Warn in Tagger.begin_training if no lemma tables are available (#4351)

This commit is contained in:
Ines Montani 2019-10-01 15:13:55 +02:00 committed by Matthew Honnibal
parent bc7e7db208
commit 3297a19545
3 changed files with 33 additions and 1 deletions

View File

@ -88,6 +88,13 @@ class Warnings(object):
"loaded. (Shape: {shape})") "loaded. (Shape: {shape})")
W021 = ("Unexpected hash collision in PhraseMatcher. Matches may be " W021 = ("Unexpected hash collision in PhraseMatcher. Matches may be "
"incorrect. Modify PhraseMatcher._terminal_hash to fix.") "incorrect. Modify PhraseMatcher._terminal_hash to fix.")
W022 = ("Training a new part-of-speech tagger using a model with no "
"lemmatization rules or data. This means that the trained model "
"may not be able to lemmatize correctly. If this is intentional "
"or the language you're using doesn't have lemmatization data, "
"you can ignore this warning by setting SPACY_WARNING_IGNORE=W022. "
"If this is surprising, make sure you have the spacy-lookups-data "
"package installed.")
@add_codes @add_codes

View File

@ -30,7 +30,7 @@ from .._ml import build_text_classifier, build_simple_cnn_text_classifier
from .._ml import build_bow_text_classifier, build_nel_encoder from .._ml import build_bow_text_classifier, build_nel_encoder
from .._ml import link_vectors_to_models, zero_init, flatten from .._ml import link_vectors_to_models, zero_init, flatten
from .._ml import masked_language_model, create_default_optimizer from .._ml import masked_language_model, create_default_optimizer
from ..errors import Errors, TempErrors from ..errors import Errors, TempErrors, user_warning, Warnings
from .. import util from .. import util
@ -501,6 +501,9 @@ class Tagger(Pipe):
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, sgd=None, def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, sgd=None,
**kwargs): **kwargs):
lemma_tables = ["lemma_rules", "lemma_index", "lemma_exc", "lemma_lookup"]
if not any(table in self.vocab.lookups for table in lemma_tables):
user_warning(Warnings.W022)
orig_tag_map = dict(self.vocab.morphology.tag_map) orig_tag_map = dict(self.vocab.morphology.tag_map)
new_tag_map = OrderedDict() new_tag_map = OrderedDict()
for raw_text, annots_brackets in get_gold_tuples(): for raw_text, annots_brackets in get_gold_tuples():

View File

@ -0,0 +1,22 @@
# coding: utf8
from __future__ import unicode_literals
import pytest
from spacy.lang.en import English
from spacy.lookups import Lookups
def test_tagger_warns_no_lemma_lookups():
nlp = English()
nlp.vocab.lookups = Lookups()
assert not len(nlp.vocab.lookups)
tagger = nlp.create_pipe("tagger")
with pytest.warns(UserWarning):
tagger.begin_training()
nlp.add_pipe(tagger)
with pytest.warns(UserWarning):
nlp.begin_training()
nlp.vocab.lookups.add_table("lemma_lookup")
with pytest.warns(None) as record:
nlp.begin_training()
assert not record.list