Add span predictor code

Accidentally omitted before
This commit is contained in:
Paul O'Leary McCann 2022-03-08 18:13:26 +09:00
parent 1c697b4011
commit 35cc2b138f

View File

@ -857,6 +857,86 @@ class RoughScorer(torch.nn.Module):
return top_scores, indices return top_scores, indices
class SpanPredictor(torch.nn.Module):
def __init__(self, input_size: int, distance_emb_size: int, device):
super().__init__()
self.ffnn = torch.nn.Sequential(
torch.nn.Linear(input_size * 2 + 64, input_size),
torch.nn.ReLU(),
torch.nn.Dropout(0.3),
torch.nn.Linear(input_size, 256),
torch.nn.ReLU(),
torch.nn.Dropout(0.3),
torch.nn.Linear(256, 64),
)
self.device = device
self.conv = torch.nn.Sequential(
torch.nn.Conv1d(64, 4, 3, 1, 1),
torch.nn.Conv1d(4, 2, 3, 1, 1)
)
self.emb = torch.nn.Embedding(128, distance_emb_size) # [-63, 63] + too_far
def forward(self, # type: ignore # pylint: disable=arguments-differ #35566 in pytorch
sent_id,
words: torch.Tensor,
heads_ids: torch.Tensor) -> torch.Tensor:
"""
Calculates span start/end scores of words for each span head in
heads_ids
Args:
doc (Doc): the document data
words (torch.Tensor): contextual embeddings for each word in the
document, [n_words, emb_size]
heads_ids (torch.Tensor): word indices of span heads
Returns:
torch.Tensor: span start/end scores, [n_heads, n_words, 2]
"""
# Obtain distance embedding indices, [n_heads, n_words]
relative_positions = (heads_ids.unsqueeze(1) - torch.arange(words.shape[0], device=words.device).unsqueeze(0))
# make all valid distances positive
emb_ids = relative_positions + 63
# "too_far"
emb_ids[(emb_ids < 0) + (emb_ids > 126)] = 127
# Obtain "same sentence" boolean mask, [n_heads, n_words]
sent_id = torch.tensor(sent_id, device=words.device)
same_sent = (sent_id[heads_ids].unsqueeze(1) == sent_id.unsqueeze(0))
# To save memory, only pass candidates from one sentence for each head
# pair_matrix contains concatenated span_head_emb + candidate_emb + distance_emb
# for each candidate among the words in the same sentence as span_head
# [n_heads, input_size * 2 + distance_emb_size]
rows, cols = same_sent.nonzero(as_tuple=True)
pair_matrix = torch.cat((
words[heads_ids[rows]],
words[cols],
self.emb(emb_ids[rows, cols]),
), dim=1)
lengths = same_sent.sum(dim=1)
padding_mask = torch.arange(0, lengths.max(), device=words.device).unsqueeze(0)
padding_mask = (padding_mask < lengths.unsqueeze(1)) # [n_heads, max_sent_len]
# [n_heads, max_sent_len, input_size * 2 + distance_emb_size]
# This is necessary to allow the convolution layer to look at several
# word scores
padded_pairs = torch.zeros(*padding_mask.shape, pair_matrix.shape[-1], device=words.device)
padded_pairs[padding_mask] = pair_matrix
res = self.ffnn(padded_pairs) # [n_heads, n_candidates, last_layer_output]
res = self.conv(res.permute(0, 2, 1)).permute(0, 2, 1) # [n_heads, n_candidates, 2]
scores = torch.full((heads_ids.shape[0], words.shape[0], 2), float('-inf'), device=words.device)
scores[rows, cols] = res[padding_mask]
# Make sure that start <= head <= end during inference
if not self.training:
valid_starts = torch.log((relative_positions >= 0).to(torch.float))
valid_ends = torch.log((relative_positions <= 0).to(torch.float))
valid_positions = torch.stack((valid_starts, valid_ends), dim=2)
return scores + valid_positions
return scores
class DistancePairwiseEncoder(torch.nn.Module): class DistancePairwiseEncoder(torch.nn.Module):
def __init__(self, embedding_size, dropout_rate): def __init__(self, embedding_size, dropout_rate):