Checkpoint -- nearly finished reimpl

This commit is contained in:
Matthew Honnibal 2017-05-07 23:05:01 +02:00
parent 4441866f55
commit 35458987e8

View File

@ -28,6 +28,8 @@ from murmurhash.mrmr cimport hash64
from preshed.maps cimport MapStruct from preshed.maps cimport MapStruct
from preshed.maps cimport map_get from preshed.maps cimport map_get
from thinc.api import layerize
from numpy import exp from numpy import exp
from . import _parse_features from . import _parse_features
@ -55,40 +57,45 @@ def set_debug(val):
def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, feat_maps, upper_model): def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, feat_maps, upper_model):
is_valid = model.ops.allocate((len(docs), system.n_moves), dtype='i') cdef int[:, :] is_valid_
costs = model.ops.allocate((len(docs), system.n_moves), dtype='f') cdef float[:, :] costs_
token_ids = model.ops.allocate((len(docs), StateClass.nr_context_tokens()), cdef int[:, :] token_ids
dtype='uint64') is_valid = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='i')
cached, backprops = zip(*[lyr.begin_update(tokvecs) for lyr in feat_maps) costs = upper_model.ops.allocate((len(tokvecs), moves.n_moves), dtype='f')
token_ids = upper_model.ops.allocate((len(tokvecs), StateClass.nr_context_tokens()),
dtype='uint64')
cached, backprops = zip(*[lyr.begin_update(tokvecs) for lyr in feat_maps])
is_valid_ = is_valid
costs_ = costs
def forward(states, drop=0.): def forward(states, drop=0.):
nonlocal is_valid, costs, token_ids, features nonlocal is_valid, costs, token_ids, moves
is_valid = is_valid[:len(states)] is_valid = is_valid[:len(states)]
costs = costs[:len(states)] costs = costs[:len(states)]
token_ids = token_ids[:len(states)] token_ids = token_ids[:len(states)]
is_valid = is_valid[:len(states)] is_valid = is_valid[:len(states)]
for state in states: cdef StateClass state
state.set_context_tokens(&token_ids[i]) for i, state in enumerate(states):
moves.set_valid(&is_valid[i], state.c) state.set_context_tokens(token_ids[i])
moves.set_valid(&is_valid_[i, 0], state.c)
features = cached[token_ids].sum(axis=1) features = cached[token_ids].sum(axis=1)
scores, bp_scores = upper_model.begin_update(features, drop=drop) scores, bp_scores = upper_model.begin_update(features, drop=drop)
softmaxed = model.ops.softmax(scores) softmaxed = upper_model.ops.softmax(scores)
# Renormalize for invalid actions # Renormalize for invalid actions
softmaxed *= is_valid softmaxed *= is_valid
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1)) softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
def backward(golds, sgd=None): def backward(golds, sgd=None):
nonlocal costs_, is_valid_, moves_ nonlocal costs_, is_valid_, moves
cdef TransitionSystem moves = moves_
cdef int[:, :] is_valid
cdef float[:, :] costs
for i, (state, gold) in enumerate(zip(states, golds)): for i, (state, gold) in enumerate(zip(states, golds)):
moves.set_costs(&costs[i], &is_valid[i], moves.set_costs(&is_valid_[i, 0], &costs_[i, 0],
state, gold) state, gold)
set_log_loss(model.ops, d_scores, d_scores = scores.copy()
scores, is_valid, costs) d_scores.fill(0)
set_log_loss(upper_model.ops, d_scores,
scores, is_valid_, costs_)
d_tokens = bp_scores(d_scores, sgd) d_tokens = bp_scores(d_scores, sgd)
return d_tokens return d_tokens
@ -119,6 +126,17 @@ def transition_batch(TransitionSystem moves, states, scores):
action.do(state.c, action.label) action.do(state.c, action.label)
def init_states(TransitionSystem moves, docs):
states = []
cdef Doc doc
cdef StateClass state
for i, doc in enumerate(docs):
state = StateClass.init(doc.c, doc.length)
moves.initialize_state(state.c)
states.append(state)
return states
cdef class Parser: cdef class Parser:
""" """
Base class of the DependencyParser and EntityRecognizer. Base class of the DependencyParser and EntityRecognizer.
@ -176,7 +194,8 @@ cdef class Parser:
def build_model(self, width=32, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_): def build_model(self, width=32, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR) nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
self.model = build_model(width*2, 2, self.moves.n_moves) self.model = build_model(width*2, 2, self.moves.n_moves)
self.feature_maps = build_feature_maps(nr_context_tokens, width, nr_vector)) # TODO
self.feature_maps = [] #build_feature_maps(nr_context_tokens, width, nr_vector)
def __call__(self, Doc tokens): def __call__(self, Doc tokens):
""" """
@ -248,6 +267,7 @@ cdef class Parser:
model = get_greedy_model_for_batch([d.tensor for d in docs], model = get_greedy_model_for_batch([d.tensor for d in docs],
self.moves, self.model, self.feat_maps) self.moves, self.model, self.feat_maps)
states = init_states(self.moves, docs)
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs] d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
output = list(d_tokens) output = list(d_tokens)
@ -261,7 +281,7 @@ cdef class Parser:
transition_batch(self.moves, states) transition_batch(self.moves, states)
# Get unfinished states (and their matching gold and token gradients) # Get unfinished states (and their matching gold and token gradients)
todo = filter(lambda sp: not sp[0].py_is_final(), todo) todo = filter(lambda sp: not sp[0].py_is_final(), todo)
return output, sum(losses) return output
def begin_training(self, docs, golds): def begin_training(self, docs, golds):
for gold in golds: for gold in golds:
@ -336,31 +356,6 @@ def _begin_update(self, model, states, tokvecs, drop=0.):
return finish_update(d_scores, sgd=sgd) return finish_update(d_scores, sgd=sgd)
return softmaxed, backward return softmaxed, backward
def _init_states(self, docs):
states = []
cdef Doc doc
cdef StateClass state
for i, doc in enumerate(docs):
state = StateClass.init(doc.c, doc.length)
self.moves.initialize_state(state.c)
states.append(state)
return states
def _validate_batch(self, int[:, ::1] is_valid, states):
cdef StateClass state
cdef int i
for i, state in enumerate(states):
self.moves.set_valid(&is_valid[i, 0], state.c)
def _cost_batch(self, weight_t[:, ::1] costs, int[:, ::1] is_valid,
states, golds):
cdef int i
cdef StateClass state
cdef GoldParse gold
for i, (state, gold) in enumerate(zip(states, golds)):
self.moves.set_costs(&is_valid[i, 0], &costs[i, 0], state, gold)
def _get_features(self, states, all_tokvecs, attr_names, def _get_features(self, states, all_tokvecs, attr_names,
nF=1, nB=0, nS=2, nL=2, nR=2): nF=1, nB=0, nS=2, nL=2, nR=2):