mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Merge pull request #6729 from explosion/chore/tidy-up
This commit is contained in:
commit
330f9818c0
|
@ -384,7 +384,10 @@ def debug_data(
|
||||||
# rare labels in projectivized train
|
# rare labels in projectivized train
|
||||||
rare_projectivized_labels = []
|
rare_projectivized_labels = []
|
||||||
for label in gold_train_data["deps"]:
|
for label in gold_train_data["deps"]:
|
||||||
if gold_train_data["deps"][label] <= DEP_LABEL_THRESHOLD and DELIMITER in label:
|
if (
|
||||||
|
gold_train_data["deps"][label] <= DEP_LABEL_THRESHOLD
|
||||||
|
and DELIMITER in label
|
||||||
|
):
|
||||||
rare_projectivized_labels.append(
|
rare_projectivized_labels.append(
|
||||||
f"{label}: {gold_train_data['deps'][label]}"
|
f"{label}: {gold_train_data['deps'][label]}"
|
||||||
)
|
)
|
||||||
|
|
|
@ -30,7 +30,11 @@ def info_cli(
|
||||||
|
|
||||||
|
|
||||||
def info(
|
def info(
|
||||||
model: Optional[str] = None, *, markdown: bool = False, silent: bool = True, exclude: List[str]
|
model: Optional[str] = None,
|
||||||
|
*,
|
||||||
|
markdown: bool = False,
|
||||||
|
silent: bool = True,
|
||||||
|
exclude: List[str],
|
||||||
) -> Union[str, dict]:
|
) -> Union[str, dict]:
|
||||||
msg = Printer(no_print=silent, pretty=not silent)
|
msg = Printer(no_print=silent, pretty=not silent)
|
||||||
if model:
|
if model:
|
||||||
|
@ -98,7 +102,9 @@ def info_model(model: str, *, silent: bool = True) -> Dict[str, Any]:
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
def get_markdown(data: Dict[str, Any], title: Optional[str] = None, exclude: List[str] = None) -> str:
|
def get_markdown(
|
||||||
|
data: Dict[str, Any], title: Optional[str] = None, exclude: List[str] = None
|
||||||
|
) -> str:
|
||||||
"""Get data in GitHub-flavoured Markdown format for issues etc.
|
"""Get data in GitHub-flavoured Markdown format for issues etc.
|
||||||
|
|
||||||
data (dict or list of tuples): Label/value pairs.
|
data (dict or list of tuples): Label/value pairs.
|
||||||
|
@ -115,7 +121,7 @@ def get_markdown(data: Dict[str, Any], title: Optional[str] = None, exclude: Lis
|
||||||
if isinstance(value, str):
|
if isinstance(value, str):
|
||||||
try:
|
try:
|
||||||
existing_path = Path(value).exists()
|
existing_path = Path(value).exists()
|
||||||
except:
|
except Exception:
|
||||||
# invalid Path, like a URL string
|
# invalid Path, like a URL string
|
||||||
existing_path = False
|
existing_path = False
|
||||||
if existing_path:
|
if existing_path:
|
||||||
|
|
|
@ -36,43 +36,44 @@ _num_words = [
|
||||||
"ትሪሊዮን",
|
"ትሪሊዮን",
|
||||||
"ኳድሪሊዮን",
|
"ኳድሪሊዮን",
|
||||||
"ገጅሊዮን",
|
"ገጅሊዮን",
|
||||||
"ባዝሊዮን"
|
"ባዝሊዮን",
|
||||||
]
|
]
|
||||||
|
|
||||||
_ordinal_words = [
|
_ordinal_words = [
|
||||||
"አንደኛ",
|
"አንደኛ",
|
||||||
"ሁለተኛ",
|
"ሁለተኛ",
|
||||||
"ሶስተኛ",
|
"ሶስተኛ",
|
||||||
"አራተኛ",
|
"አራተኛ",
|
||||||
"አምስተኛ",
|
"አምስተኛ",
|
||||||
"ስድስተኛ",
|
"ስድስተኛ",
|
||||||
"ሰባተኛ",
|
"ሰባተኛ",
|
||||||
"ስምንተኛ",
|
"ስምንተኛ",
|
||||||
"ዘጠነኛ",
|
"ዘጠነኛ",
|
||||||
"አስረኛ",
|
"አስረኛ",
|
||||||
"አስራ አንደኛ",
|
"አስራ አንደኛ",
|
||||||
"አስራ ሁለተኛ",
|
"አስራ ሁለተኛ",
|
||||||
"አስራ ሶስተኛ",
|
"አስራ ሶስተኛ",
|
||||||
"አስራ አራተኛ",
|
"አስራ አራተኛ",
|
||||||
"አስራ አምስተኛ",
|
"አስራ አምስተኛ",
|
||||||
"አስራ ስድስተኛ",
|
"አስራ ስድስተኛ",
|
||||||
"አስራ ሰባተኛ",
|
"አስራ ሰባተኛ",
|
||||||
"አስራ ስምንተኛ",
|
"አስራ ስምንተኛ",
|
||||||
"አስራ ዘጠነኛ",
|
"አስራ ዘጠነኛ",
|
||||||
"ሃያኛ",
|
"ሃያኛ",
|
||||||
"ሰላሳኛ"
|
"ሰላሳኛ" "አርባኛ",
|
||||||
"አርባኛ",
|
"አምሳኛ",
|
||||||
"አምሳኛ",
|
"ስድሳኛ",
|
||||||
"ስድሳኛ",
|
"ሰባኛ",
|
||||||
"ሰባኛ",
|
"ሰማንያኛ",
|
||||||
"ሰማንያኛ",
|
"ዘጠናኛ",
|
||||||
"ዘጠናኛ",
|
"መቶኛ",
|
||||||
"መቶኛ",
|
"ሺኛ",
|
||||||
"ሺኛ",
|
"ሚሊዮንኛ",
|
||||||
"ሚሊዮንኛ",
|
"ቢሊዮንኛ",
|
||||||
"ቢሊዮንኛ",
|
"ትሪሊዮንኛ",
|
||||||
"ትሪሊዮንኛ"
|
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def like_num(text):
|
def like_num(text):
|
||||||
if text.startswith(("+", "-", "±", "~")):
|
if text.startswith(("+", "-", "±", "~")):
|
||||||
text = text[1:]
|
text = text[1:]
|
||||||
|
|
|
@ -7,7 +7,6 @@ _exc = {}
|
||||||
for exc_data in [
|
for exc_data in [
|
||||||
{ORTH: "ት/ቤት"},
|
{ORTH: "ት/ቤት"},
|
||||||
{ORTH: "ወ/ሮ", NORM: "ወይዘሮ"},
|
{ORTH: "ወ/ሮ", NORM: "ወይዘሮ"},
|
||||||
|
|
||||||
]:
|
]:
|
||||||
_exc[exc_data[ORTH]] = [exc_data]
|
_exc[exc_data[ORTH]] = [exc_data]
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
from typing import Union, Iterator, Optional, List, Tuple
|
from typing import Union, Iterator
|
||||||
|
|
||||||
from ...symbols import NOUN, PROPN, PRON, VERB, AUX
|
from ...symbols import NOUN, PROPN, PRON, VERB, AUX
|
||||||
from ...errors import Errors
|
from ...errors import Errors
|
||||||
|
|
|
@ -36,43 +36,44 @@ _num_words = [
|
||||||
"ትሪልዮን",
|
"ትሪልዮን",
|
||||||
"ኳድሪልዮን",
|
"ኳድሪልዮን",
|
||||||
"ገጅልዮን",
|
"ገጅልዮን",
|
||||||
"ባዝልዮን"
|
"ባዝልዮን",
|
||||||
]
|
]
|
||||||
|
|
||||||
_ordinal_words = [
|
_ordinal_words = [
|
||||||
"ቀዳማይ",
|
"ቀዳማይ",
|
||||||
"ካልኣይ",
|
"ካልኣይ",
|
||||||
"ሳልሳይ",
|
"ሳልሳይ",
|
||||||
"ራብኣይ",
|
"ራብኣይ",
|
||||||
"ሓምሻይ",
|
"ሓምሻይ",
|
||||||
"ሻድሻይ",
|
"ሻድሻይ",
|
||||||
"ሻውዓይ",
|
"ሻውዓይ",
|
||||||
"ሻምናይ",
|
"ሻምናይ",
|
||||||
"ዘጠነኛ",
|
"ዘጠነኛ",
|
||||||
"አስረኛ",
|
"አስረኛ",
|
||||||
"ኣሰርተ አንደኛ",
|
"ኣሰርተ አንደኛ",
|
||||||
"ኣሰርተ ሁለተኛ",
|
"ኣሰርተ ሁለተኛ",
|
||||||
"ኣሰርተ ሶስተኛ",
|
"ኣሰርተ ሶስተኛ",
|
||||||
"ኣሰርተ አራተኛ",
|
"ኣሰርተ አራተኛ",
|
||||||
"ኣሰርተ አምስተኛ",
|
"ኣሰርተ አምስተኛ",
|
||||||
"ኣሰርተ ስድስተኛ",
|
"ኣሰርተ ስድስተኛ",
|
||||||
"ኣሰርተ ሰባተኛ",
|
"ኣሰርተ ሰባተኛ",
|
||||||
"ኣሰርተ ስምንተኛ",
|
"ኣሰርተ ስምንተኛ",
|
||||||
"ኣሰርተ ዘጠነኛ",
|
"ኣሰርተ ዘጠነኛ",
|
||||||
"ሃያኛ",
|
"ሃያኛ",
|
||||||
"ሰላሳኛ"
|
"ሰላሳኛ" "አርባኛ",
|
||||||
"አርባኛ",
|
"አምሳኛ",
|
||||||
"አምሳኛ",
|
"ስድሳኛ",
|
||||||
"ስድሳኛ",
|
"ሰባኛ",
|
||||||
"ሰባኛ",
|
"ሰማንያኛ",
|
||||||
"ሰማንያኛ",
|
"ዘጠናኛ",
|
||||||
"ዘጠናኛ",
|
"መቶኛ",
|
||||||
"መቶኛ",
|
"ሺኛ",
|
||||||
"ሺኛ",
|
"ሚሊዮንኛ",
|
||||||
"ሚሊዮንኛ",
|
"ቢሊዮንኛ",
|
||||||
"ቢሊዮንኛ",
|
"ትሪሊዮንኛ",
|
||||||
"ትሪሊዮንኛ"
|
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def like_num(text):
|
def like_num(text):
|
||||||
if text.startswith(("+", "-", "±", "~")):
|
if text.startswith(("+", "-", "±", "~")):
|
||||||
text = text[1:]
|
text = text[1:]
|
||||||
|
|
|
@ -8,7 +8,6 @@ for exc_data in [
|
||||||
{ORTH: "ት/ቤት"},
|
{ORTH: "ት/ቤት"},
|
||||||
{ORTH: "ወ/ሮ", NORM: "ወይዘሮ"},
|
{ORTH: "ወ/ሮ", NORM: "ወይዘሮ"},
|
||||||
{ORTH: "ወ/ሪ", NORM: "ወይዘሪት"},
|
{ORTH: "ወ/ሪ", NORM: "ወይዘሪት"},
|
||||||
|
|
||||||
]:
|
]:
|
||||||
_exc[exc_data[ORTH]] = [exc_data]
|
_exc[exc_data[ORTH]] = [exc_data]
|
||||||
|
|
||||||
|
|
|
@ -71,17 +71,19 @@ def build_text_classifier_v2(
|
||||||
exclusive_classes = not linear_model.attrs["multi_label"]
|
exclusive_classes = not linear_model.attrs["multi_label"]
|
||||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||||
width = tok2vec.maybe_get_dim("nO")
|
width = tok2vec.maybe_get_dim("nO")
|
||||||
attention_layer = ParametricAttention(width) # TODO: benchmark performance difference of this layer
|
attention_layer = ParametricAttention(
|
||||||
|
width
|
||||||
|
) # TODO: benchmark performance difference of this layer
|
||||||
maxout_layer = Maxout(nO=width, nI=width)
|
maxout_layer = Maxout(nO=width, nI=width)
|
||||||
linear_layer = Linear(nO=nO, nI=width)
|
linear_layer = Linear(nO=nO, nI=width)
|
||||||
cnn_model = (
|
cnn_model = (
|
||||||
tok2vec
|
tok2vec
|
||||||
>> list2ragged()
|
>> list2ragged()
|
||||||
>> attention_layer
|
>> attention_layer
|
||||||
>> reduce_sum()
|
>> reduce_sum()
|
||||||
>> residual(maxout_layer)
|
>> residual(maxout_layer)
|
||||||
>> linear_layer
|
>> linear_layer
|
||||||
>> Dropout(0.0)
|
>> Dropout(0.0)
|
||||||
)
|
)
|
||||||
|
|
||||||
nO_double = nO * 2 if nO else None
|
nO_double = nO * 2 if nO else None
|
||||||
|
|
|
@ -89,7 +89,7 @@ def build_hash_embed_cnn_tok2vec(
|
||||||
|
|
||||||
# TODO: archive
|
# TODO: archive
|
||||||
@registry.architectures.register("spacy.Tok2Vec.v1")
|
@registry.architectures.register("spacy.Tok2Vec.v1")
|
||||||
def build_Tok2Vec_model(
|
def _build_Tok2Vec_model(
|
||||||
embed: Model[List[Doc], List[Floats2d]],
|
embed: Model[List[Doc], List[Floats2d]],
|
||||||
encode: Model[List[Floats2d], List[Floats2d]],
|
encode: Model[List[Floats2d], List[Floats2d]],
|
||||||
) -> Model[List[Doc], List[Floats2d]]:
|
) -> Model[List[Doc], List[Floats2d]]:
|
||||||
|
@ -109,7 +109,6 @@ def build_Tok2Vec_model(
|
||||||
return tok2vec
|
return tok2vec
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@registry.architectures.register("spacy.Tok2Vec.v2")
|
@registry.architectures.register("spacy.Tok2Vec.v2")
|
||||||
def build_Tok2Vec_model(
|
def build_Tok2Vec_model(
|
||||||
embed: Model[List[Doc], List[Floats2d]],
|
embed: Model[List[Doc], List[Floats2d]],
|
||||||
|
@ -130,7 +129,6 @@ def build_Tok2Vec_model(
|
||||||
return tok2vec
|
return tok2vec
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@registry.architectures.register("spacy.MultiHashEmbed.v1")
|
@registry.architectures.register("spacy.MultiHashEmbed.v1")
|
||||||
def MultiHashEmbed(
|
def MultiHashEmbed(
|
||||||
width: int,
|
width: int,
|
||||||
|
@ -280,7 +278,7 @@ def CharacterEmbed(
|
||||||
|
|
||||||
# TODO: archive
|
# TODO: archive
|
||||||
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
|
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
|
||||||
def MaxoutWindowEncoder(
|
def _MaxoutWindowEncoder(
|
||||||
width: int, window_size: int, maxout_pieces: int, depth: int
|
width: int, window_size: int, maxout_pieces: int, depth: int
|
||||||
) -> Model[List[Floats2d], List[Floats2d]]:
|
) -> Model[List[Floats2d], List[Floats2d]]:
|
||||||
"""Encode context using convolutions with maxout activation, layer
|
"""Encode context using convolutions with maxout activation, layer
|
||||||
|
@ -310,6 +308,7 @@ def MaxoutWindowEncoder(
|
||||||
model.attrs["receptive_field"] = window_size * depth
|
model.attrs["receptive_field"] = window_size * depth
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
@registry.architectures.register("spacy.MaxoutWindowEncoder.v2")
|
@registry.architectures.register("spacy.MaxoutWindowEncoder.v2")
|
||||||
def MaxoutWindowEncoder(
|
def MaxoutWindowEncoder(
|
||||||
width: int, window_size: int, maxout_pieces: int, depth: int
|
width: int, window_size: int, maxout_pieces: int, depth: int
|
||||||
|
@ -344,7 +343,7 @@ def MaxoutWindowEncoder(
|
||||||
|
|
||||||
# TODO: archive
|
# TODO: archive
|
||||||
@registry.architectures.register("spacy.MishWindowEncoder.v1")
|
@registry.architectures.register("spacy.MishWindowEncoder.v1")
|
||||||
def MishWindowEncoder(
|
def _MishWindowEncoder(
|
||||||
width: int, window_size: int, depth: int
|
width: int, window_size: int, depth: int
|
||||||
) -> Model[List[Floats2d], List[Floats2d]]:
|
) -> Model[List[Floats2d], List[Floats2d]]:
|
||||||
"""Encode context using convolutions with mish activation, layer
|
"""Encode context using convolutions with mish activation, layer
|
||||||
|
|
|
@ -388,7 +388,6 @@ class TextCategorizer(TrainablePipe):
|
||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def _validate_categories(self, examples: List[Example]):
|
def _validate_categories(self, examples: List[Example]):
|
||||||
"""Check whether the provided examples all have single-label cats annotations."""
|
"""Check whether the provided examples all have single-label cats annotations."""
|
||||||
for ex in examples:
|
for ex in examples:
|
||||||
|
|
|
@ -187,5 +187,5 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
||||||
|
|
||||||
def _validate_categories(self, examples: List[Example]):
|
def _validate_categories(self, examples: List[Example]):
|
||||||
"""This component allows any type of single- or multi-label annotations.
|
"""This component allows any type of single- or multi-label annotations.
|
||||||
This method overwrites the more strict one from 'textcat'. """
|
This method overwrites the more strict one from 'textcat'."""
|
||||||
pass
|
pass
|
||||||
|
|
|
@ -28,10 +28,12 @@ def pytest_runtest_setup(item):
|
||||||
def tokenizer():
|
def tokenizer():
|
||||||
return get_lang_class("xx")().tokenizer
|
return get_lang_class("xx")().tokenizer
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
@pytest.fixture(scope="session")
|
||||||
def am_tokenizer():
|
def am_tokenizer():
|
||||||
return get_lang_class("am")().tokenizer
|
return get_lang_class("am")().tokenizer
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
@pytest.fixture(scope="session")
|
||||||
def ar_tokenizer():
|
def ar_tokenizer():
|
||||||
return get_lang_class("ar")().tokenizer
|
return get_lang_class("ar")().tokenizer
|
||||||
|
@ -247,10 +249,12 @@ def th_tokenizer():
|
||||||
pytest.importorskip("pythainlp")
|
pytest.importorskip("pythainlp")
|
||||||
return get_lang_class("th")().tokenizer
|
return get_lang_class("th")().tokenizer
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
@pytest.fixture(scope="session")
|
||||||
def ti_tokenizer():
|
def ti_tokenizer():
|
||||||
return get_lang_class("ti")().tokenizer
|
return get_lang_class("ti")().tokenizer
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
@pytest.fixture(scope="session")
|
||||||
def tr_tokenizer():
|
def tr_tokenizer():
|
||||||
return get_lang_class("tr")().tokenizer
|
return get_lang_class("tr")().tokenizer
|
||||||
|
|
|
@ -17,17 +17,8 @@ def test_graph_edges_and_nodes():
|
||||||
assert graph.get_node((0,)) == node1
|
assert graph.get_node((0,)) == node1
|
||||||
node2 = graph.add_node((1, 3))
|
node2 = graph.add_node((1, 3))
|
||||||
assert list(node2) == [1, 3]
|
assert list(node2) == [1, 3]
|
||||||
graph.add_edge(
|
graph.add_edge(node1, node2, label="one", weight=-10.5)
|
||||||
node1,
|
assert graph.has_edge(node1, node2, label="one")
|
||||||
node2,
|
|
||||||
label="one",
|
|
||||||
weight=-10.5
|
|
||||||
)
|
|
||||||
assert graph.has_edge(
|
|
||||||
node1,
|
|
||||||
node2,
|
|
||||||
label="one"
|
|
||||||
)
|
|
||||||
assert node1.heads() == []
|
assert node1.heads() == []
|
||||||
assert [tuple(h) for h in node2.heads()] == [(0,)]
|
assert [tuple(h) for h in node2.heads()] == [(0,)]
|
||||||
assert [tuple(t) for t in node1.tails()] == [(1, 3)]
|
assert [tuple(t) for t in node1.tails()] == [(1, 3)]
|
||||||
|
@ -42,7 +33,7 @@ def test_graph_walk():
|
||||||
nodes=[(0,), (1,), (2,), (3,)],
|
nodes=[(0,), (1,), (2,), (3,)],
|
||||||
edges=[(0, 1), (0, 2), (0, 3), (3, 0)],
|
edges=[(0, 1), (0, 2), (0, 3), (3, 0)],
|
||||||
labels=None,
|
labels=None,
|
||||||
weights=None
|
weights=None,
|
||||||
)
|
)
|
||||||
node0, node1, node2, node3 = list(graph.nodes)
|
node0, node1, node2, node3 = list(graph.nodes)
|
||||||
assert [tuple(h) for h in node0.heads()] == [(3,)]
|
assert [tuple(h) for h in node0.heads()] == [(3,)]
|
||||||
|
|
|
@ -255,8 +255,8 @@ def test_token_api_non_conjuncts(en_vocab):
|
||||||
|
|
||||||
def test_missing_head_dep(en_vocab):
|
def test_missing_head_dep(en_vocab):
|
||||||
""" Check that the Doc constructor and Example.from_dict parse missing information the same"""
|
""" Check that the Doc constructor and Example.from_dict parse missing information the same"""
|
||||||
heads = [1, 1, 1, 1, 2, None] # element 5 is missing
|
heads = [1, 1, 1, 1, 2, None] # element 5 is missing
|
||||||
deps = ["", "ROOT", "dobj", "cc", "conj", None] # element 0 and 5 are missing
|
deps = ["", "ROOT", "dobj", "cc", "conj", None] # element 0 and 5 are missing
|
||||||
words = ["I", "like", "London", "and", "Berlin", "."]
|
words = ["I", "like", "London", "and", "Berlin", "."]
|
||||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||||
pred_has_heads = [t.has_head() for t in doc]
|
pred_has_heads = [t.has_head() for t in doc]
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
import pytest
|
import pytest
|
||||||
from spacy.lang.am.lex_attrs import like_num
|
|
||||||
|
|
||||||
|
|
||||||
def test_am_tokenizer_handles_long_text(am_tokenizer):
|
def test_am_tokenizer_handles_long_text(am_tokenizer):
|
||||||
|
|
|
@ -121,9 +121,7 @@ def test_en_tokenizer_norm_exceptions(en_tokenizer, text, norms):
|
||||||
assert [token.norm_ for token in tokens] == norms
|
assert [token.norm_ for token in tokens] == norms
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize("text,norm", [("Jan.", "January"), ("'cuz", "because")])
|
||||||
"text,norm", [("Jan.", "January"), ("'cuz", "because")]
|
|
||||||
)
|
|
||||||
def test_en_lex_attrs_norm_exceptions(en_tokenizer, text, norm):
|
def test_en_lex_attrs_norm_exceptions(en_tokenizer, text, norm):
|
||||||
tokens = en_tokenizer(text)
|
tokens = en_tokenizer(text)
|
||||||
assert tokens[0].norm_ == norm
|
assert tokens[0].norm_ == norm
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
import pytest
|
import pytest
|
||||||
from spacy.lang.ti.lex_attrs import like_num
|
|
||||||
|
|
||||||
|
|
||||||
def test_ti_tokenizer_handles_long_text(ti_tokenizer):
|
def test_ti_tokenizer_handles_long_text(ti_tokenizer):
|
||||||
|
|
|
@ -389,7 +389,7 @@ def test_beam_ner_scores():
|
||||||
|
|
||||||
for j in range(len(doc)):
|
for j in range(len(doc)):
|
||||||
for label in ner.labels:
|
for label in ner.labels:
|
||||||
score = entity_scores[(j, j+1, label)]
|
score = entity_scores[(j, j + 1, label)]
|
||||||
eps = 0.00001
|
eps = 0.00001
|
||||||
assert 0 - eps <= score <= 1 + eps
|
assert 0 - eps <= score <= 1 + eps
|
||||||
|
|
||||||
|
|
|
@ -146,12 +146,12 @@ def test_no_resize(name):
|
||||||
|
|
||||||
def test_error_with_multi_labels():
|
def test_error_with_multi_labels():
|
||||||
nlp = Language()
|
nlp = Language()
|
||||||
textcat = nlp.add_pipe("textcat")
|
nlp.add_pipe("textcat")
|
||||||
train_examples = []
|
train_examples = []
|
||||||
for text, annotations in TRAIN_DATA_MULTI_LABEL:
|
for text, annotations in TRAIN_DATA_MULTI_LABEL:
|
||||||
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
nlp.initialize(get_examples=lambda: train_examples)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize(
|
||||||
|
@ -226,7 +226,8 @@ def test_overfitting_IO():
|
||||||
assert_equal(batch_cats_1, no_batch_cats)
|
assert_equal(batch_cats_1, no_batch_cats)
|
||||||
|
|
||||||
|
|
||||||
def test_overfitting_IO_multi():
|
@pytest.mark.skip(reason="TODO: Can this be removed?")
|
||||||
|
def test_overfitting_IO_multi_old():
|
||||||
# Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
|
# Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
|
||||||
fix_random_seed(0)
|
fix_random_seed(0)
|
||||||
nlp = English()
|
nlp = English()
|
||||||
|
@ -362,7 +363,9 @@ def test_positive_class():
|
||||||
textcat_multilabel = nlp.add_pipe("textcat_multilabel")
|
textcat_multilabel = nlp.add_pipe("textcat_multilabel")
|
||||||
get_examples = make_get_examples_multi_label(nlp)
|
get_examples = make_get_examples_multi_label(nlp)
|
||||||
with pytest.raises(TypeError):
|
with pytest.raises(TypeError):
|
||||||
textcat_multilabel.initialize(get_examples, labels=["POS", "NEG"], positive_label="POS")
|
textcat_multilabel.initialize(
|
||||||
|
get_examples, labels=["POS", "NEG"], positive_label="POS"
|
||||||
|
)
|
||||||
textcat_multilabel.initialize(get_examples, labels=["FICTION", "DRAMA"])
|
textcat_multilabel.initialize(get_examples, labels=["FICTION", "DRAMA"])
|
||||||
assert textcat_multilabel.labels == ("FICTION", "DRAMA")
|
assert textcat_multilabel.labels == ("FICTION", "DRAMA")
|
||||||
assert "positive_label" not in textcat_multilabel.cfg
|
assert "positive_label" not in textcat_multilabel.cfg
|
||||||
|
@ -381,7 +384,9 @@ def test_positive_class_not_binary():
|
||||||
textcat = nlp.add_pipe("textcat")
|
textcat = nlp.add_pipe("textcat")
|
||||||
get_examples = make_get_examples_multi_label(nlp)
|
get_examples = make_get_examples_multi_label(nlp)
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
textcat.initialize(get_examples, labels=["SOME", "THING", "POS"], positive_label="POS")
|
textcat.initialize(
|
||||||
|
get_examples, labels=["SOME", "THING", "POS"], positive_label="POS"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def test_textcat_evaluation():
|
def test_textcat_evaluation():
|
||||||
|
|
|
@ -13,7 +13,6 @@ from spacy.lang.el import Greek
|
||||||
from spacy.language import Language
|
from spacy.language import Language
|
||||||
import spacy
|
import spacy
|
||||||
from thinc.api import compounding
|
from thinc.api import compounding
|
||||||
from collections import defaultdict
|
|
||||||
|
|
||||||
from ..util import make_tempdir
|
from ..util import make_tempdir
|
||||||
|
|
||||||
|
@ -304,16 +303,14 @@ def test_issue4313():
|
||||||
doc = nlp("What do you think about Apple ?")
|
doc = nlp("What do you think about Apple ?")
|
||||||
assert len(ner.labels) == 1
|
assert len(ner.labels) == 1
|
||||||
assert "SOME_LABEL" in ner.labels
|
assert "SOME_LABEL" in ner.labels
|
||||||
ner.add_label("MY_ORG") # TODO: not sure if we want this to be necessary...
|
ner.add_label("MY_ORG") # TODO: not sure if we want this to be necessary...
|
||||||
apple_ent = Span(doc, 5, 6, label="MY_ORG")
|
apple_ent = Span(doc, 5, 6, label="MY_ORG")
|
||||||
doc.ents = list(doc.ents) + [apple_ent]
|
doc.ents = list(doc.ents) + [apple_ent]
|
||||||
|
|
||||||
# ensure the beam_parse still works with the new label
|
# ensure the beam_parse still works with the new label
|
||||||
docs = [doc]
|
docs = [doc]
|
||||||
ner = nlp.get_pipe("beam_ner")
|
ner = nlp.get_pipe("beam_ner")
|
||||||
beams = ner.beam_parse(
|
ner.beam_parse(docs, drop=0.0, beam_width=beam_width, beam_density=beam_density)
|
||||||
docs, drop=0.0, beam_width=beam_width, beam_density=beam_density
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def test_issue4348():
|
def test_issue4348():
|
||||||
|
|
|
@ -251,7 +251,9 @@ def test_language_from_config_before_after_init():
|
||||||
nlp.initialize()
|
nlp.initialize()
|
||||||
assert nlp.meta["before_init"] == "before"
|
assert nlp.meta["before_init"] == "before"
|
||||||
assert nlp.meta["after_init"] == "after"
|
assert nlp.meta["after_init"] == "after"
|
||||||
assert all([ran_before, ran_after, ran_after_pipeline, ran_before_init, ran_after_init])
|
assert all(
|
||||||
|
[ran_before, ran_after, ran_after_pipeline, ran_before_init, ran_after_init]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def test_language_from_config_before_after_init_invalid():
|
def test_language_from_config_before_after_init_invalid():
|
||||||
|
|
|
@ -166,19 +166,11 @@ def test_Example_from_dict_with_entities(annots):
|
||||||
vocab = Vocab()
|
vocab = Vocab()
|
||||||
predicted = Doc(vocab, words=annots["words"])
|
predicted = Doc(vocab, words=annots["words"])
|
||||||
example = Example.from_dict(predicted, annots)
|
example = Example.from_dict(predicted, annots)
|
||||||
|
|
||||||
assert len(list(example.reference.ents)) == 2
|
assert len(list(example.reference.ents)) == 2
|
||||||
assert [example.reference[i].ent_iob_ for i in range(7)] == [
|
# fmt: off
|
||||||
"O",
|
assert [example.reference[i].ent_iob_ for i in range(7)] == ["O", "O", "B", "I", "O", "B", "O"]
|
||||||
"O",
|
|
||||||
"B",
|
|
||||||
"I",
|
|
||||||
"O",
|
|
||||||
"B",
|
|
||||||
"O",
|
|
||||||
]
|
|
||||||
assert example.get_aligned("ENT_IOB") == [2, 2, 3, 1, 2, 3, 2]
|
assert example.get_aligned("ENT_IOB") == [2, 2, 3, 1, 2, 3, 2]
|
||||||
|
# fmt: on
|
||||||
assert example.reference[2].ent_type_ == "LOC"
|
assert example.reference[2].ent_type_ == "LOC"
|
||||||
assert example.reference[3].ent_type_ == "LOC"
|
assert example.reference[3].ent_type_ == "LOC"
|
||||||
assert example.reference[5].ent_type_ == "LOC"
|
assert example.reference[5].ent_type_ == "LOC"
|
||||||
|
@ -299,7 +291,8 @@ def test_Example_missing_heads():
|
||||||
assert parsed_heads[2] == heads[2]
|
assert parsed_heads[2] == heads[2]
|
||||||
assert parsed_heads[4] == heads[4]
|
assert parsed_heads[4] == heads[4]
|
||||||
assert parsed_heads[5] == heads[5]
|
assert parsed_heads[5] == heads[5]
|
||||||
assert [t.has_head() for t in example.reference] == [True, True, True, False, True, True]
|
expected = [True, True, True, False, True, True]
|
||||||
|
assert [t.has_head() for t in example.reference] == expected
|
||||||
# Ensure that the missing head doesn't create an artificial new sentence start
|
# Ensure that the missing head doesn't create an artificial new sentence start
|
||||||
assert example.get_aligned_sent_starts() == [True, False, False, False, False, False]
|
expected = [True, False, False, False, False, False]
|
||||||
|
assert example.get_aligned_sent_starts() == expected
|
||||||
|
|
Loading…
Reference in New Issue
Block a user