mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 18:56:36 +03:00
Fix to/from disk methods
This commit is contained in:
parent
5c30466c95
commit
33e5ec737f
|
@ -96,6 +96,13 @@ class BaseDefaults(object):
|
||||||
|
|
||||||
factories = {
|
factories = {
|
||||||
'make_doc': create_tokenizer,
|
'make_doc': create_tokenizer,
|
||||||
|
'tensorizer': lambda nlp, **cfg: [TokenVectorEncoder(nlp.vocab, **cfg)],
|
||||||
|
'tagger': lambda nlp, **cfg: [NeuralTagger(nlp.vocab, **cfg)],
|
||||||
|
'parser': lambda nlp, **cfg: [
|
||||||
|
NeuralDependencyParser(nlp.vocab, **cfg),
|
||||||
|
nonproj.deprojectivize],
|
||||||
|
'ner': lambda nlp, **cfg: [NeuralEntityRecognizer(nlp.vocab, **cfg)],
|
||||||
|
# Temporary compatibility -- delete after pivot
|
||||||
'token_vectors': lambda nlp, **cfg: [TokenVectorEncoder(nlp.vocab, **cfg)],
|
'token_vectors': lambda nlp, **cfg: [TokenVectorEncoder(nlp.vocab, **cfg)],
|
||||||
'tags': lambda nlp, **cfg: [NeuralTagger(nlp.vocab, **cfg)],
|
'tags': lambda nlp, **cfg: [NeuralTagger(nlp.vocab, **cfg)],
|
||||||
'dependencies': lambda nlp, **cfg: [
|
'dependencies': lambda nlp, **cfg: [
|
||||||
|
@ -358,37 +365,35 @@ class Language(object):
|
||||||
for doc in docs:
|
for doc in docs:
|
||||||
yield doc
|
yield doc
|
||||||
|
|
||||||
def to_disk(self, path, disable=[]):
|
def to_disk(self, path, disable=tuple()):
|
||||||
"""Save the current state to a directory. If a model is loaded, this
|
"""Save the current state to a directory. If a model is loaded, this
|
||||||
will include the model.
|
will include the model.
|
||||||
|
|
||||||
path (unicode or Path): A path to a directory, which will be created if
|
path (unicode or Path): A path to a directory, which will be created if
|
||||||
it doesn't exist. Paths may be either strings or `Path`-like objects.
|
it doesn't exist. Paths may be either strings or `Path`-like objects.
|
||||||
disable (list): Nameds of pipeline components to disable and prevent
|
disable (list): Names of pipeline components to disable and prevent
|
||||||
from being saved.
|
from being saved.
|
||||||
|
|
||||||
EXAMPLE:
|
EXAMPLE:
|
||||||
>>> nlp.to_disk('/path/to/models')
|
>>> nlp.to_disk('/path/to/models')
|
||||||
"""
|
"""
|
||||||
path = util.ensure_path(path)
|
path = util.ensure_path(path)
|
||||||
with path.open('wb') as file_:
|
serializers = OrderedDict((
|
||||||
file_.write(self.to_bytes(disable))
|
('vocab', lambda p: self.vocab.to_disk(p)),
|
||||||
#serializers = {
|
('tokenizer', lambda p: self.tokenizer.to_disk(p, vocab=False)),
|
||||||
# 'vocab': lambda p: self.vocab.to_disk(p),
|
('meta.json', lambda p: p.open('w').write(json_dumps(self.meta)))
|
||||||
# 'tokenizer': lambda p: self.tokenizer.to_disk(p, vocab=False),
|
))
|
||||||
# 'meta.json': lambda p: ujson.dump(p.open('w'), self.meta)
|
for proc in self.pipeline:
|
||||||
#}
|
if not hasattr(proc, 'name'):
|
||||||
#for proc in self.pipeline:
|
continue
|
||||||
# if not hasattr(proc, 'name'):
|
if proc.name in disable:
|
||||||
# continue
|
continue
|
||||||
# if proc.name in disable:
|
if not hasattr(proc, 'to_disk'):
|
||||||
# continue
|
continue
|
||||||
# if not hasattr(proc, 'to_disk'):
|
serializers[proc.name] = lambda p, proc=proc: proc.to_disk(p, vocab=False)
|
||||||
# continue
|
util.to_disk(path, serializers, {p: False for p in disable})
|
||||||
# serializers[proc.name] = lambda p: proc.to_disk(p, vocab=False)
|
|
||||||
#util.to_disk(serializers, path)
|
|
||||||
|
|
||||||
def from_disk(self, path, disable=[]):
|
def from_disk(self, path, disable=tuple()):
|
||||||
"""Loads state from a directory. Modifies the object in place and
|
"""Loads state from a directory. Modifies the object in place and
|
||||||
returns it. If the saved `Language` object contains a model, the
|
returns it. If the saved `Language` object contains a model, the
|
||||||
model will be loaded.
|
model will be loaded.
|
||||||
|
@ -403,24 +408,21 @@ class Language(object):
|
||||||
>>> nlp = Language().from_disk('/path/to/models')
|
>>> nlp = Language().from_disk('/path/to/models')
|
||||||
"""
|
"""
|
||||||
path = util.ensure_path(path)
|
path = util.ensure_path(path)
|
||||||
with path.open('rb') as file_:
|
deserializers = OrderedDict((
|
||||||
bytes_data = file_.read()
|
('vocab', lambda p: self.vocab.from_disk(p)),
|
||||||
return self.from_bytes(bytes_data, disable)
|
('tokenizer', lambda p: self.tokenizer.from_disk(p, vocab=False)),
|
||||||
#deserializers = {
|
('meta.json', lambda p: p.open('w').write(json_dumps(self.meta)))
|
||||||
# 'vocab': lambda p: self.vocab.from_disk(p),
|
))
|
||||||
# 'tokenizer': lambda p: self.tokenizer.from_disk(p, vocab=False),
|
for proc in self.pipeline:
|
||||||
# 'meta.json': lambda p: ujson.dump(p.open('w'), self.meta)
|
if not hasattr(proc, 'name'):
|
||||||
#}
|
continue
|
||||||
#for proc in self.pipeline:
|
if proc.name in disable:
|
||||||
# if not hasattr(proc, 'name'):
|
continue
|
||||||
# continue
|
if not hasattr(proc, 'to_disk'):
|
||||||
# if proc.name in disable:
|
continue
|
||||||
# continue
|
deserializers[proc.name] = lambda p, proc=proc: proc.from_disk(p, vocab=False)
|
||||||
# if not hasattr(proc, 'to_disk'):
|
util.from_disk(path, deserializers, {p: False for p in disable})
|
||||||
# continue
|
return self
|
||||||
# deserializers[proc.name] = lambda p: proc.from_disk(p, vocab=False)
|
|
||||||
#util.from_disk(deserializers, path)
|
|
||||||
#return self
|
|
||||||
|
|
||||||
def to_bytes(self, disable=[]):
|
def to_bytes(self, disable=[]):
|
||||||
"""Serialize the current state to a binary string.
|
"""Serialize the current state to a binary string.
|
||||||
|
|
|
@ -41,7 +41,7 @@ from .parts_of_speech import X
|
||||||
|
|
||||||
class TokenVectorEncoder(object):
|
class TokenVectorEncoder(object):
|
||||||
"""Assign position-sensitive vectors to tokens, using a CNN or RNN."""
|
"""Assign position-sensitive vectors to tokens, using a CNN or RNN."""
|
||||||
name = 'tok2vec'
|
name = 'tensorizer'
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def Model(cls, width=128, embed_size=7500, **cfg):
|
def Model(cls, width=128, embed_size=7500, **cfg):
|
||||||
|
@ -176,17 +176,19 @@ class TokenVectorEncoder(object):
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def to_disk(self, path, **exclude):
|
def to_disk(self, path, **exclude):
|
||||||
serialize = {
|
serialize = OrderedDict((
|
||||||
'model': lambda p: p.open('w').write(util.model_to_bytes(self.model)),
|
('model', lambda p: p.open('wb').write(util.model_to_bytes(self.model))),
|
||||||
'vocab': lambda p: self.vocab.to_disk(p)
|
('vocab', lambda p: self.vocab.to_disk(p))
|
||||||
}
|
))
|
||||||
util.to_disk(path, serialize, exclude)
|
util.to_disk(path, serialize, exclude)
|
||||||
|
|
||||||
def from_disk(self, path, **exclude):
|
def from_disk(self, path, **exclude):
|
||||||
deserialize = {
|
if self.model is True:
|
||||||
'model': lambda p: util.model_from_bytes(self.model, p.open('rb').read()),
|
self.model = self.Model()
|
||||||
'vocab': lambda p: self.vocab.from_disk(p)
|
deserialize = OrderedDict((
|
||||||
}
|
('model', lambda p: util.model_from_bytes(self.model, p.open('rb').read())),
|
||||||
|
('vocab', lambda p: self.vocab.from_disk(p))
|
||||||
|
))
|
||||||
util.from_disk(path, deserialize, exclude)
|
util.from_disk(path, deserialize, exclude)
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
@ -315,7 +317,7 @@ class NeuralTagger(object):
|
||||||
|
|
||||||
def to_disk(self, path, **exclude):
|
def to_disk(self, path, **exclude):
|
||||||
serialize = {
|
serialize = {
|
||||||
'model': lambda p: p.open('w').write(util.model_to_bytes(self.model)),
|
'model': lambda p: p.open('wb').write(util.model_to_bytes(self.model)),
|
||||||
'vocab': lambda p: self.vocab.to_disk(p)
|
'vocab': lambda p: self.vocab.to_disk(p)
|
||||||
}
|
}
|
||||||
util.to_disk(path, serialize, exclude)
|
util.to_disk(path, serialize, exclude)
|
||||||
|
@ -420,7 +422,7 @@ cdef class NeuralDependencyParser(NeuralParser):
|
||||||
|
|
||||||
|
|
||||||
cdef class NeuralEntityRecognizer(NeuralParser):
|
cdef class NeuralEntityRecognizer(NeuralParser):
|
||||||
name = 'entity'
|
name = 'ner'
|
||||||
TransitionSystem = BiluoPushDown
|
TransitionSystem = BiluoPushDown
|
||||||
|
|
||||||
nr_feature = 6
|
nr_feature = 6
|
||||||
|
|
|
@ -44,6 +44,7 @@ from .. import util
|
||||||
from ..util import get_async, get_cuda_stream
|
from ..util import get_async, get_cuda_stream
|
||||||
from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
|
from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
|
||||||
from .._ml import Tok2Vec, doc2feats, rebatch
|
from .._ml import Tok2Vec, doc2feats, rebatch
|
||||||
|
from ..compat import json_dumps
|
||||||
|
|
||||||
from . import _parse_features
|
from . import _parse_features
|
||||||
from ._parse_features cimport CONTEXT_SIZE
|
from ._parse_features cimport CONTEXT_SIZE
|
||||||
|
@ -633,11 +634,13 @@ cdef class Parser:
|
||||||
|
|
||||||
def to_disk(self, path, **exclude):
|
def to_disk(self, path, **exclude):
|
||||||
serializers = {
|
serializers = {
|
||||||
'model': lambda p: p.open('wb').write(
|
'lower_model': lambda p: p.open('wb').write(
|
||||||
util.model_to_bytes(self.model)),
|
util.model_to_bytes(self.model[0])),
|
||||||
|
'upper_model': lambda p: p.open('wb').write(
|
||||||
|
util.model_to_bytes(self.model[1])),
|
||||||
'vocab': lambda p: self.vocab.to_disk(p),
|
'vocab': lambda p: self.vocab.to_disk(p),
|
||||||
'moves': lambda p: self.moves.to_disk(p, strings=False),
|
'moves': lambda p: self.moves.to_disk(p, strings=False),
|
||||||
'cfg': lambda p: ujson.dumps(p.open('w'), self.cfg)
|
'cfg': lambda p: p.open('w').write(json_dumps(self.cfg))
|
||||||
}
|
}
|
||||||
util.to_disk(path, serializers, exclude)
|
util.to_disk(path, serializers, exclude)
|
||||||
|
|
||||||
|
@ -645,7 +648,7 @@ cdef class Parser:
|
||||||
deserializers = {
|
deserializers = {
|
||||||
'vocab': lambda p: self.vocab.from_disk(p),
|
'vocab': lambda p: self.vocab.from_disk(p),
|
||||||
'moves': lambda p: self.moves.from_disk(p, strings=False),
|
'moves': lambda p: self.moves.from_disk(p, strings=False),
|
||||||
'cfg': lambda p: self.cfg.update(ujson.load((path/'cfg.json').open())),
|
'cfg': lambda p: self.cfg.update(ujson.load(p.open())),
|
||||||
'model': lambda p: None
|
'model': lambda p: None
|
||||||
}
|
}
|
||||||
util.from_disk(path, deserializers, exclude)
|
util.from_disk(path, deserializers, exclude)
|
||||||
|
@ -653,7 +656,14 @@ cdef class Parser:
|
||||||
path = util.ensure_path(path)
|
path = util.ensure_path(path)
|
||||||
if self.model is True:
|
if self.model is True:
|
||||||
self.model, cfg = self.Model(**self.cfg)
|
self.model, cfg = self.Model(**self.cfg)
|
||||||
util.model_from_disk(self.model, path / 'model')
|
else:
|
||||||
|
cfg = {}
|
||||||
|
with (path / 'lower_model').open('rb') as file_:
|
||||||
|
bytes_data = file_.read()
|
||||||
|
util.model_from_bytes(self.model[0], bytes_data)
|
||||||
|
with (path / 'upper_model').open('rb') as file_:
|
||||||
|
bytes_data = file_.read()
|
||||||
|
util.model_from_bytes(self.model[1], bytes_data)
|
||||||
self.cfg.update(cfg)
|
self.cfg.update(cfg)
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
|
|
@ -13,6 +13,7 @@ import random
|
||||||
import numpy
|
import numpy
|
||||||
import io
|
import io
|
||||||
import dill
|
import dill
|
||||||
|
from collections import OrderedDict
|
||||||
|
|
||||||
import msgpack
|
import msgpack
|
||||||
import msgpack_numpy
|
import msgpack_numpy
|
||||||
|
@ -408,7 +409,7 @@ def get_raw_input(description, default=False):
|
||||||
|
|
||||||
|
|
||||||
def to_bytes(getters, exclude):
|
def to_bytes(getters, exclude):
|
||||||
serialized = {}
|
serialized = OrderedDict()
|
||||||
for key, getter in getters.items():
|
for key, getter in getters.items():
|
||||||
if key not in exclude:
|
if key not in exclude:
|
||||||
serialized[key] = getter()
|
serialized[key] = getter()
|
||||||
|
@ -423,6 +424,24 @@ def from_bytes(bytes_data, setters, exclude):
|
||||||
return msg
|
return msg
|
||||||
|
|
||||||
|
|
||||||
|
def to_disk(path, writers, exclude):
|
||||||
|
path = ensure_path(path)
|
||||||
|
if not path.exists():
|
||||||
|
path.mkdir()
|
||||||
|
for key, writer in writers.items():
|
||||||
|
if key not in exclude:
|
||||||
|
writer(path / key)
|
||||||
|
return path
|
||||||
|
|
||||||
|
|
||||||
|
def from_disk(path, readers, exclude):
|
||||||
|
path = ensure_path(path)
|
||||||
|
for key, reader in readers.items():
|
||||||
|
if key not in exclude:
|
||||||
|
reader(path / key)
|
||||||
|
return path
|
||||||
|
|
||||||
|
|
||||||
# This stuff really belongs in thinc -- but I expect
|
# This stuff really belongs in thinc -- but I expect
|
||||||
# to refactor how all this works in thinc anyway.
|
# to refactor how all this works in thinc anyway.
|
||||||
# What a mess!
|
# What a mess!
|
||||||
|
|
Loading…
Reference in New Issue
Block a user