,7 +138,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
|
||||
truths.append(eg_truths)
|
||||
|
||||
d_scores, loss = loss_func(scores, truths) # type: ignore
|
||||
d_scores, loss = loss_func(scores, truths)
|
||||
if self.model.ops.xp.isnan(loss):
|
||||
raise ValueError(Errors.E910.format(name=self.name))
|
||||
|
||||
|
|
|
@ -159,10 +159,8 @@ class EntityRuler(Pipe):
|
|||
self._require_patterns()
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", message="\\[W036")
|
||||
matches = cast(
|
||||
List[Tuple[int, int, int]],
|
||||
list(self.matcher(doc)) + list(self.phrase_matcher(doc)),
|
||||
)
|
||||
matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc))
|
||||
|
||||
final_matches = set(
|
||||
[(m_id, start, end) for m_id, start, end in matches if start != end]
|
||||
)
|
||||
|
|
|
@ -213,15 +213,14 @@ class EntityLinker_v1(TrainablePipe):
|
|||
if kb_id:
|
||||
entity_encoding = self.kb.get_vector(kb_id)
|
||||
entity_encodings.append(entity_encoding)
|
||||
entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32")
|
||||
entity_encodings = self.model.ops.asarray2f(entity_encodings)
|
||||
if sentence_encodings.shape != entity_encodings.shape:
|
||||
err = Errors.E147.format(
|
||||
method="get_loss", msg="gold entities do not match up"
|
||||
)
|
||||
raise RuntimeError(err)
|
||||
# TODO: fix typing issue here
|
||||
gradients = self.distance.get_grad(sentence_encodings, entity_encodings) # type: ignore
|
||||
loss = self.distance.get_loss(sentence_encodings, entity_encodings) # type: ignore
|
||||
gradients = self.distance.get_grad(sentence_encodings, entity_encodings)
|
||||
loss = self.distance.get_loss(sentence_encodings, entity_encodings)
|
||||
loss = loss / len(entity_encodings)
|
||||
return float(loss), gradients
|
||||
|
||||
|
|
|
@ -75,7 +75,7 @@ def build_ngram_suggester(sizes: List[int]) -> Suggester:
|
|||
if spans:
|
||||
assert spans[-1].ndim == 2, spans[-1].shape
|
||||
lengths.append(length)
|
||||
lengths_array = cast(Ints1d, ops.asarray(lengths, dtype="i"))
|
||||
lengths_array = ops.asarray1i(lengths)
|
||||
if len(spans) > 0:
|
||||
output = Ragged(ops.xp.vstack(spans), lengths_array)
|
||||
else:
|
||||
|
|
|
@ -104,7 +104,7 @@ def get_arg_model(
|
|||
sig_args[param.name] = (annotation, default)
|
||||
is_strict = strict and not has_variable
|
||||
sig_args["__config__"] = ArgSchemaConfig if is_strict else ArgSchemaConfigExtra # type: ignore[assignment]
|
||||
return create_model(name, **sig_args) # type: ignore[arg-type, return-value]
|
||||
return create_model(name, **sig_args) # type: ignore[call-overload, arg-type, return-value]
|
||||
|
||||
|
||||
def validate_init_settings(
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import List, Mapping, NoReturn, Union, Dict, Any, Set
|
||||
from typing import List, Mapping, NoReturn, Union, Dict, Any, Set, cast
|
||||
from typing import Optional, Iterable, Callable, Tuple, Type
|
||||
from typing import Iterator, Type, Pattern, Generator, TYPE_CHECKING
|
||||
from types import ModuleType
|
||||
|
@ -294,7 +294,7 @@ def find_matching_language(lang: str) -> Optional[str]:
|
|||
|
||||
# Find out which language modules we have
|
||||
possible_languages = []
|
||||
for modinfo in pkgutil.iter_modules(spacy.lang.__path__): # type: ignore
|
||||
for modinfo in pkgutil.iter_modules(spacy.lang.__path__): # type: ignore[attr-defined]
|
||||
code = modinfo.name
|
||||
if code == "xx":
|
||||
# Temporarily make 'xx' into a valid language code
|
||||
|
@ -391,7 +391,8 @@ def get_module_path(module: ModuleType) -> Path:
|
|||
"""
|
||||
if not hasattr(module, "__module__"):
|
||||
raise ValueError(Errors.E169.format(module=repr(module)))
|
||||
return Path(sys.modules[module.__module__].__file__).parent
|
||||
file_path = Path(cast(os.PathLike, sys.modules[module.__module__].__file__))
|
||||
return file_path.parent
|
||||
|
||||
|
||||
def load_model(
|
||||
|
@ -878,7 +879,7 @@ def get_package_path(name: str) -> Path:
|
|||
# Here we're importing the module just to find it. This is worryingly
|
||||
# indirect, but it's otherwise very difficult to find the package.
|
||||
pkg = importlib.import_module(name)
|
||||
return Path(pkg.__file__).parent
|
||||
return Path(cast(Union[str, os.PathLike], pkg.__file__)).parent
|
||||
|
||||
|
||||
def replace_model_node(model: Model, target: Model, replacement: Model) -> None:
|
||||
|
@ -1675,7 +1676,7 @@ def packages_distributions() -> Dict[str, List[str]]:
|
|||
it's not available in the builtin importlib.metadata.
|
||||
"""
|
||||
pkg_to_dist = defaultdict(list)
|
||||
for dist in importlib_metadata.distributions(): # type: ignore[attr-defined]
|
||||
for dist in importlib_metadata.distributions():
|
||||
for pkg in (dist.read_text("top_level.txt") or "").split():
|
||||
pkg_to_dist[pkg].append(dist.metadata["Name"])
|
||||
return dict(pkg_to_dist)
|
||||
|
|
Loading…
Reference in New Issue
Block a user