mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Merge pull request #6646 from svlandeg/feature/cli-docs [ci skip]
This commit is contained in:
commit
3614472e29
|
@ -790,6 +790,12 @@ in the section `[paths]`.
|
|||
|
||||
</Infobox>
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```cli
|
||||
> $ python -m spacy train config.cfg --output ./output --paths.train ./train --paths.dev ./dev
|
||||
> ```
|
||||
|
||||
```cli
|
||||
$ python -m spacy train [config_path] [--output] [--code] [--verbose] [--gpu-id] [overrides]
|
||||
```
|
||||
|
@ -808,15 +814,16 @@ $ python -m spacy train [config_path] [--output] [--code] [--verbose] [--gpu-id]
|
|||
## pretrain {#pretrain new="2.1" tag="command,experimental"}
|
||||
|
||||
Pretrain the "token to vector" ([`Tok2vec`](/api/tok2vec)) layer of pipeline
|
||||
components on [raw text](/api/data-formats#pretrain), using an approximate
|
||||
language-modeling objective. Specifically, we load pretrained vectors, and train
|
||||
a component like a CNN, BiLSTM, etc to predict vectors which match the
|
||||
pretrained ones. The weights are saved to a directory after each epoch. You can
|
||||
then include a **path to one of these pretrained weights files** in your
|
||||
components on raw text, using an approximate language-modeling objective.
|
||||
Specifically, we load pretrained vectors, and train a component like a CNN,
|
||||
BiLSTM, etc to predict vectors which match the pretrained ones. The weights are
|
||||
saved to a directory after each epoch. You can then include a **path to one of
|
||||
these pretrained weights files** in your
|
||||
[training config](/usage/training#config) as the `init_tok2vec` setting when you
|
||||
train your pipeline. This technique may be especially helpful if you have little
|
||||
labelled data. See the usage docs on
|
||||
[pretraining](/usage/embeddings-transformers#pretraining) for more info.
|
||||
[pretraining](/usage/embeddings-transformers#pretraining) for more info. To read
|
||||
the raw text, a [`JsonlCorpus`](/api/top-level#jsonlcorpus) is typically used.
|
||||
|
||||
<Infobox title="Changed in v3.0" variant="warning">
|
||||
|
||||
|
@ -830,6 +837,12 @@ auto-generated by setting `--pretraining` on
|
|||
|
||||
</Infobox>
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```cli
|
||||
> $ python -m spacy pretrain config.cfg ./output_pretrain --paths.raw_text ./data.jsonl
|
||||
> ```
|
||||
|
||||
```cli
|
||||
$ python -m spacy pretrain [config_path] [output_dir] [--code] [--resume-path] [--epoch-resume] [--gpu-id] [overrides]
|
||||
```
|
||||
|
|
|
@ -148,7 +148,7 @@ This section defines a **dictionary** mapping of string keys to functions. Each
|
|||
function takes an `nlp` object and yields [`Example`](/api/example) objects. By
|
||||
default, the two keys `train` and `dev` are specified and each refer to a
|
||||
[`Corpus`](/api/top-level#Corpus). When pretraining, an additional `pretrain`
|
||||
section is added that defaults to a [`JsonlCorpus`](/api/top-level#JsonlCorpus).
|
||||
section is added that defaults to a [`JsonlCorpus`](/api/top-level#jsonlcorpus).
|
||||
You can also register custom functions that return a callable.
|
||||
|
||||
| Name | Description |
|
||||
|
|
Loading…
Reference in New Issue
Block a user