mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	edits and updates to implementing REL component docs
This commit is contained in:
		
							parent
							
								
									4a3e611abc
								
							
						
					
					
						commit
						331ec83493
					
				| 
						 | 
					@ -624,9 +624,9 @@ with an appropriate backpropagation callback. We also define an
 | 
				
			||||||
[initialization method](https://thinc.ai/docs/usage-models#weights-layers-init)
 | 
					[initialization method](https://thinc.ai/docs/usage-models#weights-layers-init)
 | 
				
			||||||
that ensures that the layer is properly set up for training.
 | 
					that ensures that the layer is properly set up for training.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
We omit some of the implementation details here, and refer to the spaCy project
 | 
					We omit some of the implementation details here, and refer to the
 | 
				
			||||||
that has the full implementation
 | 
					[spaCy project](https://github.com/explosion/projects/tree/v3/tutorials/rel_component)
 | 
				
			||||||
[here](https://github.com/explosion/projects/tree/v3/tutorials/rel_component).
 | 
					that has the full implementation.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> #### config.cfg (excerpt)
 | 
					> #### config.cfg (excerpt)
 | 
				
			||||||
>
 | 
					>
 | 
				
			||||||
| 
						 | 
					@ -636,13 +636,13 @@ that has the full implementation
 | 
				
			||||||
>
 | 
					>
 | 
				
			||||||
> [model.create_instance_tensor.tok2vec]
 | 
					> [model.create_instance_tensor.tok2vec]
 | 
				
			||||||
> @architectures = "spacy.HashEmbedCNN.v1"
 | 
					> @architectures = "spacy.HashEmbedCNN.v1"
 | 
				
			||||||
> ...
 | 
					> # ...
 | 
				
			||||||
>
 | 
					>
 | 
				
			||||||
> [model.create_instance_tensor.pooling]
 | 
					> [model.create_instance_tensor.pooling]
 | 
				
			||||||
> @layers = "reduce_mean.v1"
 | 
					> @layers = "reduce_mean.v1"
 | 
				
			||||||
>
 | 
					>
 | 
				
			||||||
> [model.create_instance_tensor.get_instances]
 | 
					> [model.create_instance_tensor.get_instances]
 | 
				
			||||||
> ...
 | 
					> # ...
 | 
				
			||||||
> `
 | 
					> `
 | 
				
			||||||
> ```
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -658,10 +658,10 @@ def create_tensors(
 | 
				
			||||||
    return Model(
 | 
					    return Model(
 | 
				
			||||||
        "instance_tensors",
 | 
					        "instance_tensors",
 | 
				
			||||||
        instance_forward,
 | 
					        instance_forward,
 | 
				
			||||||
 | 
					        init=instance_init,
 | 
				
			||||||
        layers=[tok2vec, pooling],
 | 
					        layers=[tok2vec, pooling],
 | 
				
			||||||
        refs={"tok2vec": tok2vec, "pooling": pooling},
 | 
					        refs={"tok2vec": tok2vec, "pooling": pooling},
 | 
				
			||||||
        attrs={"get_instances": get_instances},
 | 
					        attrs={"get_instances": get_instances},
 | 
				
			||||||
        init=instance_init,
 | 
					 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -671,9 +671,11 @@ def instance_forward(
 | 
				
			||||||
    docs: List[Doc],
 | 
					    docs: List[Doc],
 | 
				
			||||||
    is_train: bool,
 | 
					    is_train: bool,
 | 
				
			||||||
) -> Tuple[Floats2d, Callable]:
 | 
					) -> Tuple[Floats2d, Callable]:
 | 
				
			||||||
    # ...
 | 
					 | 
				
			||||||
    tok2vec = model.get_ref("tok2vec")
 | 
					    tok2vec = model.get_ref("tok2vec")
 | 
				
			||||||
    tokvecs, bp_tokvecs = tok2vec(docs, is_train)
 | 
					    tokvecs, bp_tokvecs = tok2vec(docs, is_train)
 | 
				
			||||||
 | 
					    get_instances = model.attrs["get_instances"]
 | 
				
			||||||
 | 
					    all_instances = [get_instances(doc) for doc in docs]
 | 
				
			||||||
 | 
					    pooling = model.get_ref("pooling")
 | 
				
			||||||
    relations = ...
 | 
					    relations = ...
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def backprop(d_relations: Floats2d) -> List[Doc]:
 | 
					    def backprop(d_relations: Floats2d) -> List[Doc]:
 | 
				
			||||||
| 
						 | 
					@ -744,14 +746,35 @@ This function in added to the [`@misc` registry](/api/top-level#registry) so we
 | 
				
			||||||
can refer to it from the config, and easily swap it out for any other candidate
 | 
					can refer to it from the config, and easily swap it out for any other candidate
 | 
				
			||||||
generation function.
 | 
					generation function.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
When creating this model, we store the custom functions as
 | 
					#### Intermezzo: define how to store the relations data {#component-rel-attribute}
 | 
				
			||||||
[attributes](https://thinc.ai/docs/api-model#properties) and the sublayers as
 | 
					
 | 
				
			||||||
references, so we can access them easily:
 | 
					For our new relation extraction component, we will use a custom
 | 
				
			||||||
 | 
					[extension attribute](/usage/processing-pipelines#custom-components-attributes)
 | 
				
			||||||
 | 
					`doc._.rel` in which we store relation data. The attribute refers to a
 | 
				
			||||||
 | 
					dictionary, keyed by the **start offsets of each entity** involved in the
 | 
				
			||||||
 | 
					candidate relation. The values in the dictionary refer to another dictionary
 | 
				
			||||||
 | 
					where relation labels are mapped to values between 0 and 1. We assume anything
 | 
				
			||||||
 | 
					above 0.5 to be a `True` relation. The ~~Example~~ instances that we'll use as
 | 
				
			||||||
 | 
					training data, will include their gold-standard relation annotations in
 | 
				
			||||||
 | 
					`example.reference._.rel`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example output
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> doc = nlp("Amsterdam is the capital of the Netherlands.")
 | 
				
			||||||
 | 
					> print("spans", [(e.start, e.text, e.label_) for e in doc.ents])
 | 
				
			||||||
 | 
					> for value, rel_dict in doc._.rel.items():
 | 
				
			||||||
 | 
					>     print(f"{value}: {rel_dict}")
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> # spans [(0, 'Amsterdam', 'LOC'), (6, 'Netherlands', 'LOC')]
 | 
				
			||||||
 | 
					> # (0, 6): {'CAPITAL_OF': 0.89, 'LOCATED_IN': 0.75, 'UNRELATED': 0.002}
 | 
				
			||||||
 | 
					> # (6, 0): {'CAPITAL_OF': 0.01, 'LOCATED_IN': 0.13, 'UNRELATED': 0.017}
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```python
 | 
					```python
 | 
				
			||||||
pooling = model.get_ref("pooling")
 | 
					### Registering the extension attribute
 | 
				
			||||||
tok2vec = model.get_ref("tok2vec")
 | 
					from spacy.tokens import Doc
 | 
				
			||||||
get_instances = model.attrs["get_instances"]
 | 
					Doc.set_extension("rel", default={})
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### Step 2: Implementing the pipeline component {#component-rel-pipe}
 | 
					#### Step 2: Implementing the pipeline component {#component-rel-pipe}
 | 
				
			||||||
| 
						 | 
					@ -794,19 +817,43 @@ class RelationExtractor(TrainablePipe):
 | 
				
			||||||
        ...
 | 
					        ...
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Before the model can be used, it needs to be
 | 
					Typically, the constructor defines the vocab, the Machine Learning model, and
 | 
				
			||||||
[initialized](/usage/training#initialization). This function receives a callback
 | 
					the name of this component. Additionally, this component, just like the
 | 
				
			||||||
to access the full **training data set**, or a representative sample. This data
 | 
					`textcat` and the `tagger`, stores an internal list of labels. The ML model will
 | 
				
			||||||
set can be used to deduce all **relevant labels**. Alternatively, a list of
 | 
					predict scores for each label. We add convenience method to easily retrieve and
 | 
				
			||||||
labels can be provided to `initialize`, or you can call
 | 
					add to them.
 | 
				
			||||||
`RelationExtractor.add_label` directly. The number of labels defines the output
 | 
					
 | 
				
			||||||
dimensionality of the network, and will be used to do
 | 
					```python
 | 
				
			||||||
 | 
					    def __init__(self, vocab, model, name="rel"):
 | 
				
			||||||
 | 
					        """Create a component instance."""
 | 
				
			||||||
 | 
					        # ...
 | 
				
			||||||
 | 
					        self.cfg = {"labels": []}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def labels(self) -> Tuple[str]:
 | 
				
			||||||
 | 
					        """Returns the labels currently added to the component."""
 | 
				
			||||||
 | 
					        return tuple(self.cfg["labels"])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def add_label(self, label: str):
 | 
				
			||||||
 | 
					        """Add a new label to the pipe."""
 | 
				
			||||||
 | 
					        self.cfg["labels"] = list(self.labels) + [label]
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					After creation, the component needs to be
 | 
				
			||||||
 | 
					[initialized](/usage/training#initialization). This method can define the
 | 
				
			||||||
 | 
					relevant labels in two ways: explicitely by setting the `labels` argument in the
 | 
				
			||||||
 | 
					[`initialize` block](/api/data-formats#config-initialize) of the config, or
 | 
				
			||||||
 | 
					implicately by deducing them from the `get_examples` callback that generates the
 | 
				
			||||||
 | 
					full **training data set**, or a representative sample.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The final number of labels defines the output dimensionality of the network, and
 | 
				
			||||||
 | 
					will be used to do
 | 
				
			||||||
[shape inference](https://thinc.ai/docs/usage-models#validation) throughout the
 | 
					[shape inference](https://thinc.ai/docs/usage-models#validation) throughout the
 | 
				
			||||||
layers of the neural network. This is triggered by calling
 | 
					layers of the neural network. This is triggered by calling
 | 
				
			||||||
[`Model.initialize`](https://thinc.ai/api/model#initialize).
 | 
					[`Model.initialize`](https://thinc.ai/api/model#initialize).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```python
 | 
					```python
 | 
				
			||||||
### The initialize method {highlight="12,18,22"}
 | 
					### The initialize method {highlight="12,15,18,22"}
 | 
				
			||||||
from itertools import islice
 | 
					from itertools import islice
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def initialize(
 | 
					def initialize(
 | 
				
			||||||
| 
						 | 
					@ -837,7 +884,7 @@ Typically, this happens when the pipeline is set up before training in
 | 
				
			||||||
[`spacy train`](/api/cli#training). After initialization, the pipeline component
 | 
					[`spacy train`](/api/cli#training). After initialization, the pipeline component
 | 
				
			||||||
and its internal model can be trained and used to make predictions.
 | 
					and its internal model can be trained and used to make predictions.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
During training, the function [`update`](/api/pipe#update) is invoked which
 | 
					During training, the method [`update`](/api/pipe#update) is invoked which
 | 
				
			||||||
delegates to
 | 
					delegates to
 | 
				
			||||||
[`Model.begin_update`](https://thinc.ai/docs/api-model#begin_update) and a
 | 
					[`Model.begin_update`](https://thinc.ai/docs/api-model#begin_update) and a
 | 
				
			||||||
[`get_loss`](/api/pipe#get_loss) function that **calculates the loss** for a
 | 
					[`get_loss`](/api/pipe#get_loss) function that **calculates the loss** for a
 | 
				
			||||||
| 
						 | 
					@ -858,7 +905,7 @@ def update(
 | 
				
			||||||
    losses: Optional[Dict[str, float]] = None,
 | 
					    losses: Optional[Dict[str, float]] = None,
 | 
				
			||||||
) -> Dict[str, float]:
 | 
					) -> Dict[str, float]:
 | 
				
			||||||
    # ...
 | 
					    # ...
 | 
				
			||||||
    docs = [ex.predicted for ex in examples]
 | 
					    docs = [eg.predicted for eg in examples]
 | 
				
			||||||
    predictions, backprop = self.model.begin_update(docs)
 | 
					    predictions, backprop = self.model.begin_update(docs)
 | 
				
			||||||
    loss, gradient = self.get_loss(examples, predictions)
 | 
					    loss, gradient = self.get_loss(examples, predictions)
 | 
				
			||||||
    backprop(gradient)
 | 
					    backprop(gradient)
 | 
				
			||||||
| 
						 | 
					@ -867,8 +914,8 @@ def update(
 | 
				
			||||||
    return losses
 | 
					    return losses
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
When the internal model is trained, the component can be used to make novel
 | 
					After training the model, the component can be used to make novel
 | 
				
			||||||
**predictions**. The [`predict`](/api/pipe#predict) function needs to be
 | 
					**predictions**. The [`predict`](/api/pipe#predict) method needs to be
 | 
				
			||||||
implemented for each subclass of `TrainablePipe`. In our case, we can simply
 | 
					implemented for each subclass of `TrainablePipe`. In our case, we can simply
 | 
				
			||||||
delegate to the internal model's
 | 
					delegate to the internal model's
 | 
				
			||||||
[predict](https://thinc.ai/docs/api-model#predict) function that takes a batch
 | 
					[predict](https://thinc.ai/docs/api-model#predict) function that takes a batch
 | 
				
			||||||
| 
						 | 
					@ -884,42 +931,21 @@ def predict(self, docs: Iterable[Doc]) -> Floats2d:
 | 
				
			||||||
The final method that needs to be implemented, is
 | 
					The final method that needs to be implemented, is
 | 
				
			||||||
[`set_annotations`](/api/pipe#set_annotations). This function takes the
 | 
					[`set_annotations`](/api/pipe#set_annotations). This function takes the
 | 
				
			||||||
predictions, and modifies the given `Doc` object in place to store them. For our
 | 
					predictions, and modifies the given `Doc` object in place to store them. For our
 | 
				
			||||||
relation extraction component, we store the data as a dictionary in a custom
 | 
					relation extraction component, we store the data in the
 | 
				
			||||||
[extension attribute](/usage/processing-pipelines#custom-components-attributes)
 | 
					[custom attribute](#component-rel-attribute)`doc._.rel`.
 | 
				
			||||||
`doc._.rel`. As keys, we represent the candidate pair by the **start offsets of
 | 
					 | 
				
			||||||
each entity**, as this defines an entity pair uniquely within one document.
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
To interpret the scores predicted by the relation extraction model correctly, we
 | 
					To interpret the scores predicted by the relation extraction model correctly, we
 | 
				
			||||||
need to refer to the model's `get_candidates` function that defined which pairs
 | 
					need to refer to the model's `get_instances` function that defined which pairs
 | 
				
			||||||
of entities were relevant candidates, so that the predictions can be linked to
 | 
					of entities were relevant candidates, so that the predictions can be linked to
 | 
				
			||||||
those exact entities:
 | 
					those exact entities:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> #### Example output
 | 
					 | 
				
			||||||
>
 | 
					 | 
				
			||||||
> ```python
 | 
					 | 
				
			||||||
> doc = nlp("Amsterdam is the capital of the Netherlands.")
 | 
					 | 
				
			||||||
> print("spans", [(e.start, e.text, e.label_) for e in doc.ents])
 | 
					 | 
				
			||||||
> for value, rel_dict in doc._.rel.items():
 | 
					 | 
				
			||||||
>     print(f"{value}: {rel_dict}")
 | 
					 | 
				
			||||||
>
 | 
					 | 
				
			||||||
> # spans [(0, 'Amsterdam', 'LOC'), (6, 'Netherlands', 'LOC')]
 | 
					 | 
				
			||||||
> # (0, 6): {'CAPITAL_OF': 0.89, 'LOCATED_IN': 0.75, 'UNRELATED': 0.002}
 | 
					 | 
				
			||||||
> # (6, 0): {'CAPITAL_OF': 0.01, 'LOCATED_IN': 0.13, 'UNRELATED': 0.017}
 | 
					 | 
				
			||||||
> ```
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
```python
 | 
					 | 
				
			||||||
### Registering the extension attribute
 | 
					 | 
				
			||||||
from spacy.tokens import Doc
 | 
					 | 
				
			||||||
Doc.set_extension("rel", default={})
 | 
					 | 
				
			||||||
```
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
```python
 | 
					```python
 | 
				
			||||||
### The set_annotations method {highlight="5-6,10"}
 | 
					### The set_annotations method {highlight="5-6,10"}
 | 
				
			||||||
def set_annotations(self, docs: Iterable[Doc], predictions: Floats2d):
 | 
					def set_annotations(self, docs: Iterable[Doc], predictions: Floats2d):
 | 
				
			||||||
    c = 0
 | 
					    c = 0
 | 
				
			||||||
    get_candidates = self.model.attrs["get_candidates"]
 | 
					    get_instances = self.model.attrs["get_instances"]
 | 
				
			||||||
    for doc in docs:
 | 
					    for doc in docs:
 | 
				
			||||||
        for (e1, e2) in get_candidates(doc):
 | 
					        for (e1, e2) in get_instances(doc):
 | 
				
			||||||
            offset = (e1.start, e2.start)
 | 
					            offset = (e1.start, e2.start)
 | 
				
			||||||
            if offset not in doc._.rel:
 | 
					            if offset not in doc._.rel:
 | 
				
			||||||
                doc._.rel[offset] = {}
 | 
					                doc._.rel[offset] = {}
 | 
				
			||||||
| 
						 | 
					@ -933,7 +959,7 @@ Under the hood, when the pipe is applied to a document, it delegates to the
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```python
 | 
					```python
 | 
				
			||||||
### The __call__ method
 | 
					### The __call__ method
 | 
				
			||||||
def __call__(self, Doc doc):
 | 
					def __call__(self, doc: Doc):
 | 
				
			||||||
    predictions = self.predict([doc])
 | 
					    predictions = self.predict([doc])
 | 
				
			||||||
    self.set_annotations([doc], predictions)
 | 
					    self.set_annotations([doc], predictions)
 | 
				
			||||||
    return doc
 | 
					    return doc
 | 
				
			||||||
| 
						 | 
					@ -957,8 +983,8 @@ def score(self, examples: Iterable[Example]) -> Dict[str, Any]:
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is particularly useful to see the scores on the development corpus when
 | 
					This is particularly useful for calculating relevant scores on the development
 | 
				
			||||||
training the component with [`spacy train`](/api/cli#training).
 | 
					corpus when training the component with [`spacy train`](/api/cli#training).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Once our `TrainablePipe` subclass is fully implemented, we can
 | 
					Once our `TrainablePipe` subclass is fully implemented, we can
 | 
				
			||||||
[register](/usage/processing-pipelines#custom-components-factories) the
 | 
					[register](/usage/processing-pipelines#custom-components-factories) the
 | 
				
			||||||
| 
						 | 
					@ -975,13 +1001,8 @@ assigns it a name and lets you create the component with
 | 
				
			||||||
>
 | 
					>
 | 
				
			||||||
> [components.relation_extractor.model]
 | 
					> [components.relation_extractor.model]
 | 
				
			||||||
> @architectures = "rel_model.v1"
 | 
					> @architectures = "rel_model.v1"
 | 
				
			||||||
>
 | 
					 | 
				
			||||||
> [components.relation_extractor.model.tok2vec]
 | 
					 | 
				
			||||||
> # ...
 | 
					> # ...
 | 
				
			||||||
>
 | 
					>
 | 
				
			||||||
> [components.relation_extractor.model.get_candidates]
 | 
					 | 
				
			||||||
> @misc = "rel_cand_generator.v1"
 | 
					 | 
				
			||||||
> max_length = 20
 | 
					 | 
				
			||||||
>
 | 
					>
 | 
				
			||||||
> [training.score_weights]
 | 
					> [training.score_weights]
 | 
				
			||||||
> rel_micro_p = 0.0
 | 
					> rel_micro_p = 0.0
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user