Remove obsolete parser.pyx

This commit is contained in:
Matthew Honnibal 2017-10-26 12:42:05 +02:00
parent a8abc47811
commit 33f8c58782
6 changed files with 0 additions and 1477 deletions

View File

@ -1,259 +0,0 @@
from thinc.typedefs cimport atom_t
from .stateclass cimport StateClass
from ._state cimport StateC
cdef int fill_context(atom_t* context, const StateC* state) nogil
# Context elements
# Ensure each token's attributes are listed: w, p, c, c6, c4. The order
# is referenced by incrementing the enum...
# Tokens are listed in left-to-right order.
#cdef size_t* SLOTS = [
# S2w, S1w,
# S0l0w, S0l2w, S0lw,
# S0w,
# S0r0w, S0r2w, S0rw,
# N0l0w, N0l2w, N0lw,
# P2w, P1w,
# N0w, N1w, N2w, N3w, 0
#]
# NB: The order of the enum is _NOT_ arbitrary!!
cpdef enum:
S2w
S2W
S2p
S2c
S2c4
S2c6
S2L
S2_prefix
S2_suffix
S2_shape
S2_ne_iob
S2_ne_type
S1w
S1W
S1p
S1c
S1c4
S1c6
S1L
S1_prefix
S1_suffix
S1_shape
S1_ne_iob
S1_ne_type
S1rw
S1rW
S1rp
S1rc
S1rc4
S1rc6
S1rL
S1r_prefix
S1r_suffix
S1r_shape
S1r_ne_iob
S1r_ne_type
S0lw
S0lW
S0lp
S0lc
S0lc4
S0lc6
S0lL
S0l_prefix
S0l_suffix
S0l_shape
S0l_ne_iob
S0l_ne_type
S0l2w
S0l2W
S0l2p
S0l2c
S0l2c4
S0l2c6
S0l2L
S0l2_prefix
S0l2_suffix
S0l2_shape
S0l2_ne_iob
S0l2_ne_type
S0w
S0W
S0p
S0c
S0c4
S0c6
S0L
S0_prefix
S0_suffix
S0_shape
S0_ne_iob
S0_ne_type
S0r2w
S0r2W
S0r2p
S0r2c
S0r2c4
S0r2c6
S0r2L
S0r2_prefix
S0r2_suffix
S0r2_shape
S0r2_ne_iob
S0r2_ne_type
S0rw
S0rW
S0rp
S0rc
S0rc4
S0rc6
S0rL
S0r_prefix
S0r_suffix
S0r_shape
S0r_ne_iob
S0r_ne_type
N0l2w
N0l2W
N0l2p
N0l2c
N0l2c4
N0l2c6
N0l2L
N0l2_prefix
N0l2_suffix
N0l2_shape
N0l2_ne_iob
N0l2_ne_type
N0lw
N0lW
N0lp
N0lc
N0lc4
N0lc6
N0lL
N0l_prefix
N0l_suffix
N0l_shape
N0l_ne_iob
N0l_ne_type
N0w
N0W
N0p
N0c
N0c4
N0c6
N0L
N0_prefix
N0_suffix
N0_shape
N0_ne_iob
N0_ne_type
N1w
N1W
N1p
N1c
N1c4
N1c6
N1L
N1_prefix
N1_suffix
N1_shape
N1_ne_iob
N1_ne_type
N2w
N2W
N2p
N2c
N2c4
N2c6
N2L
N2_prefix
N2_suffix
N2_shape
N2_ne_iob
N2_ne_type
P1w
P1W
P1p
P1c
P1c4
P1c6
P1L
P1_prefix
P1_suffix
P1_shape
P1_ne_iob
P1_ne_type
P2w
P2W
P2p
P2c
P2c4
P2c6
P2L
P2_prefix
P2_suffix
P2_shape
P2_ne_iob
P2_ne_type
E0w
E0W
E0p
E0c
E0c4
E0c6
E0L
E0_prefix
E0_suffix
E0_shape
E0_ne_iob
E0_ne_type
E1w
E1W
E1p
E1c
E1c4
E1c6
E1L
E1_prefix
E1_suffix
E1_shape
E1_ne_iob
E1_ne_type
# Misc features at the end
dist
N0lv
S0lv
S0rv
S1lv
S1rv
S0_has_head
S1_has_head
S2_has_head
CONTEXT_SIZE

View File

@ -1,419 +0,0 @@
"""
Fill an array, context, with every _atomic_ value our features reference.
We then write the _actual features_ as tuples of the atoms. The machinery
that translates from the tuples to feature-extractors (which pick the values
out of "context") is in features/extractor.pyx
The atomic feature names are listed in a big enum, so that the feature tuples
can refer to them.
"""
# coding: utf-8
from __future__ import unicode_literals
from libc.string cimport memset
from itertools import combinations
from cymem.cymem cimport Pool
from ..structs cimport TokenC
from .stateclass cimport StateClass
from ._state cimport StateC
cdef inline void fill_token(atom_t* context, const TokenC* token) nogil:
if token is NULL:
context[0] = 0
context[1] = 0
context[2] = 0
context[3] = 0
context[4] = 0
context[5] = 0
context[6] = 0
context[7] = 0
context[8] = 0
context[9] = 0
context[10] = 0
context[11] = 0
else:
context[0] = token.lex.orth
context[1] = token.lemma
context[2] = token.tag
context[3] = token.lex.cluster
# We've read in the string little-endian, so now we can take & (2**n)-1
# to get the first n bits of the cluster.
# e.g. s = "1110010101"
# s = ''.join(reversed(s))
# first_4_bits = int(s, 2)
# print first_4_bits
# 5
# print "{0:b}".format(prefix).ljust(4, '0')
# 1110
# What we're doing here is picking a number where all bits are 1, e.g.
# 15 is 1111, 63 is 111111 and doing bitwise AND, so getting all bits in
# the source that are set to 1.
context[4] = token.lex.cluster & 15
context[5] = token.lex.cluster & 63
context[6] = token.dep if token.head != 0 else 0
context[7] = token.lex.prefix
context[8] = token.lex.suffix
context[9] = token.lex.shape
context[10] = token.ent_iob
context[11] = token.ent_type
cdef int fill_context(atom_t* ctxt, const StateC* st) nogil:
# Take care to fill every element of context!
# We could memset, but this makes it very easy to have broken features that
# make almost no impact on accuracy. If instead they're unset, the impact
# tends to be dramatic, so we get an obvious regression to fix...
fill_token(&ctxt[S2w], st.S_(2))
fill_token(&ctxt[S1w], st.S_(1))
fill_token(&ctxt[S1rw], st.R_(st.S(1), 1))
fill_token(&ctxt[S0lw], st.L_(st.S(0), 1))
fill_token(&ctxt[S0l2w], st.L_(st.S(0), 2))
fill_token(&ctxt[S0w], st.S_(0))
fill_token(&ctxt[S0r2w], st.R_(st.S(0), 2))
fill_token(&ctxt[S0rw], st.R_(st.S(0), 1))
fill_token(&ctxt[N0lw], st.L_(st.B(0), 1))
fill_token(&ctxt[N0l2w], st.L_(st.B(0), 2))
fill_token(&ctxt[N0w], st.B_(0))
fill_token(&ctxt[N1w], st.B_(1))
fill_token(&ctxt[N2w], st.B_(2))
fill_token(&ctxt[P1w], st.safe_get(st.B(0)-1))
fill_token(&ctxt[P2w], st.safe_get(st.B(0)-2))
fill_token(&ctxt[E0w], st.E_(0))
fill_token(&ctxt[E1w], st.E_(1))
if st.stack_depth() >= 1 and not st.eol():
ctxt[dist] = min_(st.B(0) - st.E(0), 5)
else:
ctxt[dist] = 0
ctxt[N0lv] = min_(st.n_L(st.B(0)), 5)
ctxt[S0lv] = min_(st.n_L(st.S(0)), 5)
ctxt[S0rv] = min_(st.n_R(st.S(0)), 5)
ctxt[S1lv] = min_(st.n_L(st.S(1)), 5)
ctxt[S1rv] = min_(st.n_R(st.S(1)), 5)
ctxt[S0_has_head] = 0
ctxt[S1_has_head] = 0
ctxt[S2_has_head] = 0
if st.stack_depth() >= 1:
ctxt[S0_has_head] = st.has_head(st.S(0)) + 1
if st.stack_depth() >= 2:
ctxt[S1_has_head] = st.has_head(st.S(1)) + 1
if st.stack_depth() >= 3:
ctxt[S2_has_head] = st.has_head(st.S(2)) + 1
cdef inline int min_(int a, int b) nogil:
return a if a > b else b
ner = (
(N0W,),
(P1W,),
(N1W,),
(P2W,),
(N2W,),
(P1W, N0W,),
(N0W, N1W),
(N0_prefix,),
(N0_suffix,),
(P1_shape,),
(N0_shape,),
(N1_shape,),
(P1_shape, N0_shape,),
(N0_shape, P1_shape,),
(P1_shape, N0_shape, N1_shape),
(N2_shape,),
(P2_shape,),
#(P2_norm, P1_norm, W_norm),
#(P1_norm, W_norm, N1_norm),
#(W_norm, N1_norm, N2_norm)
(P2p,),
(P1p,),
(N0p,),
(N1p,),
(N2p,),
(P1p, N0p),
(N0p, N1p),
(P2p, P1p, N0p),
(P1p, N0p, N1p),
(N0p, N1p, N2p),
(P2c,),
(P1c,),
(N0c,),
(N1c,),
(N2c,),
(P1c, N0c),
(N0c, N1c),
(E0W,),
(E0c,),
(E0p,),
(E0W, N0W),
(E0c, N0W),
(E0p, N0W),
(E0p, P1p, N0p),
(E0c, P1c, N0c),
(E0w, P1c),
(E0p, P1p),
(E0c, P1c),
(E0p, E1p),
(E0c, P1p),
(E1W,),
(E1c,),
(E1p,),
(E0W, E1W),
(E0W, E1p,),
(E0p, E1W,),
(E0p, E1W),
(P1_ne_iob,),
(P1_ne_iob, P1_ne_type),
(N0w, P1_ne_iob, P1_ne_type),
(N0_shape,),
(N1_shape,),
(N2_shape,),
(P1_shape,),
(P2_shape,),
(N0_prefix,),
(N0_suffix,),
(P1_ne_iob,),
(P2_ne_iob,),
(P1_ne_iob, P2_ne_iob),
(P1_ne_iob, P1_ne_type),
(P2_ne_iob, P2_ne_type),
(N0w, P1_ne_iob, P1_ne_type),
(N0w, N1w),
)
unigrams = (
(S2W, S2p),
(S2c6, S2p),
(S1W, S1p),
(S1c6, S1p),
(S0W, S0p),
(S0c6, S0p),
(N0W, N0p),
(N0p,),
(N0c,),
(N0c6, N0p),
(N0L,),
(N1W, N1p),
(N1c6, N1p),
(N2W, N2p),
(N2c6, N2p),
(S0r2W, S0r2p),
(S0r2c6, S0r2p),
(S0r2L,),
(S0rW, S0rp),
(S0rc6, S0rp),
(S0rL,),
(S0l2W, S0l2p),
(S0l2c6, S0l2p),
(S0l2L,),
(S0lW, S0lp),
(S0lc6, S0lp),
(S0lL,),
(N0l2W, N0l2p),
(N0l2c6, N0l2p),
(N0l2L,),
(N0lW, N0lp),
(N0lc6, N0lp),
(N0lL,),
)
s0_n0 = (
(S0W, S0p, N0W, N0p),
(S0c, S0p, N0c, N0p),
(S0c6, S0p, N0c6, N0p),
(S0c4, S0p, N0c4, N0p),
(S0p, N0p),
(S0W, N0p),
(S0p, N0W),
(S0W, N0c),
(S0c, N0W),
(S0p, N0c),
(S0c, N0p),
(S0W, S0rp, N0p),
(S0p, S0rp, N0p),
(S0p, N0lp, N0W),
(S0p, N0lp, N0p),
(S0L, N0p),
(S0p, S0rL, N0p),
(S0p, N0lL, N0p),
(S0p, S0rv, N0p),
(S0p, N0lv, N0p),
(S0c6, S0rL, S0r2L, N0p),
(S0p, N0lL, N0l2L, N0p),
)
s1_s0 = (
(S1p, S0p),
(S1p, S0p, S0_has_head),
(S1W, S0p),
(S1W, S0p, S0_has_head),
(S1c, S0p),
(S1c, S0p, S0_has_head),
(S1p, S1rL, S0p),
(S1p, S1rL, S0p, S0_has_head),
(S1p, S0lL, S0p),
(S1p, S0lL, S0p, S0_has_head),
(S1p, S0lL, S0l2L, S0p),
(S1p, S0lL, S0l2L, S0p, S0_has_head),
(S1L, S0L, S0W),
(S1L, S0L, S0p),
(S1p, S1L, S0L, S0p),
(S1p, S0p),
)
s1_n0 = (
(S1p, N0p),
(S1c, N0c),
(S1c, N0p),
(S1p, N0c),
(S1W, S1p, N0p),
(S1p, N0W, N0p),
(S1c6, S1p, N0c6, N0p),
(S1L, N0p),
(S1p, S1rL, N0p),
(S1p, S1rp, N0p),
)
s0_n1 = (
(S0p, N1p),
(S0c, N1c),
(S0c, N1p),
(S0p, N1c),
(S0W, S0p, N1p),
(S0p, N1W, N1p),
(S0c6, S0p, N1c6, N1p),
(S0L, N1p),
(S0p, S0rL, N1p),
)
n0_n1 = (
(N0W, N0p, N1W, N1p),
(N0W, N0p, N1p),
(N0p, N1W, N1p),
(N0c, N0p, N1c, N1p),
(N0c6, N0p, N1c6, N1p),
(N0c, N1c),
(N0p, N1c),
)
tree_shape = (
(dist,),
(S0p, S0_has_head, S1_has_head, S2_has_head),
(S0p, S0lv, S0rv),
(N0p, N0lv),
)
trigrams = (
(N0p, N1p, N2p),
(S0p, S0lp, S0l2p),
(S0p, S0rp, S0r2p),
(S0p, S1p, S2p),
(S1p, S0p, N0p),
(S0p, S0lp, N0p),
(S0p, N0p, N0lp),
(N0p, N0lp, N0l2p),
(S0W, S0p, S0rL, S0r2L),
(S0p, S0rL, S0r2L),
(S0W, S0p, S0lL, S0l2L),
(S0p, S0lL, S0l2L),
(N0W, N0p, N0lL, N0l2L),
(N0p, N0lL, N0l2L),
)
words = (
S2w,
S1w,
S1rw,
S0lw,
S0l2w,
S0w,
S0r2w,
S0rw,
N0lw,
N0l2w,
N0w,
N1w,
N2w,
P1w,
P2w
)
tags = (
S2p,
S1p,
S1rp,
S0lp,
S0l2p,
S0p,
S0r2p,
S0rp,
N0lp,
N0l2p,
N0p,
N1p,
N2p,
P1p,
P2p
)
labels = (
S2L,
S1L,
S1rL,
S0lL,
S0l2L,
S0L,
S0r2L,
S0rL,
N0lL,
N0l2L,
N0L,
N1L,
N2L,
P1L,
P2L
)

View File

@ -1,10 +0,0 @@
from .parser cimport Parser
from ..structs cimport TokenC
from thinc.typedefs cimport weight_t
cdef class BeamParser(Parser):
cdef public int beam_width
cdef public weight_t beam_density
cdef int _parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) except -1

View File

@ -1,239 +0,0 @@
"""
MALT-style dependency parser
"""
# cython: profile=True
# cython: experimental_cpp_class_def=True
# cython: cdivision=True
# cython: infer_types=True
# coding: utf-8
from __future__ import unicode_literals, print_function
cimport cython
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from libc.stdint cimport uint32_t, uint64_t
from libc.string cimport memset, memcpy
from libc.stdlib cimport rand
from libc.math cimport log, exp, isnan, isinf
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport real_hash64 as hash64
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from thinc.linear.features cimport ConjunctionExtracter
from thinc.structs cimport FeatureC, ExampleC
from thinc.extra.search cimport Beam, MaxViolation
from thinc.extra.eg cimport Example
from thinc.extra.mb cimport Minibatch
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
from .transition_system cimport TransitionSystem, Transition
from ..gold cimport GoldParse
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from .parser cimport Parser
DEBUG = False
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
pf = _parse_features
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
cdef int BEAM_WIDTH = 16
cdef weight_t BEAM_DENSITY = 0.001
cdef class BeamParser(Parser):
def __init__(self, *args, **kwargs):
self.beam_width = kwargs.get('beam_width', BEAM_WIDTH)
self.beam_density = kwargs.get('beam_density', BEAM_DENSITY)
Parser.__init__(self, *args, **kwargs)
cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil:
with gil:
self._parseC(tokens, length, nr_feat, self.moves.n_moves)
cdef int _parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) except -1:
cdef Beam beam = Beam(self.moves.n_moves, self.beam_width, min_density=self.beam_density)
# TODO: How do we handle new labels here? This increases nr_class
beam.initialize(self.moves.init_beam_state, length, tokens)
beam.check_done(_check_final_state, NULL)
if beam.is_done:
_cleanup(beam)
return 0
while not beam.is_done:
self._advance_beam(beam, None, False)
state = <StateClass>beam.at(0)
self.moves.finalize_state(state.c)
for i in range(length):
tokens[i] = state.c._sent[i]
_cleanup(beam)
def update(self, Doc tokens, GoldParse gold_parse, itn=0):
self.moves.preprocess_gold(gold_parse)
cdef Beam pred = Beam(self.moves.n_moves, self.beam_width)
pred.initialize(self.moves.init_beam_state, tokens.length, tokens.c)
pred.check_done(_check_final_state, NULL)
# Hack for NER
for i in range(pred.size):
stcls = <StateClass>pred.at(i)
self.moves.initialize_state(stcls.c)
cdef Beam gold = Beam(self.moves.n_moves, self.beam_width, min_density=0.0)
gold.initialize(self.moves.init_beam_state, tokens.length, tokens.c)
gold.check_done(_check_final_state, NULL)
violn = MaxViolation()
while not pred.is_done and not gold.is_done:
# We search separately here, to allow for ambiguity in the gold parse.
self._advance_beam(pred, gold_parse, False)
self._advance_beam(gold, gold_parse, True)
violn.check_crf(pred, gold)
if pred.loss > 0 and pred.min_score > (gold.score + self.model.time):
break
else:
# The non-monotonic oracle makes it difficult to ensure final costs are
# correct. Therefore do final correction
for i in range(pred.size):
if self.moves.is_gold_parse(<StateClass>pred.at(i), gold_parse):
pred._states[i].loss = 0.0
elif pred._states[i].loss == 0.0:
pred._states[i].loss = 1.0
violn.check_crf(pred, gold)
if pred.size < 1:
raise Exception("No candidates", tokens.length)
if gold.size < 1:
raise Exception("No gold", tokens.length)
if pred.loss == 0:
self.model.update_from_histories(self.moves, tokens, [(0.0, [])])
elif True:
#_check_train_integrity(pred, gold, gold_parse, self.moves)
histories = list(zip(violn.p_probs, violn.p_hist)) + \
list(zip(violn.g_probs, violn.g_hist))
self.model.update_from_histories(self.moves, tokens, histories, min_grad=0.001**(itn+1))
else:
self.model.update_from_histories(self.moves, tokens,
[(1.0, violn.p_hist[0]), (-1.0, violn.g_hist[0])])
_cleanup(pred)
_cleanup(gold)
return pred.loss
def _advance_beam(self, Beam beam, GoldParse gold, bint follow_gold):
cdef atom_t[CONTEXT_SIZE] context
cdef Pool mem = Pool()
features = <FeatureC*>mem.alloc(self.model.nr_feat, sizeof(FeatureC))
if False:
mb = Minibatch(self.model.widths, beam.size)
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
if stcls.c.is_final():
nr_feat = 0
else:
nr_feat = self.model.set_featuresC(context, features, stcls.c)
self.moves.set_valid(beam.is_valid[i], stcls.c)
mb.c.push_back(features, nr_feat, beam.costs[i], beam.is_valid[i], 0)
self.model(mb)
for i in range(beam.size):
memcpy(beam.scores[i], mb.c.scores(i), mb.c.nr_out() * sizeof(beam.scores[i][0]))
else:
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
if not stcls.is_final():
nr_feat = self.model.set_featuresC(context, features, stcls.c)
self.moves.set_valid(beam.is_valid[i], stcls.c)
self.model.set_scoresC(beam.scores[i], features, nr_feat)
if gold is not None:
n_gold = 0
lines = []
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
if not stcls.c.is_final():
self.moves.set_costs(beam.is_valid[i], beam.costs[i], stcls, gold)
if follow_gold:
for j in range(self.moves.n_moves):
if beam.costs[i][j] >= 1:
beam.is_valid[i][j] = 0
lines.append((stcls.B(0), stcls.B(1),
stcls.B_(0).ent_iob, stcls.B_(1).ent_iob,
stcls.B_(1).sent_start,
j,
beam.is_valid[i][j], 'set invalid',
beam.costs[i][j], self.moves.c[j].move, self.moves.c[j].label))
n_gold += 1 if beam.is_valid[i][j] else 0
if follow_gold and n_gold == 0:
raise Exception("No gold")
if follow_gold:
beam.advance(_transition_state, NULL, <void*>self.moves.c)
else:
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
beam.check_done(_check_final_state, NULL)
# These are passed as callbacks to thinc.search.Beam
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
dest = <StateClass>_dest
src = <StateClass>_src
moves = <const Transition*>_moves
dest.clone(src)
moves[clas].do(dest.c, moves[clas].label)
cdef int _check_final_state(void* _state, void* extra_args) except -1:
return (<StateClass>_state).is_final()
def _cleanup(Beam beam):
for i in range(beam.width):
Py_XDECREF(<PyObject*>beam._states[i].content)
Py_XDECREF(<PyObject*>beam._parents[i].content)
cdef hash_t _hash_state(void* _state, void* _) except 0:
state = <StateClass>_state
if state.c.is_final():
return 1
else:
return state.c.hash()
def _check_train_integrity(Beam pred, Beam gold, GoldParse gold_parse, TransitionSystem moves):
for i in range(pred.size):
if not pred._states[i].is_done or pred._states[i].loss == 0:
continue
state = <StateClass>pred.at(i)
if moves.is_gold_parse(state, gold_parse) == True:
for dep in gold_parse.orig_annot:
print(dep[1], dep[3], dep[4])
print("Cost", pred._states[i].loss)
for j in range(gold_parse.length):
print(gold_parse.orig_annot[j][1], state.H(j), moves.strings[state.safe_get(j).dep])
acts = [moves.c[clas].move for clas in pred.histories[i]]
labels = [moves.c[clas].label for clas in pred.histories[i]]
print([moves.move_name(move, label) for move, label in zip(acts, labels)])
raise Exception("Predicted state is gold-standard")
for i in range(gold.size):
if not gold._states[i].is_done:
continue
state = <StateClass>gold.at(i)
if moves.is_gold(state, gold_parse) == False:
print("Truth")
for dep in gold_parse.orig_annot:
print(dep[1], dep[3], dep[4])
print("Predicted good")
for j in range(gold_parse.length):
print(gold_parse.orig_annot[j][1], state.H(j), moves.strings[state.safe_get(j).dep])
raise Exception("Gold parse is not gold-standard")

View File

@ -1,24 +0,0 @@
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.typedefs cimport atom_t
from thinc.structs cimport FeatureC
from .stateclass cimport StateClass
from .arc_eager cimport TransitionSystem
from ..vocab cimport Vocab
from ..tokens.doc cimport Doc
from ..structs cimport TokenC
from ._state cimport StateC
cdef class ParserModel(AveragedPerceptron):
cdef int set_featuresC(self, atom_t* context, FeatureC* features,
const StateC* state) nogil
cdef class Parser:
cdef readonly Vocab vocab
cdef readonly ParserModel model
cdef readonly TransitionSystem moves
cdef readonly object cfg
cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil

View File

@ -1,526 +0,0 @@
"""
MALT-style dependency parser
"""
# coding: utf-8
# cython: infer_types=True
from __future__ import unicode_literals
from collections import Counter
import ujson
cimport cython
cimport cython.parallel
import numpy.random
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals
from libc.stdint cimport uint32_t, uint64_t
from libc.string cimport memset, memcpy
from libc.stdlib cimport malloc, calloc, free
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.linalg cimport VecVec
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
from thinc.extra.eg cimport Example
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
from preshed.maps cimport MapStruct
from preshed.maps cimport map_get
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from ._state cimport StateC
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
from ..gold cimport GoldParse
USE_FTRL = True
DEBUG = False
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
pf = _parse_features
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
elif name.startswith('embed'):
return (pf.words, pf.tags, pf.labels)
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
cdef class ParserModel(AveragedPerceptron):
cdef int set_featuresC(self, atom_t* context, FeatureC* features,
const StateC* state) nogil:
fill_context(context, state)
nr_feat = self.extracter.set_features(features, context)
return nr_feat
def update(self, Example eg, itn=0):
"""
Does regression on negative cost. Sort of cute?
"""
self.time += 1
cdef int best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
cdef int guess = eg.guess
if guess == best or best == -1:
return 0.0
cdef FeatureC feat
cdef int clas
cdef weight_t gradient
if USE_FTRL:
for feat in eg.c.features[:eg.c.nr_feat]:
for clas in range(eg.c.nr_class):
if eg.c.is_valid[clas] and eg.c.scores[clas] >= eg.c.scores[best]:
gradient = eg.c.scores[clas] + eg.c.costs[clas]
self.update_weight_ftrl(feat.key, clas, feat.value * gradient)
else:
for feat in eg.c.features[:eg.c.nr_feat]:
self.update_weight(feat.key, guess, feat.value * eg.c.costs[guess])
self.update_weight(feat.key, best, -feat.value * eg.c.costs[guess])
return eg.c.costs[guess]
def update_from_histories(self, TransitionSystem moves, Doc doc, histories, weight_t min_grad=0.0):
cdef Pool mem = Pool()
features = <FeatureC*>mem.alloc(self.nr_feat, sizeof(FeatureC))
cdef StateClass stcls
cdef class_t clas
self.time += 1
cdef atom_t[CONTEXT_SIZE] atoms
histories = [(grad, hist) for grad, hist in histories if abs(grad) >= min_grad and hist]
if not histories:
return None
gradient = [Counter() for _ in range(max([max(h)+1 for _, h in histories]))]
for d_loss, history in histories:
stcls = StateClass.init(doc.c, doc.length)
moves.initialize_state(stcls.c)
for clas in history:
nr_feat = self.set_featuresC(atoms, features, stcls.c)
clas_grad = gradient[clas]
for feat in features[:nr_feat]:
clas_grad[feat.key] += d_loss * feat.value
moves.c[clas].do(stcls.c, moves.c[clas].label)
cdef feat_t key
cdef weight_t d_feat
for clas, clas_grad in enumerate(gradient):
for key, d_feat in clas_grad.items():
if d_feat != 0:
self.update_weight_ftrl(key, clas, d_feat)
cdef class Parser:
"""
Base class of the DependencyParser and EntityRecognizer.
"""
@classmethod
def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg):
"""
Load the statistical model from the supplied path.
Arguments:
path (Path):
The path to load from.
vocab (Vocab):
The vocabulary. Must be shared by the documents to be processed.
require (bool):
Whether to raise an error if the files are not found.
Returns (Parser):
The newly constructed object.
"""
with (path / 'config.json').open() as file_:
cfg = ujson.load(file_)
# TODO: remove this shim when we don't have to support older data
if 'labels' in cfg and 'actions' not in cfg:
cfg['actions'] = cfg.pop('labels')
# TODO: remove this shim when we don't have to support older data
for action_name, labels in dict(cfg.get('actions', {})).items():
# We need this to be sorted
if isinstance(labels, dict):
labels = list(sorted(labels.keys()))
cfg['actions'][action_name] = labels
self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg)
if (path / 'model').exists():
self.model.load(str(path / 'model'))
elif require:
raise IOError(
"Required file %s/model not found when loading" % str(path))
return self
def __init__(self, Vocab vocab, TransitionSystem=None, ParserModel model=None, **cfg):
"""
Create a Parser.
Arguments:
vocab (Vocab):
The vocabulary object. Must be shared with documents to be processed.
model (thinc.linear.AveragedPerceptron):
The statistical model.
Returns (Parser):
The newly constructed object.
"""
if TransitionSystem is None:
TransitionSystem = self.TransitionSystem
self.vocab = vocab
cfg['actions'] = TransitionSystem.get_actions(**cfg)
self.moves = TransitionSystem(vocab.strings, cfg['actions'])
# TODO: Remove this when we no longer need to support old-style models
if isinstance(cfg.get('features'), basestring):
cfg['features'] = get_templates(cfg['features'])
elif 'features' not in cfg:
cfg['features'] = self.feature_templates
self.model = ParserModel(cfg['features'])
self.model.l1_penalty = cfg.get('L1', 0.0)
self.model.learn_rate = cfg.get('learn_rate', 0.001)
self.cfg = cfg
# TODO: This is a pretty hacky fix to the problem of adding more
# labels. The issue is they come in out of order, if labels are
# added during training
for label in cfg.get('extra_labels', []):
self.add_label(label)
def __reduce__(self):
return (Parser, (self.vocab, self.moves, self.model), None, None)
def __call__(self, Doc tokens):
"""
Apply the entity recognizer, setting the annotations onto the Doc object.
Arguments:
doc (Doc): The document to be processed.
Returns:
None
"""
cdef int nr_feat = self.model.nr_feat
with nogil:
status = self.parseC(tokens.c, tokens.length, nr_feat)
# Check for KeyboardInterrupt etc. Untested
PyErr_CheckSignals()
if status != 0:
raise ParserStateError(tokens)
self.moves.finalize_doc(tokens)
def pipe(self, stream, int batch_size=1000, int n_threads=2):
"""
Process a stream of documents.
Arguments:
stream: The sequence of documents to process.
batch_size (int):
The number of documents to accumulate into a working set.
n_threads (int):
The number of threads with which to work on the buffer in parallel.
Yields (Doc): Documents, in order.
"""
cdef Pool mem = Pool()
cdef TokenC** doc_ptr = <TokenC**>mem.alloc(batch_size, sizeof(TokenC*))
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
cdef Doc doc
cdef int i
cdef int nr_feat = self.model.nr_feat
cdef int status
queue = []
for doc in stream:
doc_ptr[len(queue)] = doc.c
lengths[len(queue)] = doc.length
queue.append(doc)
if len(queue) == batch_size:
with nogil:
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
status = self.parseC(doc_ptr[i], lengths[i], nr_feat)
if status != 0:
with gil:
raise ParserStateError(queue[i])
PyErr_CheckSignals()
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
queue = []
batch_size = len(queue)
with nogil:
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
status = self.parseC(doc_ptr[i], lengths[i], nr_feat)
if status != 0:
with gil:
raise ParserStateError(queue[i])
PyErr_CheckSignals()
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil:
state = new StateC(tokens, length)
# NB: This can change self.moves.n_moves!
# I think this causes memory errors if called by .pipe()
self.moves.initialize_state(state)
nr_class = self.moves.n_moves
cdef ExampleC eg
eg.nr_feat = nr_feat
eg.nr_atom = CONTEXT_SIZE
eg.nr_class = nr_class
eg.features = <FeatureC*>calloc(sizeof(FeatureC), nr_feat)
eg.atoms = <atom_t*>calloc(sizeof(atom_t), CONTEXT_SIZE)
eg.scores = <weight_t*>calloc(sizeof(weight_t), nr_class)
eg.is_valid = <int*>calloc(sizeof(int), nr_class)
cdef int i
while not state.is_final():
eg.nr_feat = self.model.set_featuresC(eg.atoms, eg.features, state)
self.moves.set_valid(eg.is_valid, state)
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat)
guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
if guess < 0:
return 1
action = self.moves.c[guess]
action.do(state, action.label)
memset(eg.scores, 0, sizeof(eg.scores[0]) * eg.nr_class)
for i in range(eg.nr_class):
eg.is_valid[i] = 1
self.moves.finalize_state(state)
for i in range(length):
tokens[i] = state._sent[i]
del state
free(eg.features)
free(eg.atoms)
free(eg.scores)
free(eg.is_valid)
return 0
def update(self, Doc tokens, GoldParse gold, itn=0, double drop=0.0):
"""
Update the statistical model.
Arguments:
doc (Doc):
The example document for the update.
gold (GoldParse):
The gold-standard annotations, to calculate the loss.
Returns (float):
The loss on this example.
"""
self.moves.preprocess_gold(gold)
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
self.moves.initialize_state(stcls.c)
cdef Pool mem = Pool()
cdef Example eg = Example(
nr_class=self.moves.n_moves,
nr_atom=CONTEXT_SIZE,
nr_feat=self.model.nr_feat)
cdef weight_t loss = 0
cdef Transition action
cdef double dropout_rate = self.cfg.get('dropout', drop)
while not stcls.is_final():
eg.c.nr_feat = self.model.set_featuresC(eg.c.atoms, eg.c.features,
stcls.c)
dropout(eg.c.features, eg.c.nr_feat, dropout_rate)
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
self.model.update(eg)
action = self.moves.c[guess]
action.do(stcls.c, action.label)
loss += eg.costs[guess]
eg.fill_scores(0, eg.c.nr_class)
eg.fill_costs(0, eg.c.nr_class)
eg.fill_is_valid(1, eg.c.nr_class)
self.moves.finalize_state(stcls.c)
return loss
def step_through(self, Doc doc, GoldParse gold=None):
"""
Set up a stepwise state, to introspect and control the transition sequence.
Arguments:
doc (Doc): The document to step through.
gold (GoldParse): Optional gold parse
Returns (StepwiseState):
A state object, to step through the annotation process.
"""
return StepwiseState(self, doc, gold=gold)
def from_transition_sequence(self, Doc doc, sequence):
"""Control the annotations on a document by specifying a transition sequence
to follow.
Arguments:
doc (Doc): The document to annotate.
sequence: A sequence of action names, as unicode strings.
Returns: None
"""
with self.step_through(doc) as stepwise:
for transition in sequence:
stepwise.transition(transition)
def add_label(self, label):
# Doesn't set label into serializer -- subclasses override it to do that.
for action in self.moves.action_types:
added = self.moves.add_action(action, label)
if added:
# Important that the labels be stored as a list! We need the
# order, or the model goes out of synch
self.cfg.setdefault('extra_labels', []).append(label)
cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1:
if prob <= 0 or prob >= 1.:
return 0
cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat)
cdef double* probs = &py_probs[0]
for i in range(nr_feat):
if probs[i] >= prob:
feats[i].value /= prob
else:
feats[i].value = 0.
cdef class StepwiseState:
cdef readonly StateClass stcls
cdef readonly Example eg
cdef readonly Doc doc
cdef readonly GoldParse gold
cdef readonly Parser parser
def __init__(self, Parser parser, Doc doc, GoldParse gold=None):
self.parser = parser
self.doc = doc
if gold is not None:
self.gold = gold
self.parser.moves.preprocess_gold(self.gold)
else:
self.gold = GoldParse(doc)
self.stcls = StateClass.init(doc.c, doc.length)
self.parser.moves.initialize_state(self.stcls.c)
self.eg = Example(
nr_class=self.parser.moves.n_moves,
nr_atom=CONTEXT_SIZE,
nr_feat=self.parser.model.nr_feat)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.finish()
@property
def is_final(self):
return self.stcls.is_final()
@property
def stack(self):
return self.stcls.stack
@property
def queue(self):
return self.stcls.queue
@property
def heads(self):
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
@property
def deps(self):
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
for i in range(self.stcls.c.length)]
@property
def costs(self):
"""
Find the action-costs for the current state.
"""
if not self.gold:
raise ValueError("Can't set costs: No GoldParse provided")
self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs,
self.stcls, self.gold)
costs = {}
for i in range(self.parser.moves.n_moves):
if not self.eg.c.is_valid[i]:
continue
transition = self.parser.moves.c[i]
name = self.parser.moves.move_name(transition.move, transition.label)
costs[name] = self.eg.c.costs[i]
return costs
def predict(self):
self.eg.reset()
self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
self.stcls.c)
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
self.parser.model.set_scoresC(self.eg.c.scores,
self.eg.c.features, self.eg.c.nr_feat)
cdef Transition action = self.parser.moves.c[self.eg.guess]
return self.parser.moves.move_name(action.move, action.label)
def transition(self, action_name=None):
if action_name is None:
action_name = self.predict()
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
if action_name == '_':
action_name = self.predict()
action = self.parser.moves.lookup_transition(action_name)
elif action_name == 'L' or action_name == 'R':
self.predict()
move = moves[action_name]
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
self.eg.c.nr_class)
action = self.parser.moves.c[clas]
else:
action = self.parser.moves.lookup_transition(action_name)
action.do(self.stcls.c, action.label)
def finish(self):
if self.stcls.is_final():
self.parser.moves.finalize_state(self.stcls.c)
self.doc.set_parse(self.stcls.c._sent)
self.parser.moves.finalize_doc(self.doc)
class ParserStateError(ValueError):
def __init__(self, doc):
ValueError.__init__(self,
"Error analysing doc -- no valid actions available. This should "
"never happen, so please report the error on the issue tracker. "
"Here's the thread to do so --- reopen it if it's closed:\n"
"https://github.com/spacy-io/spaCy/issues/429\n"
"Please include the text that the parser failed on, which is:\n"
"%s" % repr(doc.text))
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil:
cdef int best = -1
for i in range(n):
if costs[i] <= 0:
if best == -1 or scores[i] > scores[best]:
best = i
return best
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
int nr_class) except -1:
cdef weight_t score = 0
cdef int mode = -1
cdef int i
for i in range(nr_class):
if actions[i].move == move and (mode == -1 or scores[i] >= score):
mode = i
score = scores[i]
return mode