mirror of
https://github.com/explosion/spaCy.git
synced 2025-05-29 18:23:06 +03:00
Extend existing tests to spancat_exclusive
In this commit, I extended the existing tests for spancat to include spancat_exclusive. I parametrized the test functions with 'name' (similar var name with textcat and textcat_multilabel) for each applicable test. TODO: Add overfitting tests for spancat_exclusive
This commit is contained in:
parent
9a35b24b48
commit
3315540896
|
@ -41,38 +41,42 @@ def make_examples(nlp, data=TRAIN_DATA):
|
|||
return train_examples
|
||||
|
||||
|
||||
def test_no_label():
|
||||
@pytest.mark.parametrize("name", ["spancat", "spancat_exclusive"])
|
||||
def test_no_label(name):
|
||||
nlp = Language()
|
||||
nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
||||
nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
||||
with pytest.raises(ValueError):
|
||||
nlp.initialize()
|
||||
|
||||
|
||||
def test_no_resize():
|
||||
@pytest.mark.parametrize("name", ["spancat", "spancat_exclusive"])
|
||||
def test_no_resize(name):
|
||||
nlp = Language()
|
||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
||||
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
||||
spancat.add_label("Thing")
|
||||
spancat.add_label("Phrase")
|
||||
assert spancat.labels == ("Thing", "Phrase")
|
||||
nlp.initialize()
|
||||
assert spancat.model.get_dim("nO") == 2
|
||||
assert spancat.model.get_dim("nO") == spancat._n_labels
|
||||
# this throws an error because the spancat can't be resized after initialization
|
||||
with pytest.raises(ValueError):
|
||||
spancat.add_label("Stuff")
|
||||
|
||||
|
||||
def test_implicit_labels():
|
||||
@pytest.mark.parametrize("name", ["spancat", "spancat_exclusive"])
|
||||
def test_implicit_labels(name):
|
||||
nlp = Language()
|
||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
||||
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
||||
assert len(spancat.labels) == 0
|
||||
train_examples = make_examples(nlp)
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
assert spancat.labels == ("PERSON", "LOC")
|
||||
|
||||
|
||||
def test_explicit_labels():
|
||||
@pytest.mark.parametrize("name", ["spancat", "spancat_exclusive"])
|
||||
def test_explicit_labels(name):
|
||||
nlp = Language()
|
||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
||||
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
||||
assert len(spancat.labels) == 0
|
||||
spancat.add_label("PERSON")
|
||||
spancat.add_label("LOC")
|
||||
|
@ -371,7 +375,8 @@ def test_overfitting_IO_overlapping():
|
|||
assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"}
|
||||
|
||||
|
||||
def test_zero_suggestions():
|
||||
@pytest.mark.parametrize("name", ["spancat", "spancat_exclusive"])
|
||||
def test_zero_suggestions(name):
|
||||
# Test with a suggester that returns 0 suggestions
|
||||
|
||||
@registry.misc("test_zero_suggester")
|
||||
|
@ -388,20 +393,21 @@ def test_zero_suggestions():
|
|||
fix_random_seed(0)
|
||||
nlp = English()
|
||||
spancat = nlp.add_pipe(
|
||||
"spancat",
|
||||
name,
|
||||
config={"suggester": {"@misc": "test_zero_suggester"}, "spans_key": SPAN_KEY},
|
||||
)
|
||||
train_examples = make_examples(nlp)
|
||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||
assert spancat.model.get_dim("nO") == 2
|
||||
assert spancat.model.get_dim("nO") == spancat._n_labels
|
||||
assert set(spancat.labels) == {"LOC", "PERSON"}
|
||||
|
||||
nlp.update(train_examples, sgd=optimizer)
|
||||
|
||||
|
||||
def test_set_candidates():
|
||||
@pytest.mark.parametrize("name", ["spancat", "spancat_exclusive"])
|
||||
def test_set_candidates(name):
|
||||
nlp = Language()
|
||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
||||
spancat = nlp.add_pipe(name, config={"spans_key": SPAN_KEY})
|
||||
train_examples = make_examples(nlp)
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
texts = [
|
||||
|
|
Loading…
Reference in New Issue
Block a user