Fuzz tokenizer.explain: draft for fuzzy tests. (#10771)

* Fuzz tokenizer.explain: draft for fuzzy tests.

* Fuzz tokenizer.explain: xignoring tokenizer.explain() tests. Removed deadline modification. Removed LANGUAGES_WITHOUT_TOKENIZERS.

* Fuzz tokenizer.explain: changed tokenizer initialization to avoid failus in Azure runs.

* Fuzz tokenizer.explain: type hint for tokenizer in test.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
This commit is contained in:
Raphael Mitsch 2022-05-17 10:23:16 +02:00 committed by GitHub
parent 99aeaf9bd3
commit 357be2614e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,7 +1,13 @@
import pytest
import re
from spacy.util import get_lang_class
import string
import hypothesis
import hypothesis.strategies
import pytest
import spacy
from spacy.tokenizer import Tokenizer
from spacy.util import get_lang_class
# Only include languages with no external dependencies
# "is" seems to confuse importlib, so we're also excluding it for now
@ -77,3 +83,46 @@ def test_tokenizer_explain_special_matcher(en_vocab):
tokens = [t.text for t in tokenizer("a/a.")]
explain_tokens = [t[1] for t in tokenizer.explain("a/a.")]
assert tokens == explain_tokens
@hypothesis.strategies.composite
def sentence_strategy(draw: hypothesis.strategies.DrawFn, max_n_words: int = 4) -> str:
"""
Composite strategy for fuzzily generating sentence with varying interpunctation.
draw (hypothesis.strategies.DrawFn): Protocol for drawing function allowing to fuzzily pick from hypothesis'
strategies.
max_n_words (int): Max. number of words in generated sentence.
RETURNS (str): Fuzzily generated sentence.
"""
punctuation_and_space_regex = "|".join(
[*[re.escape(p) for p in string.punctuation], r"\s"]
)
sentence = [
[
draw(hypothesis.strategies.text(min_size=1)),
draw(hypothesis.strategies.from_regex(punctuation_and_space_regex)),
]
for _ in range(
draw(hypothesis.strategies.integers(min_value=2, max_value=max_n_words))
)
]
return " ".join([token for token_pair in sentence for token in token_pair])
@pytest.mark.xfail
@pytest.mark.parametrize("lang", LANGUAGES)
@hypothesis.given(sentence=sentence_strategy())
def test_tokenizer_explain_fuzzy(lang: str, sentence: str) -> None:
"""
Tests whether output of tokenizer.explain() matches tokenizer output. Input generated by hypothesis.
lang (str): Language to test.
text (str): Fuzzily generated sentence to tokenize.
"""
tokenizer: Tokenizer = spacy.blank(lang).tokenizer
tokens = [t.text for t in tokenizer(sentence) if not t.is_space]
debug_tokens = [t[1] for t in tokenizer.explain(sentence)]
assert tokens == debug_tokens, f"{tokens}, {debug_tokens}, {sentence}"