diff --git a/website/README.md b/website/README.md index db050cf03..66bc20ad9 100644 --- a/website/README.md +++ b/website/README.md @@ -155,7 +155,7 @@ import Tag from 'components/tag' > ```jsx > method -> 2.1 +> 4 > tagger, parser > ``` @@ -170,7 +170,7 @@ installed. -method 2 tagger, +method 4 tagger, parser diff --git a/website/docs/api/cli.md b/website/docs/api/cli.md index fc2c46022..024450920 100644 --- a/website/docs/api/cli.md +++ b/website/docs/api/cli.md @@ -53,7 +53,7 @@ $ python -m spacy download [model] [--direct] [--sdist] [pip_args] | `--direct`, `-D` | Force direct download of exact package version. ~~bool (flag)~~ | | `--sdist`, `-S` 3 | Download the source package (`.tar.gz` archive) instead of the default pre-built binary wheel. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | -| pip args 2.1 | Additional installation options to be passed to `pip install` when installing the pipeline package. For example, `--user` to install to the user home directory or `--no-deps` to not install package dependencies. ~~Any (option/flag)~~ | +| pip args | Additional installation options to be passed to `pip install` when installing the pipeline package. For example, `--user` to install to the user home directory or `--no-deps` to not install package dependencies. ~~Any (option/flag)~~ | | **CREATES** | The installed pipeline package in your `site-packages` directory. | ## info {#info tag="command"} @@ -77,15 +77,15 @@ $ python -m spacy info [--markdown] [--silent] [--exclude] $ python -m spacy info [model] [--markdown] [--silent] [--exclude] ``` -| Name | Description | -| ------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------- | -| `model` | A trained pipeline, i.e. package name or path (optional). ~~Optional[str] \(option)~~ | -| `--markdown`, `-md` | Print information as Markdown. ~~bool (flag)~~ | -| `--silent`, `-s` 2.0.12 | Don't print anything, just return the values. ~~bool (flag)~~ | -| `--exclude`, `-e` | Comma-separated keys to exclude from the print-out. Defaults to `"labels"`. ~~Optional[str]~~ | -| `--url`, `-u` 3.5.0 | Print the URL to download the most recent compatible version of the pipeline. Requires a pipeline name. ~~bool (flag)~~ | -| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | -| **PRINTS** | Information about your spaCy installation. | +| Name | Description | +| -------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------- | +| `model` | A trained pipeline, i.e. package name or path (optional). ~~Optional[str] \(option)~~ | +| `--markdown`, `-md` | Print information as Markdown. ~~bool (flag)~~ | +| `--silent`, `-s` | Don't print anything, just return the values. ~~bool (flag)~~ | +| `--exclude`, `-e` | Comma-separated keys to exclude from the print-out. Defaults to `"labels"`. ~~Optional[str]~~ | +| `--url`, `-u` 3.5.0 | Print the URL to download the most recent compatible version of the pipeline. Requires a pipeline name. ~~bool (flag)~~ | +| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | +| **PRINTS** | Information about your spaCy installation. | ## validate {#validate new="2" tag="command"} @@ -260,22 +260,22 @@ chosen based on the file extension of the input file. $ python -m spacy convert [input_file] [output_dir] [--converter] [--file-type] [--n-sents] [--seg-sents] [--base] [--morphology] [--merge-subtokens] [--ner-map] [--lang] ``` -| Name | Description | -| ------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------- | -| `input_path` | Input file or directory. ~~Path (positional)~~ | -| `output_dir` | Output directory for converted file. Defaults to `"-"`, meaning data will be written to `stdout`. ~~Optional[Path] \(option)~~ | -| `--converter`, `-c` 2 | Name of converter to use (see below). ~~str (option)~~ | -| `--file-type`, `-t` 2.1 | Type of file to create. Either `spacy` (default) for binary [`DocBin`](/api/docbin) data or `json` for v2.x JSON format. ~~str (option)~~ | -| `--n-sents`, `-n` | Number of sentences per document. Supported for: `conll`, `conllu`, `iob`, `ner` ~~int (option)~~ | -| `--seg-sents`, `-s` 2.2 | Segment sentences. Supported for: `conll`, `ner` ~~bool (flag)~~ | -| `--base`, `-b`, `--model` | Trained spaCy pipeline for sentence segmentation to use as base (for `--seg-sents`). ~~Optional[str](option)~~ | -| `--morphology`, `-m` | Enable appending morphology to tags. Supported for: `conllu` ~~bool (flag)~~ | -| `--merge-subtokens`, `-T` | Merge CoNLL-U subtokens ~~bool (flag)~~ | -| `--ner-map`, `-nm` | NER tag mapping (as JSON-encoded dict of entity types). Supported for: `conllu` ~~Optional[Path](option)~~ | -| `--lang`, `-l` 2.1 | Language code (if tokenizer required). ~~Optional[str] \(option)~~ | -| `--concatenate`, `-C` | Concatenate output to a single file ~~bool (flag)~~ | -| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | -| **CREATES** | Binary [`DocBin`](/api/docbin) training data that can be used with [`spacy train`](/api/cli#train). | +| Name | Description | +| ------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- | +| `input_path` | Input file or directory. ~~Path (positional)~~ | +| `output_dir` | Output directory for converted file. Defaults to `"-"`, meaning data will be written to `stdout`. ~~Optional[Path] \(option)~~ | +| `--converter`, `-c` | Name of converter to use (see below). ~~str (option)~~ | +| `--file-type`, `-t` | Type of file to create. Either `spacy` (default) for binary [`DocBin`](/api/docbin) data or `json` for v2.x JSON format. ~~str (option)~~ | +| `--n-sents`, `-n` | Number of sentences per document. Supported for: `conll`, `conllu`, `iob`, `ner` ~~int (option)~~ | +| `--seg-sents`, `-s` | Segment sentences. Supported for: `conll`, `ner` ~~bool (flag)~~ | +| `--base`, `-b`, `--model` | Trained spaCy pipeline for sentence segmentation to use as base (for `--seg-sents`). ~~Optional[str](option)~~ | +| `--morphology`, `-m` | Enable appending morphology to tags. Supported for: `conllu` ~~bool (flag)~~ | +| `--merge-subtokens`, `-T` | Merge CoNLL-U subtokens ~~bool (flag)~~ | +| `--ner-map`, `-nm` | NER tag mapping (as JSON-encoded dict of entity types). Supported for: `conllu` ~~Optional[Path](option)~~ | +| `--lang`, `-l` | Language code (if tokenizer required). ~~Optional[str] \(option)~~ | +| `--concatenate`, `-C` | Concatenate output to a single file ~~bool (flag)~~ | +| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | +| **CREATES** | Binary [`DocBin`](/api/docbin) training data that can be used with [`spacy train`](/api/cli#train). | ### Converters {#converters} @@ -474,8 +474,7 @@ report span characteristics such as the average span length and the span (or span boundary) distinctiveness. The distinctiveness measure shows how different the tokens are with respect to the rest of the corpus using the KL-divergence of the token distributions. To learn more, you can check out Papay et al.'s work on -[*Dissecting Span Identification Tasks with Performance Prediction* (EMNLP -2020)](https://aclanthology.org/2020.emnlp-main.396/). +[*Dissecting Span Identification Tasks with Performance Prediction* (EMNLP 2020)](https://aclanthology.org/2020.emnlp-main.396/). @@ -1229,19 +1228,19 @@ $ python -m spacy package [input_dir] [output_dir] [--code] [--meta-path] [--cre > $ pip install dist/en_pipeline-0.0.0.tar.gz > ``` -| Name | Description | -| ------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `input_dir` | Path to directory containing pipeline data. ~~Path (positional)~~ | -| `output_dir` | Directory to create package folder in. ~~Path (positional)~~ | -| `--code`, `-c` 3 | Comma-separated paths to Python files to be included in the package and imported in its `__init__.py`. This allows including [registering functions](/usage/training#custom-functions) and [custom components](/usage/processing-pipelines#custom-components). ~~str (option)~~ | -| `--meta-path`, `-m` 2 | Path to [`meta.json`](/api/data-formats#meta) file (optional). ~~Optional[Path] \(option)~~ | -| `--create-meta`, `-C` 2 | Create a `meta.json` file on the command line, even if one already exists in the directory. If an existing file is found, its entries will be shown as the defaults in the command line prompt. ~~bool (flag)~~ | -| `--build`, `-b` 3 | Comma-separated artifact formats to build. Can be `sdist` (for a `.tar.gz` archive) and/or `wheel` (for a binary `.whl` file), or `none` if you want to run this step manually. The generated artifacts can be installed by `pip install`. Defaults to `sdist`. ~~str (option)~~ | -| `--name`, `-n` 3 | Package name to override in meta. ~~Optional[str] \(option)~~ | -| `--version`, `-v` 3 | Package version to override in meta. Useful when training new versions, as it doesn't require editing the meta template. ~~Optional[str] \(option)~~ | -| `--force`, `-f` | Force overwriting of existing folder in output directory. ~~bool (flag)~~ | -| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | -| **CREATES** | A Python package containing the spaCy pipeline. | +| Name | Description | +| -------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `input_dir` | Path to directory containing pipeline data. ~~Path (positional)~~ | +| `output_dir` | Directory to create package folder in. ~~Path (positional)~~ | +| `--code`, `-c` 3 | Comma-separated paths to Python files to be included in the package and imported in its `__init__.py`. This allows including [registering functions](/usage/training#custom-functions) and [custom components](/usage/processing-pipelines#custom-components). ~~str (option)~~ | +| `--meta-path`, `-m` | Path to [`meta.json`](/api/data-formats#meta) file (optional). ~~Optional[Path] \(option)~~ | +| `--create-meta`, `-C` | Create a `meta.json` file on the command line, even if one already exists in the directory. If an existing file is found, its entries will be shown as the defaults in the command line prompt. ~~bool (flag)~~ | +| `--build`, `-b` 3 | Comma-separated artifact formats to build. Can be `sdist` (for a `.tar.gz` archive) and/or `wheel` (for a binary `.whl` file), or `none` if you want to run this step manually. The generated artifacts can be installed by `pip install`. Defaults to `sdist`. ~~str (option)~~ | +| `--name`, `-n` 3 | Package name to override in meta. ~~Optional[str] \(option)~~ | +| `--version`, `-v` 3 | Package version to override in meta. Useful when training new versions, as it doesn't require editing the meta template. ~~Optional[str] \(option)~~ | +| `--force`, `-f` | Force overwriting of existing folder in output directory. ~~bool (flag)~~ | +| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | +| **CREATES** | A Python package containing the spaCy pipeline. | ## project {#project new="3"} diff --git a/website/docs/api/doc.md b/website/docs/api/doc.md index f97ed4547..090489d83 100644 --- a/website/docs/api/doc.md +++ b/website/docs/api/doc.md @@ -209,15 +209,15 @@ alignment mode `"strict". > assert span.text == "New York" > ``` -| Name | Description | -| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `start` | The index of the first character of the span. ~~int~~ | -| `end` | The index of the last character after the span. ~~int~~ | -| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ | -| `kb_id` 2.2 | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ | -| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ | -| `alignment_mode` | How character indices snap to token boundaries. Options: `"strict"` (no snapping), `"contract"` (span of all tokens completely within the character span), `"expand"` (span of all tokens at least partially covered by the character span). Defaults to `"strict"`. ~~str~~ | -| **RETURNS** | The newly constructed object or `None`. ~~Optional[Span]~~ | +| Name | Description | +| ---------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `start` | The index of the first character of the span. ~~int~~ | +| `end` | The index of the last character after the span. ~~int~~ | +| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ | +| `kb_id` | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ | +| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ | +| `alignment_mode` | How character indices snap to token boundaries. Options: `"strict"` (no snapping), `"contract"` (span of all tokens completely within the character span), `"expand"` (span of all tokens at least partially covered by the character span). Defaults to `"strict"`. ~~str~~ | +| **RETURNS** | The newly constructed object or `None`. ~~Optional[Span]~~ | ## Doc.set_ents {#set_ents tag="method" new="3"} @@ -751,22 +751,22 @@ The L2 norm of the document's vector representation. ## Attributes {#attributes} -| Name | Description | -| ------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------- | -| `text` | A string representation of the document text. ~~str~~ | -| `text_with_ws` | An alias of `Doc.text`, provided for duck-type compatibility with `Span` and `Token`. ~~str~~ | -| `mem` | The document's local memory heap, for all C data it owns. ~~cymem.Pool~~ | -| `vocab` | The store of lexical types. ~~Vocab~~ | -| `tensor` 2 | Container for dense vector representations. ~~numpy.ndarray~~ | -| `user_data` | A generic storage area, for user custom data. ~~Dict[str, Any]~~ | -| `lang` 2.1 | Language of the document's vocabulary. ~~int~~ | -| `lang_` 2.1 | Language of the document's vocabulary. ~~str~~ | -| `sentiment` | The document's positivity/negativity score, if available. ~~float~~ | -| `user_hooks` | A dictionary that allows customization of the `Doc`'s properties. ~~Dict[str, Callable]~~ | -| `user_token_hooks` | A dictionary that allows customization of properties of `Token` children. ~~Dict[str, Callable]~~ | -| `user_span_hooks` | A dictionary that allows customization of properties of `Span` children. ~~Dict[str, Callable]~~ | -| `has_unknown_spaces` | Whether the document was constructed without known spacing between tokens (typically when created from gold tokenization). ~~bool~~ | -| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ | +| Name | Description | +| -------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | +| `text` | A string representation of the document text. ~~str~~ | +| `text_with_ws` | An alias of `Doc.text`, provided for duck-type compatibility with `Span` and `Token`. ~~str~~ | +| `mem` | The document's local memory heap, for all C data it owns. ~~cymem.Pool~~ | +| `vocab` | The store of lexical types. ~~Vocab~~ | +| `tensor` | Container for dense vector representations. ~~numpy.ndarray~~ | +| `user_data` | A generic storage area, for user custom data. ~~Dict[str, Any]~~ | +| `lang` | Language of the document's vocabulary. ~~int~~ | +| `lang_` | Language of the document's vocabulary. ~~str~~ | +| `sentiment` | The document's positivity/negativity score, if available. ~~float~~ | +| `user_hooks` | A dictionary that allows customization of the `Doc`'s properties. ~~Dict[str, Callable]~~ | +| `user_token_hooks` | A dictionary that allows customization of properties of `Token` children. ~~Dict[str, Callable]~~ | +| `user_span_hooks` | A dictionary that allows customization of properties of `Span` children. ~~Dict[str, Callable]~~ | +| `has_unknown_spaces` | Whether the document was constructed without known spacing between tokens (typically when created from gold tokenization). ~~bool~~ | +| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ | ## Serialization fields {#serialization-fields} diff --git a/website/docs/api/language.md b/website/docs/api/language.md index 504640d57..ad0ac2a46 100644 --- a/website/docs/api/language.md +++ b/website/docs/api/language.md @@ -63,18 +63,18 @@ spaCy loads a model under the hood based on its > nlp = Language.from_config(config) > ``` -| Name | Description | -| ------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `config` | The loaded config. ~~Union[Dict[str, Any], Config]~~ | -| _keyword-only_ | | -| `vocab` | A `Vocab` object. If `True`, a vocab is created using the default language data settings. ~~Vocab~~ | +| Name | Description | +| ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `config` | The loaded config. ~~Union[Dict[str, Any], Config]~~ | +| _keyword-only_ | | +| `vocab` | A `Vocab` object. If `True`, a vocab is created using the default language data settings. ~~Vocab~~ | | `disable` | Name(s) of pipeline component(s) to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). Is merged with the config entry `nlp.disabled`. ~~Union[str, Iterable[str]]~~ | -| `enable` 3.4 | Name(s) of pipeline component(s) to [enable](/usage/processing-pipelines#disabling). All other pipes will be disabled, but can be enabled again using [nlp.enable_pipe](/api/language#enable_pipe). ~~Union[str, Iterable[str]]~~ | -| `exclude` | Name(s) of pipeline component(s) to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~Union[str, Iterable[str]]~~ | -| `meta` | [Meta data](/api/data-formats#meta) overrides. ~~Dict[str, Any]~~ | -| `auto_fill` | Whether to automatically fill in missing values in the config, based on defaults and function argument annotations. Defaults to `True`. ~~bool~~ | -| `validate` | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~ | -| **RETURNS** | The initialized object. ~~Language~~ | +| `enable` 3.4 | Name(s) of pipeline component(s) to [enable](/usage/processing-pipelines#disabling). All other pipes will be disabled, but can be enabled again using [nlp.enable_pipe](/api/language#enable_pipe). ~~Union[str, Iterable[str]]~~ | +| `exclude` | Name(s) of pipeline component(s) to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~Union[str, Iterable[str]]~~ | +| `meta` | [Meta data](/api/data-formats#meta) overrides. ~~Dict[str, Any]~~ | +| `auto_fill` | Whether to automatically fill in missing values in the config, based on defaults and function argument annotations. Defaults to `True`. ~~bool~~ | +| `validate` | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~ | +| **RETURNS** | The initialized object. ~~Language~~ | ## Language.component {#component tag="classmethod" new="3"} @@ -198,16 +198,16 @@ tokenization is skipped but the rest of the pipeline is run. > assert doc.has_annotation("DEP") > ``` -| Name | Description | -| ------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `texts` | A sequence of strings (or `Doc` objects). ~~Iterable[Union[str, Doc]]~~ | -| _keyword-only_ | | -| `as_tuples` | If set to `True`, inputs should be a sequence of `(text, context)` tuples. Output will then be a sequence of `(doc, context)` tuples. Defaults to `False`. ~~bool~~ | -| `batch_size` | The number of texts to buffer. ~~Optional[int]~~ | -| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~ | -| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ | -| `n_process` 2.2.2 | Number of processors to use. Defaults to `1`. ~~int~~ | -| **YIELDS** | Documents in the order of the original text. ~~Doc~~ | +| Name | Description | +| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `texts` | A sequence of strings (or `Doc` objects). ~~Iterable[Union[str, Doc]]~~ | +| _keyword-only_ | | +| `as_tuples` | If set to `True`, inputs should be a sequence of `(text, context)` tuples. Output will then be a sequence of `(doc, context)` tuples. Defaults to `False`. ~~bool~~ | +| `batch_size` | The number of texts to buffer. ~~Optional[int]~~ | +| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~ | +| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ | +| `n_process` | Number of processors to use. Defaults to `1`. ~~int~~ | +| **YIELDS** | Documents in the order of the original text. ~~Doc~~ | ## Language.set_error_handler {#set_error_handler tag="method" new="3"} @@ -1030,21 +1030,21 @@ details. ## Attributes {#attributes} -| Name | Description | -| --------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- | -| `vocab` | A container for the lexical types. ~~Vocab~~ | -| `tokenizer` | The tokenizer. ~~Tokenizer~~ | -| `make_doc` | Callable that takes a string and returns a `Doc`. ~~Callable[[str], Doc]~~ | -| `pipeline` | List of `(name, component)` tuples describing the current processing pipeline, in order. ~~List[Tuple[str, Callable[[Doc], Doc]]]~~ | -| `pipe_names` 2 | List of pipeline component names, in order. ~~List[str]~~ | -| `pipe_labels` 2.2 | List of labels set by the pipeline components, if available, keyed by component name. ~~Dict[str, List[str]]~~ | -| `pipe_factories` 2.2 | Dictionary of pipeline component names, mapped to their factory names. ~~Dict[str, str]~~ | -| `factories` | All available factory functions, keyed by name. ~~Dict[str, Callable[[...], Callable[[Doc], Doc]]]~~ | -| `factory_names` 3 | List of all available factory names. ~~List[str]~~ | -| `components` 3 | List of all available `(name, component)` tuples, including components that are currently disabled. ~~List[Tuple[str, Callable[[Doc], Doc]]]~~ | -| `component_names` 3 | List of all available component names, including components that are currently disabled. ~~List[str]~~ | -| `disabled` 3 | Names of components that are currently disabled and don't run as part of the pipeline. ~~List[str]~~ | -| `path` 2 | Path to the pipeline data directory, if a pipeline is loaded from a path or package. Otherwise `None`. ~~Optional[Path]~~ | +| Name | Description | +| -------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- | +| `vocab` | A container for the lexical types. ~~Vocab~~ | +| `tokenizer` | The tokenizer. ~~Tokenizer~~ | +| `make_doc` | Callable that takes a string and returns a `Doc`. ~~Callable[[str], Doc]~~ | +| `pipeline` | List of `(name, component)` tuples describing the current processing pipeline, in order. ~~List[Tuple[str, Callable[[Doc], Doc]]]~~ | +| `pipe_names` | List of pipeline component names, in order. ~~List[str]~~ | +| `pipe_labels` | List of labels set by the pipeline components, if available, keyed by component name. ~~Dict[str, List[str]]~~ | +| `pipe_factories` | Dictionary of pipeline component names, mapped to their factory names. ~~Dict[str, str]~~ | +| `factories` | All available factory functions, keyed by name. ~~Dict[str, Callable[[...], Callable[[Doc], Doc]]]~~ | +| `factory_names` 3 | List of all available factory names. ~~List[str]~~ | +| `components` 3 | List of all available `(name, component)` tuples, including components that are currently disabled. ~~List[Tuple[str, Callable[[Doc], Doc]]]~~ | +| `component_names` 3 | List of all available component names, including components that are currently disabled. ~~List[str]~~ | +| `disabled` 3 | Names of components that are currently disabled and don't run as part of the pipeline. ~~List[str]~~ | +| `path` | Path to the pipeline data directory, if a pipeline is loaded from a path or package. Otherwise `None`. ~~Optional[Path]~~ | ## Class attributes {#class-attributes} diff --git a/website/docs/api/lexeme.md b/website/docs/api/lexeme.md index c5d4b7544..eb76afa90 100644 --- a/website/docs/api/lexeme.md +++ b/website/docs/api/lexeme.md @@ -121,44 +121,44 @@ The L2 norm of the lexeme's vector representation. ## Attributes {#attributes} -| Name | Description | -| -------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `vocab` | The lexeme's vocabulary. ~~Vocab~~ | -| `text` | Verbatim text content. ~~str~~ | -| `orth` | ID of the verbatim text content. ~~int~~ | -| `orth_` | Verbatim text content (identical to `Lexeme.text`). Exists mostly for consistency with the other attributes. ~~str~~ | -| `rank` | Sequential ID of the lexeme's lexical type, used to index into tables, e.g. for word vectors. ~~int~~ | -| `flags` | Container of the lexeme's binary flags. ~~int~~ | -| `norm` | The lexeme's norm, i.e. a normalized form of the lexeme text. ~~int~~ | -| `norm_` | The lexeme's norm, i.e. a normalized form of the lexeme text. ~~str~~ | -| `lower` | Lowercase form of the word. ~~int~~ | -| `lower_` | Lowercase form of the word. ~~str~~ | -| `shape` | Transform of the word's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~int~~ | -| `shape_` | Transform of the word's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~str~~ | -| `prefix` | Length-N substring from the start of the word. Defaults to `N=1`. ~~int~~ | -| `prefix_` | Length-N substring from the start of the word. Defaults to `N=1`. ~~str~~ | -| `suffix` | Length-N substring from the end of the word. Defaults to `N=3`. ~~int~~ | -| `suffix_` | Length-N substring from the start of the word. Defaults to `N=3`. ~~str~~ | -| `is_alpha` | Does the lexeme consist of alphabetic characters? Equivalent to `lexeme.text.isalpha()`. ~~bool~~ | -| `is_ascii` | Does the lexeme consist of ASCII characters? Equivalent to `[any(ord(c) >= 128 for c in lexeme.text)]`. ~~bool~~ | -| `is_digit` | Does the lexeme consist of digits? Equivalent to `lexeme.text.isdigit()`. ~~bool~~ | -| `is_lower` | Is the lexeme in lowercase? Equivalent to `lexeme.text.islower()`. ~~bool~~ | -| `is_upper` | Is the lexeme in uppercase? Equivalent to `lexeme.text.isupper()`. ~~bool~~ | -| `is_title` | Is the lexeme in titlecase? Equivalent to `lexeme.text.istitle()`. ~~bool~~ | -| `is_punct` | Is the lexeme punctuation? ~~bool~~ | -| `is_left_punct` | Is the lexeme a left punctuation mark, e.g. `(`? ~~bool~~ | -| `is_right_punct` | Is the lexeme a right punctuation mark, e.g. `)`? ~~bool~~ | -| `is_space` | Does the lexeme consist of whitespace characters? Equivalent to `lexeme.text.isspace()`. ~~bool~~ | -| `is_bracket` | Is the lexeme a bracket? ~~bool~~ | -| `is_quote` | Is the lexeme a quotation mark? ~~bool~~ | -| `is_currency` 2.0.8 | Is the lexeme a currency symbol? ~~bool~~ | -| `like_url` | Does the lexeme resemble a URL? ~~bool~~ | -| `like_num` | Does the lexeme represent a number? e.g. "10.9", "10", "ten", etc. ~~bool~~ | -| `like_email` | Does the lexeme resemble an email address? ~~bool~~ | -| `is_oov` | Is the lexeme out-of-vocabulary (i.e. does it not have a word vector)? ~~bool~~ | -| `is_stop` | Is the lexeme part of a "stop list"? ~~bool~~ | -| `lang` | Language of the parent vocabulary. ~~int~~ | -| `lang_` | Language of the parent vocabulary. ~~str~~ | -| `prob` | Smoothed log probability estimate of the lexeme's word type (context-independent entry in the vocabulary). ~~float~~ | -| `cluster` | Brown cluster ID. ~~int~~ | -| `sentiment` | A scalar value indicating the positivity or negativity of the lexeme. ~~float~~ | +| Name | Description | +| ---------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `vocab` | The lexeme's vocabulary. ~~Vocab~~ | +| `text` | Verbatim text content. ~~str~~ | +| `orth` | ID of the verbatim text content. ~~int~~ | +| `orth_` | Verbatim text content (identical to `Lexeme.text`). Exists mostly for consistency with the other attributes. ~~str~~ | +| `rank` | Sequential ID of the lexeme's lexical type, used to index into tables, e.g. for word vectors. ~~int~~ | +| `flags` | Container of the lexeme's binary flags. ~~int~~ | +| `norm` | The lexeme's norm, i.e. a normalized form of the lexeme text. ~~int~~ | +| `norm_` | The lexeme's norm, i.e. a normalized form of the lexeme text. ~~str~~ | +| `lower` | Lowercase form of the word. ~~int~~ | +| `lower_` | Lowercase form of the word. ~~str~~ | +| `shape` | Transform of the word's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~int~~ | +| `shape_` | Transform of the word's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~str~~ | +| `prefix` | Length-N substring from the start of the word. Defaults to `N=1`. ~~int~~ | +| `prefix_` | Length-N substring from the start of the word. Defaults to `N=1`. ~~str~~ | +| `suffix` | Length-N substring from the end of the word. Defaults to `N=3`. ~~int~~ | +| `suffix_` | Length-N substring from the start of the word. Defaults to `N=3`. ~~str~~ | +| `is_alpha` | Does the lexeme consist of alphabetic characters? Equivalent to `lexeme.text.isalpha()`. ~~bool~~ | +| `is_ascii` | Does the lexeme consist of ASCII characters? Equivalent to `[any(ord(c) >= 128 for c in lexeme.text)]`. ~~bool~~ | +| `is_digit` | Does the lexeme consist of digits? Equivalent to `lexeme.text.isdigit()`. ~~bool~~ | +| `is_lower` | Is the lexeme in lowercase? Equivalent to `lexeme.text.islower()`. ~~bool~~ | +| `is_upper` | Is the lexeme in uppercase? Equivalent to `lexeme.text.isupper()`. ~~bool~~ | +| `is_title` | Is the lexeme in titlecase? Equivalent to `lexeme.text.istitle()`. ~~bool~~ | +| `is_punct` | Is the lexeme punctuation? ~~bool~~ | +| `is_left_punct` | Is the lexeme a left punctuation mark, e.g. `(`? ~~bool~~ | +| `is_right_punct` | Is the lexeme a right punctuation mark, e.g. `)`? ~~bool~~ | +| `is_space` | Does the lexeme consist of whitespace characters? Equivalent to `lexeme.text.isspace()`. ~~bool~~ | +| `is_bracket` | Is the lexeme a bracket? ~~bool~~ | +| `is_quote` | Is the lexeme a quotation mark? ~~bool~~ | +| `is_currency` | Is the lexeme a currency symbol? ~~bool~~ | +| `like_url` | Does the lexeme resemble a URL? ~~bool~~ | +| `like_num` | Does the lexeme represent a number? e.g. "10.9", "10", "ten", etc. ~~bool~~ | +| `like_email` | Does the lexeme resemble an email address? ~~bool~~ | +| `is_oov` | Is the lexeme out-of-vocabulary (i.e. does it not have a word vector)? ~~bool~~ | +| `is_stop` | Is the lexeme part of a "stop list"? ~~bool~~ | +| `lang` | Language of the parent vocabulary. ~~int~~ | +| `lang_` | Language of the parent vocabulary. ~~str~~ | +| `prob` | Smoothed log probability estimate of the lexeme's word type (context-independent entry in the vocabulary). ~~float~~ | +| `cluster` | Brown cluster ID. ~~int~~ | +| `sentiment` | A scalar value indicating the positivity or negativity of the lexeme. ~~float~~ | diff --git a/website/docs/api/matcher.md b/website/docs/api/matcher.md index 8cc446c6a..cd7bfa070 100644 --- a/website/docs/api/matcher.md +++ b/website/docs/api/matcher.md @@ -33,7 +33,7 @@ rule-based matching are: | Attribute | Description | | ---------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- | | `ORTH` | The exact verbatim text of a token. ~~str~~ | -| `TEXT` 2.1 | The exact verbatim text of a token. ~~str~~ | +| `TEXT` | The exact verbatim text of a token. ~~str~~ | | `NORM` | The normalized form of the token text. ~~str~~ | | `LOWER` | The lowercase form of the token text. ~~str~~ | | `LENGTH` | The length of the token text. ~~int~~ | @@ -48,7 +48,7 @@ rule-based matching are: | `ENT_IOB` | The IOB part of the token's entity tag. ~~str~~ | | `ENT_ID` | The token's entity ID (`ent_id`). ~~str~~ | | `ENT_KB_ID` | The token's entity knowledge base ID (`ent_kb_id`). ~~str~~ | -| `_` 2.1 | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ | +| `_` | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ | | `OP` | Operator or quantifier to determine how often to match a token pattern. ~~str~~ | Operators and quantifiers define **how often** a token pattern should be @@ -64,7 +64,7 @@ matched: > ``` | OP | Description | -|---------|------------------------------------------------------------------------| +| ------- | ---------------------------------------------------------------------- | | `!` | Negate the pattern, by requiring it to match exactly 0 times. | | `?` | Make the pattern optional, by allowing it to match 0 or 1 times. | | `+` | Require the pattern to match 1 or more times. | @@ -109,10 +109,10 @@ string where an integer is expected) or unexpected property names. > matcher = Matcher(nlp.vocab) > ``` -| Name | Description | -| --------------------------------------- | ----------------------------------------------------------------------------------------------------- | -| `vocab` | The vocabulary object, which must be shared with the documents the matcher will operate on. ~~Vocab~~ | -| `validate` 2.1 | Validate all patterns added to this matcher. ~~bool~~ | +| Name | Description | +| ---------- | ----------------------------------------------------------------------------------------------------- | +| `vocab` | The vocabulary object, which must be shared with the documents the matcher will operate on. ~~Vocab~~ | +| `validate` | Validate all patterns added to this matcher. ~~bool~~ | ## Matcher.\_\_call\_\_ {#call tag="method"} diff --git a/website/docs/api/phrasematcher.md b/website/docs/api/phrasematcher.md index 2cef9ac2a..cd419ae5c 100644 --- a/website/docs/api/phrasematcher.md +++ b/website/docs/api/phrasematcher.md @@ -36,11 +36,11 @@ be shown. > matcher = PhraseMatcher(nlp.vocab) > ``` -| Name | Description | -| --------------------------------------- | ------------------------------------------------------------------------------------------------------ | -| `vocab` | The vocabulary object, which must be shared with the documents the matcher will operate on. ~~Vocab~~ | -| `attr` 2.1 | The token attribute to match on. Defaults to `ORTH`, i.e. the verbatim token text. ~~Union[int, str]~~ | -| `validate` 2.1 | Validate patterns added to the matcher. ~~bool~~ | +| Name | Description | +| ---------- | ------------------------------------------------------------------------------------------------------ | +| `vocab` | The vocabulary object, which must be shared with the documents the matcher will operate on. ~~Vocab~~ | +| `attr` | The token attribute to match on. Defaults to `ORTH`, i.e. the verbatim token text. ~~Union[int, str]~~ | +| `validate` | Validate patterns added to the matcher. ~~bool~~ | ## PhraseMatcher.\_\_call\_\_ {#call tag="method"} diff --git a/website/docs/api/span.md b/website/docs/api/span.md index 89f608994..69bbe8db1 100644 --- a/website/docs/api/span.md +++ b/website/docs/api/span.md @@ -186,14 +186,14 @@ the character indices don't map to a valid span. > assert span.text == "New York" > ``` -| Name | Description | -| ------------------------------------ | ----------------------------------------------------------------------------------------- | -| `start` | The index of the first character of the span. ~~int~~ | -| `end` | The index of the last character after the span. ~~int~~ | -| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ | -| `kb_id` 2.2 | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ | -| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ | -| **RETURNS** | The newly constructed object or `None`. ~~Optional[Span]~~ | +| Name | Description | +| ----------- | ----------------------------------------------------------------------------------------- | +| `start` | The index of the first character of the span. ~~int~~ | +| `end` | The index of the last character after the span. ~~int~~ | +| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ | +| `kb_id` | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ | +| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ | +| **RETURNS** | The newly constructed object or `None`. ~~Optional[Span]~~ | ## Span.similarity {#similarity tag="method" model="vectors"} @@ -544,26 +544,26 @@ overlaps with will be returned. ## Attributes {#attributes} -| Name | Description | -| --------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------- | -| `doc` | The parent document. ~~Doc~~ | -| `tensor` 2.1.7 | The span's slice of the parent `Doc`'s tensor. ~~numpy.ndarray~~ | -| `start` | The token offset for the start of the span. ~~int~~ | -| `end` | The token offset for the end of the span. ~~int~~ | -| `start_char` | The character offset for the start of the span. ~~int~~ | -| `end_char` | The character offset for the end of the span. ~~int~~ | -| `text` | A string representation of the span text. ~~str~~ | -| `text_with_ws` | The text content of the span with a trailing whitespace character if the last token has one. ~~str~~ | -| `orth` | ID of the verbatim text content. ~~int~~ | -| `orth_` | Verbatim text content (identical to `Span.text`). Exists mostly for consistency with the other attributes. ~~str~~ | -| `label` | The hash value of the span's label. ~~int~~ | -| `label_` | The span's label. ~~str~~ | -| `lemma_` | The span's lemma. Equivalent to `"".join(token.text_with_ws for token in span)`. ~~str~~ | -| `kb_id` | The hash value of the knowledge base ID referred to by the span. ~~int~~ | -| `kb_id_` | The knowledge base ID referred to by the span. ~~str~~ | -| `ent_id` | The hash value of the named entity the root token is an instance of. ~~int~~ | -| `ent_id_` | The string ID of the named entity the root token is an instance of. ~~str~~ | -| `id` | The hash value of the span's ID. ~~int~~ | -| `id_` | The span's ID. ~~str~~ | -| `sentiment` | A scalar value indicating the positivity or negativity of the span. ~~float~~ | -| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ | +| Name | Description | +| -------------- | ----------------------------------------------------------------------------------------------------------------------------- | +| `doc` | The parent document. ~~Doc~~ | +| `tensor` | The span's slice of the parent `Doc`'s tensor. ~~numpy.ndarray~~ | +| `start` | The token offset for the start of the span. ~~int~~ | +| `end` | The token offset for the end of the span. ~~int~~ | +| `start_char` | The character offset for the start of the span. ~~int~~ | +| `end_char` | The character offset for the end of the span. ~~int~~ | +| `text` | A string representation of the span text. ~~str~~ | +| `text_with_ws` | The text content of the span with a trailing whitespace character if the last token has one. ~~str~~ | +| `orth` | ID of the verbatim text content. ~~int~~ | +| `orth_` | Verbatim text content (identical to `Span.text`). Exists mostly for consistency with the other attributes. ~~str~~ | +| `label` | The hash value of the span's label. ~~int~~ | +| `label_` | The span's label. ~~str~~ | +| `lemma_` | The span's lemma. Equivalent to `"".join(token.text_with_ws for token in span)`. ~~str~~ | +| `kb_id` | The hash value of the knowledge base ID referred to by the span. ~~int~~ | +| `kb_id_` | The knowledge base ID referred to by the span. ~~str~~ | +| `ent_id` | The hash value of the named entity the root token is an instance of. ~~int~~ | +| `ent_id_` | The string ID of the named entity the root token is an instance of. ~~str~~ | +| `id` | The hash value of the span's ID. ~~int~~ | +| `id_` | The span's ID. ~~str~~ | +| `sentiment` | A scalar value indicating the positivity or negativity of the span. ~~float~~ | +| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ | diff --git a/website/docs/api/token.md b/website/docs/api/token.md index d43cd3ff1..89bd77447 100644 --- a/website/docs/api/token.md +++ b/website/docs/api/token.md @@ -403,75 +403,75 @@ The L2 norm of the token's vector representation. ## Attributes {#attributes} -| Name | Description | -| -------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `doc` | The parent document. ~~Doc~~ | -| `lex` 3 | The underlying lexeme. ~~Lexeme~~ | -| `sent` 2.0.12 | The sentence span that this token is a part of. ~~Span~~ | -| `text` | Verbatim text content. ~~str~~ | -| `text_with_ws` | Text content, with trailing space character if present. ~~str~~ | -| `whitespace_` | Trailing space character if present. ~~str~~ | -| `orth` | ID of the verbatim text content. ~~int~~ | -| `orth_` | Verbatim text content (identical to `Token.text`). Exists mostly for consistency with the other attributes. ~~str~~ | -| `vocab` | The vocab object of the parent `Doc`. ~~vocab~~ | -| `tensor` 2.1.7 | The token's slice of the parent `Doc`'s tensor. ~~numpy.ndarray~~ | -| `head` | The syntactic parent, or "governor", of this token. ~~Token~~ | -| `left_edge` | The leftmost token of this token's syntactic descendants. ~~Token~~ | -| `right_edge` | The rightmost token of this token's syntactic descendants. ~~Token~~ | -| `i` | The index of the token within the parent document. ~~int~~ | -| `ent_type` | Named entity type. ~~int~~ | -| `ent_type_` | Named entity type. ~~str~~ | -| `ent_iob` | IOB code of named entity tag. `3` means the token begins an entity, `2` means it is outside an entity, `1` means it is inside an entity, and `0` means no entity tag is set. ~~int~~ | -| `ent_iob_` | IOB code of named entity tag. "B" means the token begins an entity, "I" means it is inside an entity, "O" means it is outside an entity, and "" means no entity tag is set. ~~str~~ | -| `ent_kb_id` 2.2 | Knowledge base ID that refers to the named entity this token is a part of, if any. ~~int~~ | -| `ent_kb_id_` 2.2 | Knowledge base ID that refers to the named entity this token is a part of, if any. ~~str~~ | -| `ent_id` | ID of the entity the token is an instance of, if any. Currently not used, but potentially for coreference resolution. ~~int~~ | -| `ent_id_` | ID of the entity the token is an instance of, if any. Currently not used, but potentially for coreference resolution. ~~str~~ | -| `lemma` | Base form of the token, with no inflectional suffixes. ~~int~~ | -| `lemma_` | Base form of the token, with no inflectional suffixes. ~~str~~ | -| `norm` | The token's norm, i.e. a normalized form of the token text. Can be set in the language's [tokenizer exceptions](/usage/linguistic-features#language-data). ~~int~~ | -| `norm_` | The token's norm, i.e. a normalized form of the token text. Can be set in the language's [tokenizer exceptions](/usage/linguistic-features#language-data). ~~str~~ | -| `lower` | Lowercase form of the token. ~~int~~ | -| `lower_` | Lowercase form of the token text. Equivalent to `Token.text.lower()`. ~~str~~ | -| `shape` | Transform of the token's string to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~int~~ | -| `shape_` | Transform of the token's string to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~str~~ | -| `prefix` | Hash value of a length-N substring from the start of the token. Defaults to `N=1`. ~~int~~ | -| `prefix_` | A length-N substring from the start of the token. Defaults to `N=1`. ~~str~~ | -| `suffix` | Hash value of a length-N substring from the end of the token. Defaults to `N=3`. ~~int~~ | -| `suffix_` | Length-N substring from the end of the token. Defaults to `N=3`. ~~str~~ | -| `is_alpha` | Does the token consist of alphabetic characters? Equivalent to `token.text.isalpha()`. ~~bool~~ | -| `is_ascii` | Does the token consist of ASCII characters? Equivalent to `all(ord(c) < 128 for c in token.text)`. ~~bool~~ | -| `is_digit` | Does the token consist of digits? Equivalent to `token.text.isdigit()`. ~~bool~~ | -| `is_lower` | Is the token in lowercase? Equivalent to `token.text.islower()`. ~~bool~~ | -| `is_upper` | Is the token in uppercase? Equivalent to `token.text.isupper()`. ~~bool~~ | -| `is_title` | Is the token in titlecase? Equivalent to `token.text.istitle()`. ~~bool~~ | -| `is_punct` | Is the token punctuation? ~~bool~~ | -| `is_left_punct` | Is the token a left punctuation mark, e.g. `"("` ? ~~bool~~ | -| `is_right_punct` | Is the token a right punctuation mark, e.g. `")"` ? ~~bool~~ | -| `is_sent_start` | Does the token start a sentence? ~~bool~~ or `None` if unknown. Defaults to `True` for the first token in the `Doc`. | -| `is_sent_end` | Does the token end a sentence? ~~bool~~ or `None` if unknown. | -| `is_space` | Does the token consist of whitespace characters? Equivalent to `token.text.isspace()`. ~~bool~~ | -| `is_bracket` | Is the token a bracket? ~~bool~~ | -| `is_quote` | Is the token a quotation mark? ~~bool~~ | -| `is_currency` 2.0.8 | Is the token a currency symbol? ~~bool~~ | -| `like_url` | Does the token resemble a URL? ~~bool~~ | -| `like_num` | Does the token represent a number? e.g. "10.9", "10", "ten", etc. ~~bool~~ | -| `like_email` | Does the token resemble an email address? ~~bool~~ | -| `is_oov` | Is the token out-of-vocabulary (i.e. does it not have a word vector)? ~~bool~~ | -| `is_stop` | Is the token part of a "stop list"? ~~bool~~ | -| `pos` | Coarse-grained part-of-speech from the [Universal POS tag set](https://universaldependencies.org/u/pos/). ~~int~~ | -| `pos_` | Coarse-grained part-of-speech from the [Universal POS tag set](https://universaldependencies.org/u/pos/). ~~str~~ | -| `tag` | Fine-grained part-of-speech. ~~int~~ | -| `tag_` | Fine-grained part-of-speech. ~~str~~ | -| `morph` 3 | Morphological analysis. ~~MorphAnalysis~~ | -| `dep` | Syntactic dependency relation. ~~int~~ | -| `dep_` | Syntactic dependency relation. ~~str~~ | -| `lang` | Language of the parent document's vocabulary. ~~int~~ | -| `lang_` | Language of the parent document's vocabulary. ~~str~~ | -| `prob` | Smoothed log probability estimate of token's word type (context-independent entry in the vocabulary). ~~float~~ | -| `idx` | The character offset of the token within the parent document. ~~int~~ | -| `sentiment` | A scalar value indicating the positivity or negativity of the token. ~~float~~ | -| `lex_id` | Sequential ID of the token's lexical type, used to index into tables, e.g. for word vectors. ~~int~~ | -| `rank` | Sequential ID of the token's lexical type, used to index into tables, e.g. for word vectors. ~~int~~ | -| `cluster` | Brown cluster ID. ~~int~~ | -| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ | +| Name | Description | +| ---------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `doc` | The parent document. ~~Doc~~ | +| `lex` 3 | The underlying lexeme. ~~Lexeme~~ | +| `sent` | The sentence span that this token is a part of. ~~Span~~ | +| `text` | Verbatim text content. ~~str~~ | +| `text_with_ws` | Text content, with trailing space character if present. ~~str~~ | +| `whitespace_` | Trailing space character if present. ~~str~~ | +| `orth` | ID of the verbatim text content. ~~int~~ | +| `orth_` | Verbatim text content (identical to `Token.text`). Exists mostly for consistency with the other attributes. ~~str~~ | +| `vocab` | The vocab object of the parent `Doc`. ~~vocab~~ | +| `tensor` | The token's slice of the parent `Doc`'s tensor. ~~numpy.ndarray~~ | +| `head` | The syntactic parent, or "governor", of this token. ~~Token~~ | +| `left_edge` | The leftmost token of this token's syntactic descendants. ~~Token~~ | +| `right_edge` | The rightmost token of this token's syntactic descendants. ~~Token~~ | +| `i` | The index of the token within the parent document. ~~int~~ | +| `ent_type` | Named entity type. ~~int~~ | +| `ent_type_` | Named entity type. ~~str~~ | +| `ent_iob` | IOB code of named entity tag. `3` means the token begins an entity, `2` means it is outside an entity, `1` means it is inside an entity, and `0` means no entity tag is set. ~~int~~ | +| `ent_iob_` | IOB code of named entity tag. "B" means the token begins an entity, "I" means it is inside an entity, "O" means it is outside an entity, and "" means no entity tag is set. ~~str~~ | +| `ent_kb_id` | Knowledge base ID that refers to the named entity this token is a part of, if any. ~~int~~ | +| `ent_kb_id_` | Knowledge base ID that refers to the named entity this token is a part of, if any. ~~str~~ | +| `ent_id` | ID of the entity the token is an instance of, if any. Currently not used, but potentially for coreference resolution. ~~int~~ | +| `ent_id_` | ID of the entity the token is an instance of, if any. Currently not used, but potentially for coreference resolution. ~~str~~ | +| `lemma` | Base form of the token, with no inflectional suffixes. ~~int~~ | +| `lemma_` | Base form of the token, with no inflectional suffixes. ~~str~~ | +| `norm` | The token's norm, i.e. a normalized form of the token text. Can be set in the language's [tokenizer exceptions](/usage/linguistic-features#language-data). ~~int~~ | +| `norm_` | The token's norm, i.e. a normalized form of the token text. Can be set in the language's [tokenizer exceptions](/usage/linguistic-features#language-data). ~~str~~ | +| `lower` | Lowercase form of the token. ~~int~~ | +| `lower_` | Lowercase form of the token text. Equivalent to `Token.text.lower()`. ~~str~~ | +| `shape` | Transform of the token's string to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~int~~ | +| `shape_` | Transform of the token's string to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~str~~ | +| `prefix` | Hash value of a length-N substring from the start of the token. Defaults to `N=1`. ~~int~~ | +| `prefix_` | A length-N substring from the start of the token. Defaults to `N=1`. ~~str~~ | +| `suffix` | Hash value of a length-N substring from the end of the token. Defaults to `N=3`. ~~int~~ | +| `suffix_` | Length-N substring from the end of the token. Defaults to `N=3`. ~~str~~ | +| `is_alpha` | Does the token consist of alphabetic characters? Equivalent to `token.text.isalpha()`. ~~bool~~ | +| `is_ascii` | Does the token consist of ASCII characters? Equivalent to `all(ord(c) < 128 for c in token.text)`. ~~bool~~ | +| `is_digit` | Does the token consist of digits? Equivalent to `token.text.isdigit()`. ~~bool~~ | +| `is_lower` | Is the token in lowercase? Equivalent to `token.text.islower()`. ~~bool~~ | +| `is_upper` | Is the token in uppercase? Equivalent to `token.text.isupper()`. ~~bool~~ | +| `is_title` | Is the token in titlecase? Equivalent to `token.text.istitle()`. ~~bool~~ | +| `is_punct` | Is the token punctuation? ~~bool~~ | +| `is_left_punct` | Is the token a left punctuation mark, e.g. `"("` ? ~~bool~~ | +| `is_right_punct` | Is the token a right punctuation mark, e.g. `")"` ? ~~bool~~ | +| `is_sent_start` | Does the token start a sentence? ~~bool~~ or `None` if unknown. Defaults to `True` for the first token in the `Doc`. | +| `is_sent_end` | Does the token end a sentence? ~~bool~~ or `None` if unknown. | +| `is_space` | Does the token consist of whitespace characters? Equivalent to `token.text.isspace()`. ~~bool~~ | +| `is_bracket` | Is the token a bracket? ~~bool~~ | +| `is_quote` | Is the token a quotation mark? ~~bool~~ | +| `is_currency` | Is the token a currency symbol? ~~bool~~ | +| `like_url` | Does the token resemble a URL? ~~bool~~ | +| `like_num` | Does the token represent a number? e.g. "10.9", "10", "ten", etc. ~~bool~~ | +| `like_email` | Does the token resemble an email address? ~~bool~~ | +| `is_oov` | Is the token out-of-vocabulary (i.e. does it not have a word vector)? ~~bool~~ | +| `is_stop` | Is the token part of a "stop list"? ~~bool~~ | +| `pos` | Coarse-grained part-of-speech from the [Universal POS tag set](https://universaldependencies.org/u/pos/). ~~int~~ | +| `pos_` | Coarse-grained part-of-speech from the [Universal POS tag set](https://universaldependencies.org/u/pos/). ~~str~~ | +| `tag` | Fine-grained part-of-speech. ~~int~~ | +| `tag_` | Fine-grained part-of-speech. ~~str~~ | +| `morph` 3 | Morphological analysis. ~~MorphAnalysis~~ | +| `dep` | Syntactic dependency relation. ~~int~~ | +| `dep_` | Syntactic dependency relation. ~~str~~ | +| `lang` | Language of the parent document's vocabulary. ~~int~~ | +| `lang_` | Language of the parent document's vocabulary. ~~str~~ | +| `prob` | Smoothed log probability estimate of token's word type (context-independent entry in the vocabulary). ~~float~~ | +| `idx` | The character offset of the token within the parent document. ~~int~~ | +| `sentiment` | A scalar value indicating the positivity or negativity of the token. ~~float~~ | +| `lex_id` | Sequential ID of the token's lexical type, used to index into tables, e.g. for word vectors. ~~int~~ | +| `rank` | Sequential ID of the token's lexical type, used to index into tables, e.g. for word vectors. ~~int~~ | +| `cluster` | Brown cluster ID. ~~int~~ | +| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ | diff --git a/website/docs/api/top-level.md b/website/docs/api/top-level.md index c798f2a8d..211affa4a 100644 --- a/website/docs/api/top-level.md +++ b/website/docs/api/top-level.md @@ -45,16 +45,16 @@ specified separately using the new `exclude` keyword argument. > nlp = spacy.load("en_core_web_sm", exclude=["parser", "tagger"]) > ``` -| Name | Description | -| ------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `name` | Pipeline to load, i.e. package name or path. ~~Union[str, Path]~~ | -| _keyword-only_ | | -| `vocab` | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~ | +| Name | Description | +| ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `name` | Pipeline to load, i.e. package name or path. ~~Union[str, Path]~~ | +| _keyword-only_ | | +| `vocab` | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~ | | `disable` | Name(s) of pipeline component(s) to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). Is merged with the config entry `nlp.disabled`. ~~Union[str, Iterable[str]]~~ | -| `enable` 3.4 | Name(s) of pipeline component(s) to [enable](/usage/processing-pipelines#disabling). All other pipes will be disabled. ~~Union[str, Iterable[str]]~~ | -| `exclude` 3 | Name(s) of pipeline component(s) to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~Union[str, Iterable[str]]~~ | -| `config` 3 | Optional config overrides, either as nested dict or dict keyed by section value in dot notation, e.g. `"components.name.value"`. ~~Union[Dict[str, Any], Config]~~ | -| **RETURNS** | A `Language` object with the loaded pipeline. ~~Language~~ | +| `enable` 3.4 | Name(s) of pipeline component(s) to [enable](/usage/processing-pipelines#disabling). All other pipes will be disabled. ~~Union[str, Iterable[str]]~~ | +| `exclude` 3 | Name(s) of pipeline component(s) to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~Union[str, Iterable[str]]~~ | +| `config` 3 | Optional config overrides, either as nested dict or dict keyed by section value in dot notation, e.g. `"components.name.value"`. ~~Union[Dict[str, Any], Config]~~ | +| **RETURNS** | A `Language` object with the loaded pipeline. ~~Language~~ | Essentially, `spacy.load()` is a convenience wrapper that reads the pipeline's [`config.cfg`](/api/data-formats#config), uses the language and pipeline @@ -354,22 +354,22 @@ If a setting is not present in the options, the default value will be used. > displacy.serve(doc, style="dep", options=options) > ``` -| Name | Description | -| ------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------- | -| `fine_grained` | Use fine-grained part-of-speech tags (`Token.tag_`) instead of coarse-grained tags (`Token.pos_`). Defaults to `False`. ~~bool~~ | -| `add_lemma` 2.2.4 | Print the lemmas in a separate row below the token texts. Defaults to `False`. ~~bool~~ | -| `collapse_punct` | Attach punctuation to tokens. Can make the parse more readable, as it prevents long arcs to attach punctuation. Defaults to `True`. ~~bool~~ | -| `collapse_phrases` | Merge noun phrases into one token. Defaults to `False`. ~~bool~~ | -| `compact` | "Compact mode" with square arrows that takes up less space. Defaults to `False`. ~~bool~~ | -| `color` | Text color (HEX, RGB or color names). Defaults to `"#000000"`. ~~str~~ | -| `bg` | Background color (HEX, RGB or color names). Defaults to `"#ffffff"`. ~~str~~ | -| `font` | Font name or font family for all text. Defaults to `"Arial"`. ~~str~~ | -| `offset_x` | Spacing on left side of the SVG in px. Defaults to `50`. ~~int~~ | -| `arrow_stroke` | Width of arrow path in px. Defaults to `2`. ~~int~~ | -| `arrow_width` | Width of arrow head in px. Defaults to `10` in regular mode and `8` in compact mode. ~~int~~ | -| `arrow_spacing` | Spacing between arrows in px to avoid overlaps. Defaults to `20` in regular mode and `12` in compact mode. ~~int~~ | -| `word_spacing` | Vertical spacing between words and arcs in px. Defaults to `45`. ~~int~~ | -| `distance` | Distance between words in px. Defaults to `175` in regular mode and `150` in compact mode. ~~int~~ | +| Name | Description | +| ------------------ | -------------------------------------------------------------------------------------------------------------------------------------------- | +| `fine_grained` | Use fine-grained part-of-speech tags (`Token.tag_`) instead of coarse-grained tags (`Token.pos_`). Defaults to `False`. ~~bool~~ | +| `add_lemma` | Print the lemmas in a separate row below the token texts. Defaults to `False`. ~~bool~~ | +| `collapse_punct` | Attach punctuation to tokens. Can make the parse more readable, as it prevents long arcs to attach punctuation. Defaults to `True`. ~~bool~~ | +| `collapse_phrases` | Merge noun phrases into one token. Defaults to `False`. ~~bool~~ | +| `compact` | "Compact mode" with square arrows that takes up less space. Defaults to `False`. ~~bool~~ | +| `color` | Text color (HEX, RGB or color names). Defaults to `"#000000"`. ~~str~~ | +| `bg` | Background color (HEX, RGB or color names). Defaults to `"#ffffff"`. ~~str~~ | +| `font` | Font name or font family for all text. Defaults to `"Arial"`. ~~str~~ | +| `offset_x` | Spacing on left side of the SVG in px. Defaults to `50`. ~~int~~ | +| `arrow_stroke` | Width of arrow path in px. Defaults to `2`. ~~int~~ | +| `arrow_width` | Width of arrow head in px. Defaults to `10` in regular mode and `8` in compact mode. ~~int~~ | +| `arrow_spacing` | Spacing between arrows in px to avoid overlaps. Defaults to `20` in regular mode and `12` in compact mode. ~~int~~ | +| `word_spacing` | Vertical spacing between words and arcs in px. Defaults to `45`. ~~int~~ | +| `distance` | Distance between words in px. Defaults to `175` in regular mode and `150` in compact mode. ~~int~~ | #### Named Entity Visualizer options {#displacy_options-ent} @@ -385,7 +385,7 @@ If a setting is not present in the options, the default value will be used. | ------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `ents` | Entity types to highlight or `None` for all types (default). ~~Optional[List[str]]~~ | | `colors` | Color overrides. Entity types should be mapped to color names or values. ~~Dict[str, str]~~ | -| `template` 2.2 | Optional template to overwrite the HTML used to render entity spans. Should be a format string and can use `{bg}`, `{text}` and `{label}`. See [`templates.py`](%%GITHUB_SPACY/spacy/displacy/templates.py) for examples. ~~Optional[str]~~ | +| `template` | Optional template to overwrite the HTML used to render entity spans. Should be a format string and can use `{bg}`, `{text}` and `{label}`. See [`templates.py`](%%GITHUB_SPACY/spacy/displacy/templates.py) for examples. ~~Optional[str]~~ | | `kb_url_template` 3.2.1 | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in. ~~Optional[str]~~ | #### Span Visualizer options {#displacy_options-span} diff --git a/website/docs/api/vocab.md b/website/docs/api/vocab.md index 2e4a206ec..afbd1301d 100644 --- a/website/docs/api/vocab.md +++ b/website/docs/api/vocab.md @@ -21,15 +21,15 @@ Create the vocabulary. > vocab = Vocab(strings=["hello", "world"]) > ``` -| Name | Description | -| ------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `lex_attr_getters` | A dictionary mapping attribute IDs to functions to compute them. Defaults to `None`. ~~Optional[Dict[str, Callable[[str], Any]]]~~ | -| `strings` | A [`StringStore`](/api/stringstore) that maps strings to hash values, and vice versa, or a list of strings. ~~Union[List[str], StringStore]~~ | -| `lookups` | A [`Lookups`](/api/lookups) that stores the `lexeme_norm` and other large lookup tables. Defaults to `None`. ~~Optional[Lookups]~~ | -| `oov_prob` | The default OOV probability. Defaults to `-20.0`. ~~float~~ | -| `vectors_name` 2.2 | A name to identify the vectors table. ~~str~~ | -| `writing_system` | A dictionary describing the language's writing system. Typically provided by [`Language.Defaults`](/api/language#defaults). ~~Dict[str, Any]~~ | -| `get_noun_chunks` | A function that yields base noun phrases used for [`Doc.noun_chunks`](/api/doc#noun_chunks). ~~Optional[Callable[[Union[Doc, Span], Iterator[Tuple[int, int, int]]]]]~~ | +| Name | Description | +| ------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `lex_attr_getters` | A dictionary mapping attribute IDs to functions to compute them. Defaults to `None`. ~~Optional[Dict[str, Callable[[str], Any]]]~~ | +| `strings` | A [`StringStore`](/api/stringstore) that maps strings to hash values, and vice versa, or a list of strings. ~~Union[List[str], StringStore]~~ | +| `lookups` | A [`Lookups`](/api/lookups) that stores the `lexeme_norm` and other large lookup tables. Defaults to `None`. ~~Optional[Lookups]~~ | +| `oov_prob` | The default OOV probability. Defaults to `-20.0`. ~~float~~ | +| `vectors_name` | A name to identify the vectors table. ~~str~~ | +| `writing_system` | A dictionary describing the language's writing system. Typically provided by [`Language.Defaults`](/api/language#defaults). ~~Dict[str, Any]~~ | +| `get_noun_chunks` | A function that yields base noun phrases used for [`Doc.noun_chunks`](/api/doc#noun_chunks). ~~Optional[Callable[[Union[Doc, Span], Iterator[Tuple[int, int, int]]]]]~~ | ## Vocab.\_\_len\_\_ {#len tag="method"} @@ -311,10 +311,10 @@ Load state from a binary string. | Name | Description | | ---------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `strings` | A table managing the string-to-int mapping. ~~StringStore~~ | -| `vectors` 2 | A table associating word IDs to word vectors. ~~Vectors~~ | +| `vectors` | A table associating word IDs to word vectors. ~~Vectors~~ | | `vectors_length` | Number of dimensions for each word vector. ~~int~~ | | `lookups` | The available lookup tables in this vocab. ~~Lookups~~ | -| `writing_system` 2.1 | A dict with information about the language's writing system. ~~Dict[str, Any]~~ | +| `writing_system` | A dict with information about the language's writing system. ~~Dict[str, Any]~~ | | `get_noun_chunks` 3.0 | A function that yields base noun phrases used for [`Doc.noun_chunks`](/ap/doc#noun_chunks). ~~Optional[Callable[[Union[Doc, Span], Iterator[Tuple[int, int, int]]]]]~~ | ## Serialization fields {#serialization-fields} diff --git a/website/docs/usage/rule-based-matching.md b/website/docs/usage/rule-based-matching.md index 64bbf8e7b..ad8ea27f3 100644 --- a/website/docs/usage/rule-based-matching.md +++ b/website/docs/usage/rule-based-matching.md @@ -162,7 +162,7 @@ rule-based matching are: | Attribute | Description | | ---------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `ORTH` | The exact verbatim text of a token. ~~str~~ | -| `TEXT` 2.1 | The exact verbatim text of a token. ~~str~~ | +| `TEXT` | The exact verbatim text of a token. ~~str~~ | | `NORM` | The normalized form of the token text. ~~str~~ | | `LOWER` | The lowercase form of the token text. ~~str~~ | | `LENGTH` | The length of the token text. ~~int~~ | @@ -174,7 +174,7 @@ rule-based matching are: | `SPACY` | Token has a trailing space. ~~bool~~ | | `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. Note that the values of these attributes are case-sensitive. For a list of available part-of-speech tags and dependency labels, see the [Annotation Specifications](/api/annotation). ~~str~~ | | `ENT_TYPE` | The token's entity label. ~~str~~ | -| `_` 2.1 | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ | +| `_` | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ | | `OP` | [Operator or quantifier](#quantifiers) to determine how often to match a token pattern. ~~str~~ | @@ -375,7 +375,7 @@ scoped quantifiers – instead, you can build those behaviors with `on_match` callbacks. | OP | Description | -|---------|------------------------------------------------------------------------| +| ------- | ---------------------------------------------------------------------- | | `!` | Negate the pattern, by requiring it to match exactly 0 times. | | `?` | Make the pattern optional, by allowing it to match 0 or 1 times. | | `+` | Require the pattern to match 1 or more times. | diff --git a/website/docs/usage/saving-loading.md b/website/docs/usage/saving-loading.md index 0fd713a49..29870a2e3 100644 --- a/website/docs/usage/saving-loading.md +++ b/website/docs/usage/saving-loading.md @@ -306,12 +306,12 @@ pipeline component factories, language classes and other settings. To make spaCy use your entry points, your package needs to expose them and it needs to be installed in the same environment – that's it. -| Entry point | Description | -| ------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| [`spacy_factories`](#entry-points-components) | Group of entry points for pipeline component factories, keyed by component name. Can be used to expose custom components defined by another package. | -| [`spacy_languages`](#entry-points-languages) | Group of entry points for custom [`Language` subclasses](/usage/linguistic-features#language-data), keyed by language shortcut. | -| `spacy_lookups` 2.2 | Group of entry points for custom [`Lookups`](/api/lookups), including lemmatizer data. Used by spaCy's [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) package. | -| [`spacy_displacy_colors`](#entry-points-displacy) 2.2 | Group of entry points of custom label colors for the [displaCy visualizer](/usage/visualizers#ent). The key name doesn't matter, but it should point to a dict of labels and color values. Useful for custom models that predict different entity types. | +| Entry point | Description | +| ------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| [`spacy_factories`](#entry-points-components) | Group of entry points for pipeline component factories, keyed by component name. Can be used to expose custom components defined by another package. | +| [`spacy_languages`](#entry-points-languages) | Group of entry points for custom [`Language` subclasses](/usage/linguistic-features#language-data), keyed by language shortcut. | +| `spacy_lookups` | Group of entry points for custom [`Lookups`](/api/lookups), including lemmatizer data. Used by spaCy's [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) package. | +| [`spacy_displacy_colors`](#entry-points-displacy) | Group of entry points of custom label colors for the [displaCy visualizer](/usage/visualizers#ent). The key name doesn't matter, but it should point to a dict of labels and color values. Useful for custom models that predict different entity types. | ### Custom components via entry points {#entry-points-components}